首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
β-Glycosides of 2-acetamido-2-deoxy- -glucopyranose were synthesized, using either 7-methoxycarbonyl-3,6-dioxa-1-heptanol or 8-azido-3,6-dioxa-1-octanol. Selective β-lactosylation of 7-methoxycarbonyl-3,6-dioxaheptyl 2-acetamido-3-O-benzyl-2-deoxy-β- -glucopyranoside with hepta-O-acetyl-lactosyl-trichloroacetimidate, followed by β-galactosylation of the secondary hydroxyl group with O-(2,3,4,6-tetra-O-acetyl-- -galactopyranosyl)trichloroacetimidate, catalytic hydrogenolysis, and O-deacetylation, gave 7-methoxycarbonyl-3,6-dioxaheptyl 2-acetamido-2-deoxy-4-O-β- -galactopyranosyl-6-O-(4-O-β- -galactopyranosyl-β- -glucopyranosyl)β- -glucopyranoside. Selective β-lactosylation of 8-azido-3,6-dioxaocytl 2-acetamido-3-O-benzyl-2-deoxy-β- -glucopyranoside with hepta-O-acetyl-lactosyl bromide in the presence of silver triflate, followed by condensation with 2,3,4,6-tetra-O-acetyl-- -galactopyranosyl bromide in the presence of silver triflate, catalytic hdyrogenolysis, and O-deacetylation, gave 8-azido-3,6-dioxaoctyl 2-acetamido-2-deoxy-4-O-β- -galactopyranosyl-6-O-(4-O-β- -galactopyranosyl-β- -glucopyranosyl)-β- glucopyranoside.  相似文献   

2.
Andr  s Lipt  k  Lajos Szab    J  nos Ker  kgy  rt    J  nos Harangi  P  l N  n  si

Helmut Duddeck 《Carbohydrate research》1986,150(1):187-197

The title tetrasacharide having the structure 3-O-Me-β- -Xylp-(1→4)-- -Rhap-(1→4)-- -Rhap-(1→2)- -Rhap was obtained by reaction of the -acetobromo derivative of 4-O-(3-O-methyl-β- -xylopyranosyl)- -rhamnopyranose and benzyl 3,4-di-O-benzyl-2-O-(2,3-O-isopropylidene-- -rhamnopyranosyl)-- -rhamnopyranoside, followed by removal of the protecting groups. The synthesised compounds were characterised on the basis of n.m.r. data.  相似文献   

3.
The ability of eight structurally related naturally occurring flavonoids in inhibiting lipid peroxidation and mitochondrial membrane permeability transition (MMPT), as well as respiration and protein sulfhydryl oxidation in rat liver mitochondria, was evaluated. The flavonoids tested exhibited the following order of potency to inhibit ADP/Fe(II)-induced lipid peroxidation, estimated with the thiobarbituric acid assay: 3′-O-methyl-quercetin > quercetin > 3,5,7,3′,4′-penta-O-methyl-quercetin > 3,7,3′,4′-tetra-O-methyl-quercetin > pinobanksin > 7-O-methyl-pinocembrin > pinocembrin > 3-O-acyl-pinobanksin. MMPT was estimated by the extent of mitochondrial swelling induced by 10 μM CaCl2 plus 1.5 mM inorganic phosphate or 30 μM mefenamic acid. The most potent inhibitors of MMPT were quercetin, 7-O-methyl-pinocembrin, pinocembrin, and 3,5,7,3′,4′-penta-O-methyl-quercetin. The first two inhibited in parallel the oxidation of mitochondrial protein sulfhydryl involved in the MMPT mechanism. The most potent inhibitors of mitochondrial respiration were 7-O-methyl-pinocembrin, quercetin, and 3′-O-methyl-quercetin while the most potent uncouplers were pinocembrin and 3-O-acyl-pinobanksin. In contrast 3,7,3′,4′-tetra-O-methyl-quercetin and 3,5,7,3′,4′-penta-O-methyl-quercetin showed the lowest ability to affect mitochondrial respiration. We conclude that, in general, the flavonoids tested are able to inhibit lipid peroxidation on the mitochondrial membrane and/or MMPT. Multiple methylation of the hydroxyl substitutions, in addition to sustaining good anti-lipoperoxidant activity, reduces the effect of flavonoids on mitochondrial respiration, and therefore, increases the pharmacological potential of these compounds against pathological processes related to oxidative stress.  相似文献   

4.
Chalconoid and stilbenoid glycosides from Guibourtia tessmanii   总被引:2,自引:0,他引:2  
Phytochemical studies on the stem bark of Guibourtia tessmanii yielded a dihydrochalcone glucoside, 2′,4-dihydroxy-4′-methoxy-6′-O-β-glucopyranoside dihydrochalcone and a new stilbene glycoside, 3,5-dimethoxy-4′-O-(β-rhamnopyranosyl-(1→6)-β- glucopyranoside) stilbene besides the known pterostilbene. Their structures were established on the basis of one and two dimensional NMR spectroscopic techniques, FABMS and chemical evidence.  相似文献   

5.
Treatment of 3,5,6-tri-O-benzoyl-- -glucofuranose 1,2-sulfite with an excess of bis(trimethylsil) uracil, in fusion processes without any catalyst, afforded an excellent yield of 1-(3,5,6-tri-O-benzoyl-2-O-trimethylsilyl-β- -glucofuranosyl)uracil, which was readily hydrolyzed in slightly acid conditions to give in almost quantitative yield 1-(3,5,6-tri-O-benzoyl-β- -glucofuranosyl)uracil. This new synthetic method for nucleosides unprotected at O-2′ was also tested in other sugar series. In some cases, only the 1′,2′-trans-nucleosides were obtained, but in others, small yields (3–10%) of 1′,2′-cis-nucleosides were detected. The -to-β ratio seems to be dependent on the reaction temperature. 2,4-Dimethoxypyrimidine also reacted with sugar 1,2-sulfites and 4-O-methyl-1-(3,5,6-tri-O-benzyl-β- -glucopyranosyl)-2-pyrimidinone was prepared in 85% yield from 3,5,6-tri-O-benzyl-- -glucopyranose 1,2-sulfite.  相似文献   

6.
7.
The synthesis, antiproliferative effect and enzymatic hydrolysis of daunomycin-3′-N- and -4′-O-phosphate and -sulfate derivatives and of daunomycin-3′-N-CO-β-glucuronide and -β-glucoside, designed to be prodrugs in ADEPT are described. The phosphate derivatives were almost as toxic as the parent drug whereas the sulfates were not hydrolyzed by aryl sulfatases. Glucuronyl and glucosyl prodrugs were found to be useful for application in ADEPT.  相似文献   

8.
Panax ginseng root and cell cultures were shown to biotransform paeonol (1) into its 2-O-β-d-glucopyranoside (2). P. ginseng root cultures were also able to biotransform paeonol (1) into its 2-O-β-d-xylopyranoside (3), 2-O-β-d-glucopyranosyl(1 → 6)-β-d-glucopyranoside (4) and 2-O-β-d-xylopyranosyl(1 → 6)-β-d-glucopyranoside (5), and its demethylated derivate, 2′,4′-dihydroxyacetophenone (6). Compounds 3 and 4 are new glycosides. It is the first example that the administrated compound was converted into its xylopyranoside by plant biotransformation.  相似文献   

9.
Candida antarctica-B (CAL-B) lipase-catalysed alcoholysis of a set of 3′,5′-di-O-acetyl-2′-deoxynucleosides (1a–e) gave the corresponding 3′-O-acetyl-2′-deoxy-nucleosides (2a–e) in yields ranging from 50 to 96%. The alcohol employed in the biotransformation affected the rate of the enzymatic reaction and the yield of the 3′-O-acetylated product, but in all cases only this regioisomer was formed. The obtained results are in agreement with the regioselectivity displayed by CAL-B lipase in previously reported biotransformations of nucleosides. CAL-B catalysed alcoholysis of 2′,3′,5′-tri-O-acetyl-cytidine and 4-N-acetyl-2′,3′,5′-tri-O-acetylcytidine was also studied, affording with the same regioselectivity the corresponding free 5′-hydroxyl nucleosides.  相似文献   

10.
Bark, wood and leaves of Ocotea catharinensis contain respectively 10 (average yield 0.7%.), 15 (average yield 0.004%.) and one (yield 0.4%.) neolignans of the bicyclo[3.2.1]octanoid and the hydrobenzofuranoid structural types, including the new rel-(7S,8R,1′R,4′S,5′R,6′R)-Δ8′-4′,6′-dihydroxy-5′-methoxy-3,4-methylenedioxy-3′-oxo-8.1′,7.5′-neolignan, (7S,8S)-Δ1′,3′,5′,8′-5,3′,5′-trimethoxy-3,4-methylenedioxy-8.1′,7.O.6′,4.O.7′-neolignan, (7R,8S,1′R,3′R)-Δ5′,8′-3,4,3′,5′-tetramethoxy-4′-oxo-8.1′,7.O.6′-neolignan and rel-(7R,8S,1′R,2′S)-Δ4′,8′-2′-hydroxy-3,4-dimethoxy-3′-oxo-8.1′,7.O.2′-neolignan.  相似文献   

11.
Three new cycloartane glycosides, trigonoside I, II and III, and the known astragalosides I and II were isolated from the roots of Astragalus trigonus. The structures of the new glycosides were totally elucidated by high field (600 MHz) NMR analyses as cycloastragenol-6-O-β-xylopyranoside, cycloastragenol-3-O-[-l-arabinopyranosyl(1 → 2)-β-d-xylopyranosyl]-6-O-β- d-xylopyranoside and cycloastragenol-3-O-[-l-arabinopyranosyl(1 → 2)-β-d-(3-O-acetyl)-xylopyranosyl]-6-O-β-d-xylopyranoside.  相似文献   

12.
Three main saponins were isolated from the seeds of Albizzia lucida. Their structures were established by spectral analyses and chemical and enzymatic transformations as 3-O-[β- -xylopyranosyl(1→2)-- -arabinopyranosyl (1→6)] [β- -glucopyranosyl (1→2)] β- -glucopyranosyl echinocystic acid; 3-O-[- -arabinopyranosyl (1→6)][β- -glucopyranosyl (1→2)]-β- -glucopyranosyl echinocystic acid and 3-O-[β- -xylopyranosyl (1→2)-β- -fucopyranosyl (1→6)-2-acetamido-2-deoxy-β- -glucopyranosyl echinocystic acid, characterized as its methyl ester.  相似文献   

13.
From the mesocarp of Balanites aegyptiaca fruits, two pregnane glycosides were isolated. One is new and identified as pregn-5-ene-3β,16β,20(R)-triol 3-O-(2,6-di-O--l-rhamnopyranosyl)-β-d-glucopyranoside (balagyptin), while the other is known and assigned as pregn-5-ene-3β,16β,20(R)-triol 3-O-β-d-glucopyranoside.  相似文献   

14.
Yi Yang-Hua 《Phytochemistry》1991,30(12):4179-4181
A new triterpenoid, esculentagenin, and its glycoside, esculentoside M, were isolated from the roots of Phytolacca esculenta and characterized as 11-oxo-3-O-methyloleanata-12-en-2β,3β,23-trihydroxy-28-oic acid and 3-O-[β - -glucopyranosyl (1→4)-β- -Xylopyranosyl]-28-O-β- -glucopyranosyl-11-oxo-30-methyloleanate-12-en-2β,3β,23-trihydroxy-28-oic acid by spectral and chemical evidence.  相似文献   

15.
Li JZ  Liu HY  Lin YJ  Hao XJ  Ni W  Chen CX 《Steroids》2008,73(6):594-600
Six new C21 steroidal glycosides, named curassavosides A–F (3–8), were obtained from the aerial parts of Asclepias curassavica (Asclepiadaceae), along with two known oxypregnanes, 12-O-benzoyldeacylmetaplexigenin (1) and 12-O-benzoylsarcostin (2). By spectroscopic methods, the structures of the six new compounds were determined as 12-O-benzoyldeacylmetaplexigenin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (3), 12-O-benzoylsarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (4), sarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (5), sarcostin 3-O-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-digitoxopyranoside (6), 12-O-benzoyldeacylmetaplexigenin 3-O-β-d-glucopyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (7), and 12-O-benzoylsarcostin 3-O-β-d-glucopyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-canaropyranosyl-(1 → 4)-β-d-oleandropyranosyl-(1 → 4)-β-d-digitoxopyranoside (8), respectively. All compounds (1–8) were tested for in vitro cytotoxicity; only compound 3 showed weak inhibitory activity against Raji and AGZY cell lines.  相似文献   

16.
Addition of iodine and methanol to N6,N6-dibenzoyl-9(2,3-O-carbonyl-5-deoxy-β-d-erythro-pent-4-enofuranosyl)adenine (4) selectively gives N6,N6-dibenzoyl-2′,3′-O-carbonyl-5′-deoxy-5′-iodo-4′-methoxyadenosine (5). Compound 5 can be converted into 4′-methoxyadenosine via hydrolysis of the carbonate followed by benzoylation, displacement of the 5′-iodo function by benzoate ion, and hydrolysis with ammonia. Configurational assignments are based upon comparisons of 1H- and 13C-n.m.r. spectra with those of previously characterised analogues in the uracil series and by borate electrophoresis. Intermediates in the above scheme have also been converted into 5′-amino-5′-deoxy-4′-methoxyadenosine, 4′-methoxy-5′-O-sulfamoyladenosine, and ethyl 4′-methoxyadenosine-5′-carboxylate, each of which is a 4′-methoxy analogue of biologically active derivatives of adenosine.  相似文献   

17.
Two iridoid glucosides, 8-epi-grandifloric acid and 3′-O-β-glucopyranosyl-stilbericoside, were isolated from the aerial part of Thunbergia laurifolia along with seven known compounds, benzyl β-glucopyranoside, benzyl β-(2′-O-β-glucopyranosyl) glucopyranoside, grandifloric acid, (E)-2-hexenyl β-glucopyranoside, hexanol β-glucopyranoside, 6-C-glucopyranosylapigenin and 6,8-di-C-glucopyranosylapigenin. Strucural elucidation was based on the analyses of spectroscopic data.  相似文献   

18.
The mechanisms whereby adenosine-5−triphosphate (ATP)_regulated the inositol phospholipid-signalling system were studied in rat hepatocytes. Intact hepatocytes respond to extracellular ATP, adenosine-5′-O-(3-thiotriphosphate) (ATPγS), ADP and weakly to guanosine-5′-triphosphate (GTP), but not to other purine nucleotides (GDP or AMP). This is consistent with the ideal that a P2 purinergic receptor is coupled to the phosphatidylinositol metabolism in these cells. Partially purified plasma membranes prepared from myo-[3H]inositol prelabelled hepatocytes exhibit a phosphatidylinositol-4,5-bisphosphate phospholipase C activity sensitive to ATP, ATPγS and guanosine-5′-O-(3-thiotriphosphate) (GTPγS). Moreover the GTPγS effect of greatly enhanced by ATP and ATPγS. These potentiating effects differ according to the adenylnucleotide considered. ATP produces (1) an increase in the GTPγS-PLC sensitivity, (2) a potentiation of the phospholipase C (PLC) response induced by maximal dose of GTPγS, and (3) an increase in the inositol lipids pools. At variance, ATPγS, a nonhydrolysable analogue of ATP, only increases the PLC-sensitivity towards GTPγS. These results may signify that ATP stimulates inositol phosphate accumulation via at least two distinct mechanisms (i) a direct activation of a P2 purinergic receptor coupled to a PLC via a GTP binding protein and (ii) a stimulation of the phosphatidylinositol (PI) and phosphatidyinositol-4-phosphate (PIP) kinases which increased the pool of phospholipase C substrates.  相似文献   

19.
Synthesis and antibacterial activity of novel neamine derivatives   总被引:1,自引:0,他引:1  
Synthesis and activity of derivatives at the O5 or O6 positions of 1-N-((S)-4-amino-2-hydroxybutyryl)-3′,4′-dideoxyneamine, which is the neamine moiety of arbekacin, were reported. Among these results, the 5-O-aminoethylaminocarbonyl derivative showed effective activity against Staphylococcus aureus expressing a bifunctional aminoglycoside-modifying enzyme AAC(6′)-APH(2″).  相似文献   

20.
The dinuclear Pt---Si complex {(Ph3P)Pt{μ-η2-H---SiH(IMP)]}2 (trans-1a–cis-1b=3:1; IMP=2-isopropyl-6-methylphenyl) reacted with basic phosphines such as 1,2-bis(diphenylphosphino)ethane (dppe) and dimethylphenylphosphine (PMe2Ph) to afford different dinuclear Pt---Si complexes with loss of H2, {(P)2Pt[μ-SiH(IMP)]}2 [P=dppe, trans-2a (major), cis-2b (trace); PMe2Ph, 3 (trans only)]. Complexes 2 and 3 were characterized by multinuclear NMR spectroscopy and X-ray crystallography (2a). In contrast, the reaction of 1a,b with the sterically demanding tricyclohexylphosphine (PCy3) afforded {(Cy3P)Pt{μ-η2-H---SiH(IMP)]}2 (trans-4a–cis-4b 2:1) analogous to 1a,b where the central Pt2Si2(μ-H)2 core remains intact but the PPh3 ligands have been replaced by PCy3. Complexes 4a and 4b was characterized by multinuclear NMR and IR spectroscopies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号