首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Absorption of a photon by a vertebrate opsin pigment induces 11-cis to all-trans isomerization of its retinaldehyde chromophore. Restoration of light sensitivity to the bleached opsin requires chemical re-isomerization of the chromophore via an enzyme pathway called the visual cycle. The retinoid isomerase in this pathway is Rpe65, a membrane-associated protein in the retinal pigment epithelium (RPE) with no predicted membrane-spanning segments. It has been suggested that Rpe65 is S-palmitoylated by lecithin:retinol acyl transferase (LRAT) on Cys(231), Cys(329), and Cys(330), and that this palmitoylation is required for isomerase activity and the association of Rpe65 with membranes. Here we show that the affinity of Rpe65 for membranes is similar in wild-type and lrat(-/-) mice. The isomerase activity of Rpe65 is also similar in both strains when all-trans-retinyl palmitate is used as substrate. With all-trans-retinol substrate, isomerase activity is present in wild-type but undetectable in RPE homogenates from lrat(-/-) mice. Substitution of Cys(231), Cys(329), and Cys(330) with Ser or Ala did not affect the affinity of Rpe65 for membranes. Further, these Cys residues are not palmitoylated in Rpe65 by mass spectrometric analysis. Global inhibition of protein palmitoylation by 2-bromopalmitate did not affect the solubility or isomerase activity of Rpe65. Finally, we show that soluble and membrane-associated Rpe65 possesses similar isomerase specific activities. These results indicate that LRAT is not required for isomerase activity beyond synthesis of retinyl-ester substrate, and that the association of Rpe65 with membranes is neither dependent upon LRAT nor the result of S-palmitoylation. The affinity of Rpe65 for membranes is probably an intrinsic feature of this protein.  相似文献   

2.
Splenic lymphocytes from mice immunized with a partially purified prostaglandin (PG) H-PGE isomerase from sheep vesicular glands were fused with SP2/0-Ag14 myeloma cells. Two spleen cell-myeloma hybrids (hei-7 and hei-26) were selected and cloned. The mouse antibodies secreted by the two hybrids, IgG1 (hei-7) and IgG1 (hei-26), caused immunoprecipitation of a maximum of 45 and 22%, respectively, of the solubilized PGH-PGE isomerase activity of sheep vesicular gland; immunoprecipitation of activity by the two antibodies was additive. The antigens reactive with IgG1 (hei-7) and IgG1 (hei-26) were identified as proteins with Mr = 17,500 and 180,000, respectively, by Western transfer blotting or sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitated 125I-labeled microsomes. The PGH-PGE isomerase activities precipitated by IgG1 (hei-7) and IgG1 (hei-26) exhibited different kinetic properties with respect to time course, Km for PGH2, and concentration dependence for GSH. No significant GSH-S-transferase activity was present in these immunoprecipitates. These data indicate that there are at least two different proteins in sheep vesicular gland microsomes capable of catalyzing GSH-dependent PGH-PGE isomerase reactions. IgG1 (hei-7), but not IgG1 (hei-26), caused coprecipitation of PGH synthase and PGH-PGE isomerase activities when incubated with intact right-side-out vesicular gland microsomes. Thus, the epitope for IgG1 (hei-7) is located on the cytoplasmic surface of those microsomal spheres which contain PGH synthase. This latter finding suggests that the isomerase reactive with IgG1 (hei-7) is involved in PGE synthesis in sheep vesicular glands.  相似文献   

3.
Degradation of unsaturated fatty acids through the peroxisomal beta-oxidation pathway requires the participation of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. The auxiliary enzyme delta(3,5),delta(2,4)-dienoyl-coenzyme A (CoA) isomerase has been well studied in yeast (Saccharomyces cerevisiae) and mammals, but no plant homolog had been identified and characterized at the biochemical or molecular level. A candidate gene (At5g43280) was identified in Arabidopsis (Arabidopsis thaliana) encoding a protein showing homology to the rat (Rattus norvegicus) delta(3,5),delta(2,4)-dienoyl-CoA isomerase, and possessing an enoyl-CoA hydratase/isomerase fingerprint as well as aspartic and glutamic residues shown to be important for catalytic activity of the mammalian enzyme. The protein, named AtDCI1, contains a peroxisome targeting sequence at the C terminus, and fusion of a fluorescent protein to AtDCI1 directed the chimeric protein to the peroxisome in onion (Allium cepa) cells. AtDCI1 expressed in Escherichia coli was shown to have delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vitro. Furthermore, using the synthesis of polyhydroxyalkanoate in yeast peroxisomes as an analytical tool to study the beta-oxidation cycle, expression of AtDCI1 was shown to complement the yeast mutant deficient in the delta(3,5),delta(2,4)-dienoyl-CoA isomerase, thus showing that AtDCI1 is also appropriately targeted to the peroxisome in yeast and has delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vivo. The AtDCI1 gene is expressed constitutively in several tissues, but expression is particularly induced during seed germination. Proteins showing high homology with AtDCI1 are found in gymnosperms as well as angiosperms belonging to the Monocotyledon or Dicotyledon classes.  相似文献   

4.
Immunocytochemical localization of delta 3, delta 2-enoyl-CoA isomerase (isomerase) was investigated in rat liver. Livers of di-(2-ethylhexyl)phthalate (DEHP)-treated or untreated rats were perfusion-fixed and embedded in Epon or Lowicryl K4M. By light microscopy, reaction deposits for the enzyme were present in the cytoplasmic granules of hepatocytes and interlobular bile duct epithelium. Weak staining was noted in sinus-lining cells. After administration of DEHP, the granular staining of the hepatocytes was markedly enhanced, whereas the staining reaction of the sinus-lining cells decreased. The isomerase staining pattern was quite similar to that of long-chain acyl-CoA dehydrogenase (a mitochondrial marker), but different from that of catalase (a peroxisomal marker). Under electron microscopy, gold particles for isomerase were seen to be confined mainly to mitochondria of the hepatocytes, the bile duct epithelial cells and sinus-lining cells. Peroxisomes were weakly labeled. After DEHP administration, the peroxisomes were markedly induced, but the mitochondria were not. Quantitative analysis showed that the induction of the peroxisomal isomerase was only 2-fold whereas the mitochondrial isomerase was enhanced about 5-fold, 40 times as high as the peroxisomal enzyme. The results show that the mitochondria are the main intracellular site for isomerase and the peroxisomes a minor site. The mitochondrial isomerase of the rat liver is markedly induced by peroxisome proliferators, DEHP and clofibrate.  相似文献   

5.
The Clarke-Carbon clone bank carrying ColE1-Escherichia coli DNA has been screened by conjugation for complementation of glycolysis and hexose monophosphate shunt mutations. Plasmids were identified for phosphofructokinase (pfkA), triose phosphate isomerase (tpi), phosphoglucose isomerase (pgi), glucose-6-phosphate dehydrogenase (zwf), gluconate-6-phosphate dehydrogenase (gnd), enolase (eno), phosphoglycerate kinase (pgk), and fructose-1,6-P2 aldolase (fda). Enzyme levels for the plasmid-carried gene ranged, for the various plasmids, from 4- to 25-fold the normal level.  相似文献   

6.
Preparation and kinetic behavior of immobilized whole cell biocatalysts   总被引:1,自引:0,他引:1  
Linko P  Poutanen K  Weckstrom L 《Biochimie》1980,62(5-6):387-394
Actinoplanes missouriensis (for glucose isomerase), Kluyveromyces fragilis (for beta-galactosidase), and Saccharomyces cerevisiae (for invertase) cells were successfully entrapped within cellulose and cellulose di- and triacetate beads employing several carried solvent systems. Cellulose beads prepared using a melt of dimethylsulfoxide (DMSO) and N-ethylpyridinium chloride (NEPC), or cellulose diacetate using a mixture of acetone and DMSO as solvent, were found to be promising as carriers for the invertase system, cellulose triacetate beads with DMSO as solvent for yeast beta-galactosidase, and cellulose beads with a melt of DMSO and NEPC as solvent for glucose isomerase. The kinetic behavior of A. missouriensis glucose isomerase whole cell cellulose beads in a plug-flow column reactor was studied as an example system in greater detail.  相似文献   

7.
The time course of hydrogenation of linoleic acid to trans-11-octadecenoic acid was observed in a growing culture of Treponema (Borrelia) strain B(2)5. A conjugated fatty acid, cis-9, trans-11-octadecadienoic acid, was identified as an intermediate in the process. The isomerase responsible for the conversion of linoleic acid to the conjugated fatty acid was found to be associated with a particulate fraction characterized by a high protein and lipid content in a 2:1 ratio. Optimum pH for isomerase activity was found to be 7.0 in 0.05 m potassium phosphate buffer. No cofactor requirements could be demonstrated for the isomerase. The sulfhydryl inhibiting agents, iodoacetamide, N-ethylmaleimide, and p-chloromercuribenzoate, inhibited isomerase activity. Isomerase activity was also inhibited by the metal chelators, o-phenanthroline, alpha, alpha'-bipyridyl, ethylenediaminetetraacetic acid, and 8-hydroxyquinoline. Linoleic (Delta9, 12), linolenic (Delta9, 12, 15), and gamma-linolenic (Delta6, 9, 12) acids served as effective substrates for the isomerase; however, the derivatives of linoleic and linolenic acid did not.  相似文献   

8.
Human protein-disulfide isomerase (hPDI)-related protein (hPDIR), which we previously cloned from a human placental cDNA library (Hayano, T., and Kikuchi, M. (1995) FEBS Lett. 372, 210-214), and its mutants were expressed in the Escherichia coli pET system and purified by sequential nickel affinity resin chromatography. Three thioredoxin motifs (CXXC) of purified hPDIR were found to contribute to its isomerase activity with a rank order of CGHC > CPHC > CSMC, although both the isomerase and chaperone activities of this protein were lower than those of hPDI. Screening for hPDIR-binding proteins using a T7 phage display system revealed that alpha1-antitrypsin binds to hPDIR. Surface plasmon resonance experiments demonstrated that alpha1-antitrypsin interacts with hPDIR, but not with hPDI or human P5 (hP5). Interestingly, the rate of oxidative refolding of alpha1-antitrypsin with hPDIR was much higher than with hPDI or hP5. Thus, the substrate specificity of hPDIR differed from that associated with isomerase activity, and the contribution of the CSMC motif to the oxidative refolding of alpha1-antitrypsin was the most definite of the three (CSMC, CGHC, CPHC). Substitution of SM and PH in the CXXC motifs with GH increased isomerase activity and decreased oxidative refolding. In contrast, substitution of GH and PH with SM decreased isomerase activity and increased oxidative refolding. Because CXXC motif mutants lacking isomerase activity retain chaperone activity for the substrate rhodanese, it is clear that, similar to PDI and hP5, the isomerase and chaperone activities of hPDIR are independent. These results suggest that the central dipeptide of the CXXC motif is critical for both redox activity and substrate specificity.  相似文献   

9.
Pregnenolone (3β-hydroxy-5-pregnen-20-one) and DHA (3β-hydroxy-5-androsten-17-one), substrates for 3β-hy-droxysteroid dehydrogenase (3β-HSD), with KM values of 15–40 nM, were ineffective inhibitors of 5-ene-3-ketosteroid isomerase (isomerase), with KI values >40 μM in each case. Progesterone and androstenedione (4-androstene-3, 17-dione), 3β-HSD inhibitors with KI values of 5.0 μM and 0.8 μM respectively, were also relatively ineffective inhibitors of isomerase, with KI values of 30 μM and 16.5 μM respectively. Exposure of microsomes to hydrogen peroxide, which significantly increases the KM for pregnenolone as a 3β-HSD substrate, had no effect on the KM for the isomerase substrate 5-pregnene-3, 20-dione.It is concluded that the data do not support the common site concept with regard to the conversion of pregnenolone to progesterone by human placental microsomes.  相似文献   

10.
Evidence is presented that xylose metabolism in the anaerobic cellulolytic fungus Piromyces sp. E2 proceeds via a xylose isomerase rather than via the xylose reductase/xylitol-dehydrogenase pathway found in xylose-metabolising yeasts. The XylA gene encoding the Piromyces xylose isomerase was functionally expressed in Saccharomyces cerevisiae. Heterologous isomerase activities in cell extracts, assayed at 30 degrees C, were 0.3-1.1 micromol min(-1) (mg protein)(-1), with a Km for xylose of 20 mM. The engineered S. cerevisiae strain grew very slowly on xylose. It co-consumed xylose in aerobic and anaerobic glucose-limited chemostat cultures at rates of 0.33 and 0.73 mmol (g biomass)(-1) h(-1), respectively.  相似文献   

11.
We have copurified human placental 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase, which synthesize progesterone from pregnenolone and androstenedione from fetal dehydroepiandrosterone sulfate, from microsomes as a homogeneous protein based on electrophoretic and NH2-terminal sequencing data. The affinity alkylator, 2 alpha-bromoacetoxyprogesterone, simultaneously inactivates the pregnene and androstene dehydrogenase activities as well as the C21 and C19 isomerase activities in a time-dependent, irreversible manner following first order kinetics. At four concentrations (50/1-20/1 steroid/enzyme M ratios), the alkylator inactivates the dehydrogenase activity (t1/2 = 1.5-3.7 min) 2-fold faster than the isomerase activity. Pregnenolone and dehydroepiandrosterone protect the dehydrogenase activity, while 5-pregnene-3,20-dione, progesterone, and androstenedione protect isomerase activity from inactivation. The protection studies and competitive kinetics of inhibition demonstrate that the affinity alkylator is active site-directed. Kitz and Wilson analyses show that 2 alpha-bromoacetoxyprogesterone inactivates the dehydrogenase activity by a bimolecular mechanism (k3' = 160.9 l/mol.s), while the alkylator inactivates isomerase by a unimolecular mechanism (Ki = 0.14 mM, k3 = 0.013 s-1). Pregnenolone completely protects the dehydrogenase activity but does not slow the rate of isomerase inactivation by 2 alpha-bromoacetoxyprogesterone at all. NADH completely protects both activities from inactivation by the alkylator, while NAD+ protects neither. From Dixon analysis, NADH competitively inhibits NAD+ reduction by dehydrogenase activity. Mixed cofactor studies show that isomerase binds NAD+ and NADH at a common site. Therefore, NADH must not protect either activity by simply binding at the cofactor site. We postulate that NADH binding as an allosteric activator of isomerase protects both the dehydrogenase and isomerase activities from affinity alkylation by inducing a conformational change in the enzyme protein. The human placental enzyme appears to express the pregnene and androstene dehydrogenase activities at one site and the C21 and C19 isomerase activities at a second site on the same protein.  相似文献   

12.
Human type 1 3 beta-hydroxysteroid dehydrogenase/isomerase (3 beta-HSD/isomerase) catalyzes the two sequential enzyme reactions on a single protein that converts dehydroepiandrosterone or pregnenolone to androstenedione or progesterone, respectively, in placenta, mammary gland, breast tumors, prostate, prostate tumors, and other peripheral tissues. Our earlier studies show that the two enzyme reactions are linked by the coenzyme product, NADH, of the 3 beta-HSD activity. NADH activates the isomerase activity by inducing a time-dependent conformational change in the enzyme protein. The current study tested the hypothesis that the 3 beta-HSD and isomerase activities shared a common coenzyme domain, and it characterized key amino acids that participated in coenzyme binding and the isomerase reaction. Homology modeling with UDP-galactose-4-epimerase predicts that Asp36 is responsible for the NAD(H) specificity of human 3 beta-HSD/isomerase and identifies the Rossmann-fold coenzyme domain at the amino terminus. The D36A/K37R mutant in the potential coenzyme domain and the D241N, D257L, D258L, and D265N mutants in the potential isomerase domain (previously identified by affinity labeling) were created, expressed, and purified. The D36A/K37R mutant shifts the cofactor preference of both 3 beta-HSD and isomerase from NAD(H) to NADP(H), which shows that the two activities utilize a common coenzyme domain. The D257L and D258L mutations eliminate isomerase activity, whereas the D241N and D265N mutants have nearly full isomerase activity. Kinetic analyses and pH dependence studies showed that either Asp257 or Asp258 plays a catalytic role in the isomerization reaction. These observations further characterize the structure/function relationships of human 3 beta-HSD/isomerase and bring us closer to the goal of selectively inhibiting the type 1 enzyme in placenta (to control the timing of labor) or in hormone-sensitive breast tumors (to slow their growth).  相似文献   

13.
Isopentenyl diphosphate (IPP):dimethylallyl diphosphate isomerase catalyzes the interconversion of the fundamental five-carbon homoallylic and allylic diphosphate building blocks required for biosynthesis of isoprenoid compounds. Two different isomerases have been reported. The type I enzyme, first characterized in the late 1950s, is widely distributed in eukaryota and eubacteria. The type II enzyme was recently discovered in Streptomyces sp. strain CL190. Open reading frame 48 (ORF48) in the archaeon Methanothermobacter thermautotrophicus encodes a putative type II IPP isomerase. A plasmid-encoded copy of the ORF complemented IPP isomerase activity in vivo in Salmonella enterica serovar Typhimurium strain RMC29, which contains chromosomal knockouts in the genes for type I IPP isomerase (idi) and 1-deoxy-D-xylulose 5-phosphate (dxs). The dxs gene was interrupted with a synthetic operon containing the Saccharomyces cerevisiae genes erg8, erg12, and erg19 allowing for the conversion of mevalonic acid to IPP by the mevalonate pathway. His6-tagged M. thermautotrophicus type II IPP isomerase was produced in Escherichia coli and purified by Ni2+ chromatography. The purified protein was characterized by matrix-assisted laser desorption ionization mass spectrometry. The enzyme has optimal activity at 70 degrees C and pH 6.5. NADPH, flavin mononucleotide, and Mg2+ are required cofactors. The steady-state kinetic constants for the archaeal type II IPP isomerase from M. thermautotrophicus are as follows: K(m), 64 microM; specific activity, 0.476 micromol mg(-1) min(-1); and k(cat), 1.6 s(-1).  相似文献   

14.
Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.  相似文献   

15.
Crystals of triosephosphate isomerase from Trypanosoma brucei brucei have been used in binding studies with three competitive inhibitors of the enzyme's activity. Highly refined structures have been deduced for the complexes between trypanosomal triosephosphate isomerase and a substrate analogue (glycerol-3-phosphate to 2.2 A), a transition state analogue (3-phosphonopropionic acid to 2.6 A), and a compound structurally related to both (3-phosphoglycerate to 2.2 A). The active site structures of these complexes were compared with each other, and with two previously determined structures of triosephosphate isomerase either free from inhibitor or complexed with sulfate. The comparison reveals three conformations available to the "flexible loop" near the active site of triosephosphate isomerase: open (no ligand), almost closed (sulfate), and fully closed (phosphate/phosphonate complexes). Also seen to be sensitive to the nature of the active site ligand is the catalytic residue Glu-167. The side chain of this residue occupies one of two discrete conformations in each of the structures so far observed. A "swung out" conformation unsuitable for catalysis is observed when sulfate, 3-phosphoglycerate, or no ligand is bound, while a "swung in" conformation ideal for catalysis is observed in the complexes with glycerol-3-phosphate or 3-phosphonopropionate. The water structure of the active site is different in all five structures. The results are discussed with respect to the triosephosphate isomerase structure function relationship, and with respect to an on-going drug design project aimed at the selective inhibition of glycolytic enzymes of T. brucei.  相似文献   

16.
Insect phenoloxidases participate in three physiologically important processes, viz., cuticular hardening (sclerotization), defense reactions (immune reaction), and wound healing. Arrest or even delay of any of these processes compromises the survival of insects. Since the products of phenoloxidase action, viz., quinones, are cytotoxic, uncontrolled phenoloxidase action is deleterious to the insects. Therefore, the activity of this important enzyme has to be finely controlled. A novel inhibition of insect phenoloxidases, which serves as a new regulatory mechanism for control of its activity, is described. The activity of phenoloxidases isolated from both Sarcophaga bullata and Manduca sexta is drastically inhibited by quinone isomerase (isolated from Calliphora), an enzyme that utilizes the phenoloxidase-generated 4-alkylquinones. In turn, phenoloxidase reciprocated the inhibition of isomerase. By forming a complex and controlling each other's activity, these two enzymes seem to regulate the levels of endogenously quinones. In support of this contention, an endogenous complex consisting of phenoloxidase, quinone isomerase, and quinone methide isomerase was characterized from the insect, Calliphora. This sclerotinogenic complex was isolated and purified by borate extraction of the larval cuticle, ammonium sulfate precipitation, and Sepharose 6B column chromatography. The complex exhibited a molecular mass of about 620-680 kDa, as judged by size-exclusion chromatography on Sepharose 6B and HPLC and did not even enter 3% polyacrylamide gel during electrophoresis. The phenoloxidase activity of the complex exhibited a wide substrate specificity. Incubation of the complex with N-acetyldopamine rapidly generated N-acetylnorepinephrine, dehydro-N-acetyldopamine, and its dimers. In addition, transient accumulation of N-acetyldopamine quinone was also observed. These results confirm the presence of phenoloxidase, quinone isomerase, and quinone methide isomerase in the complex. Attempts to dissociate the complex with even trace amounts of SDS ended in the total loss of quinone isomerase activity. The complex does not seems to be made up of stoichiometric amounts of individual enzymes as the ratio of phenoloxidase to quinone isomerase varied from preparation to preparation. It is proposed that the complex formation between sequential enzymes of sclerotinogenic pathway is advantageous for the organism to effectively channel various reactive intermediates during cuticular hardening.  相似文献   

17.
Integrins are cysteine-rich heterodimeric cell-surface adhesion molecules that alter their affinity for ligands in response to cellular activation. The molecular mechanisms involved in this activation of integrins are not understood. Treatment with the thiol-reducing agent, dithiothreitol, can induce an activation-like state in many integrins suggesting that cysteine-cysteine dithiol bonds are important for the receptor's tertiary structure and may be involved in activation-induced conformational changes. Here we demonstrate that the platelet-specific integrin, alpha(IIb)beta(3), contains an endogenous thiol isomerase activity, predicted from the presence of the tetrapeptide motif, CXXC, in each of the cysteine-rich repeats of the beta(3) polypeptide. This motif comprises the active site in enzymes involved in disulfide exchange reactions, including protein-disulfide isomerase (EC ) and thioredoxin. Intrinsic thiol isomerase activity is also observed in the related integrin, alpha(v)beta(3), which shares a common beta-subunit. Thiol isomerase activity within alpha(IIb)beta(3) is time-dependent and saturable, and is inhibited by the protein-disulfide isomerase inhibitor, bacitracin. Furthermore, this activity is calcium-sensitive and is regulated in the EDTA-stabilized conformation of the integrin. This novel demonstration of an enzymatic activity associated with an integrin subunit suggests that altered thiol bonding within the integrin or its substrates may be locally modified during alpha(IIb)beta(3) activation.  相似文献   

18.
AIMS: Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase used to increase the production rate of D-tagatose. METHODS AND RESULTS: A mutated gene was obtained by an error-prone polymerase chain reaction using L-arabinose isomerase gene from G. stearothermophilus as a template and the gene was expressed in Escherichia coli. The expressed mutated L-arabinose isomerase exhibited the change of three amino acids (Met322-->Val, Ser393-->Thr, and Val408-->Ala), compared with the wild-type enzyme and was then purified to homogeneity. The mutated enzyme had a maximum galactose isomerization activity at pH 8.0, 65 degrees C, and 1.0 mM Co2+, while the wild-type enzyme had a maximum activity at pH 8.0, 60 degrees C, and 1.0-mM Mn2+. The mutated L-arabinose isomerase exhibited increases in D-galactose isomerization activity, optimum temperature, catalytic efficiency (kcat/Km) for D-galactose, and the production rate of D-tagatose from D-galactose. CONCLUSIONS: The mutated L-arabinose isomerase from G. stearothermophilus is valuable for the commercial production of D-tagatose. SIGNIFICANCE AND IMPACT OF THE STUDY: This work contributes knowledge on the characterization of a mutated L-arabinose isomerase, and allows an increased production rate for D-tagatose from D-galactose using the mutated enzyme.  相似文献   

19.
Abstract The phosphoglycerate kinase ( pgk ), triosephosphate isomerase ( tpi ), and enolase ( eno ) genes from Thermotoga neapolitana have been cloned and expressed in Escherichia coli . In high copy number, the pgk gene complemented an E. coli pgk strain. In T. neapolitana , the pgk and tpi genes appear to be fused and eno is near those genes. Like T. maritima , T. neapolitana produces phosphoglycerate kinase as both an individual enzyme and a fusion protein with triosephosphate isomerase, and triosephosphate isomerase activity is not found without associated phosphoglycerate kinase activity. Unlike T. maritima , which forms only a 70-kDa fusion protein, T. neapolitana expresses both 73-kDa and 81-kDa isozymes of this fusion protein. These isozymes are present in both T. neapolitana cells and in E. coli cells expressing T. neapolitana genes.  相似文献   

20.
The presence of ribulose-5-phosphate epimerase (EC 5.1.3.1, epimerase) in samples of ribose-5-phosphate isomerase (EC 5.3.1.6, isomerase) obtained from spinach ( Spinacea aleracea L. cv. Bloomsdale Long Standing) was determined using (i) a sampling procedure which measured the quantity of xylulose-5-phosphate formed in the reaction mixture and (ii) a coupled enzyme assay in which the rate of oxidation of NADH was measured after establishing steady-state concentrations of xylulose-5-phosphate, dihydroxacetonephosphate and glyceraldehyde-3-phosphate by the action of epimerase, transketolase (EC 2.2.1.1), triosephosphate isomerase (EC 5.3.1.1) and glycerol-3-phosphate dehydrogenase (EC 1.1.1.8). In preparations where the ratio of isomerase to epimerase activities was less than 100, both assay procedures yielded valid indications of epimerase activity. The steady-state assay system was found, however, to seriously underestimate epimerase activity in enzyme preparations which were enriched in isomerase. Cross plots of epimerase activity determined by the sampling and steady-state procedures demonstrated that an inhibitor of the coupling enzyme mixture was formed in the presence of high relative concentrations of the isomerase. The inhibited coupling enzyme mixture was fully active with glycer-aldehyde-3-phosphate. Inhibition of the coupling enzyme mixture was attributed to transketolase. Feedback inhibition of transketolase is proposed to be of physiological significance in the photosynthesis cycle, operating to restrict resynthesis of CO2-acceptor under conditions where high steady-state concentrations of the intermediates of the photosynthesis cycle are maintained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号