首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the design of a targeted resequencing panel for monogenic dyslipidemias, LipidSeq, for the purpose of replacing Sanger sequencing in the clinical detection of dyslipidemia-causing variants. We also evaluate the performance of the LipidSeq approach versus Sanger sequencing in 84 patients with a range of phenotypes including extreme blood lipid concentrations as well as additional dyslipidemias and related metabolic disorders. The panel performs well, with high concordance (95.2%) in samples with known mutations based on Sanger sequencing and a high detection rate (57.9%) of mutations likely to be causative for disease in samples not previously sequenced. Clinical implementation of LipidSeq has the potential to aid in the molecular diagnosis of patients with monogenic dyslipidemias with a high degree of speed and accuracy and at lower cost than either Sanger sequencing or whole exome sequencing. Furthermore, LipidSeq will help to provide a more focused picture of monogenic and polygenic contributors that underlie dyslipidemia while excluding the discovery of incidental pathogenic clinically actionable variants in nonmetabolism-related genes, such as oncogenes, that would otherwise be identified by a whole exome approach, thus minimizing potential ethical issues.  相似文献   

2.
Newborn screening (NBS) involves the collection of blood from the heel of a newborn baby and testing it for a list of rare and inheritable disorders. New biochemical screening technologies led to expansions of NBS programs in the first decade of the 21st century. It is expected that they will in time be replaced by genetic sequencing technologies. These developments have raised a lot of ethical debate. We reviewed the ethical literature on NBS, analyzed the issues and values that emerged, and paid particular interest to the type of impacts authors think NBS should have on the lives of children and their families. Our review shows that most authors keep their ethical reflection confined to policy decisions, about for instance (a) the purpose of the program, and (b) its voluntary or mandatory nature. While some authors show appreciation of how NBS information empowers parents to care for their (diseased) children, most authors consider these aspects to be ‘private’ and leave their evaluation up to parents themselves. While this division of moral labor fits with the liberal conviction to leave individuals free to decide how they want to live their private lives, it also silences the ethical debate about these issues. Given the present and future capacity of NBS to offer an abundance of health‐related information, we argue that there is good reason to develop a more substantive perspective to whether and how NBS can contribute to parents’ good care for children.  相似文献   

3.
为分析DNA损伤修复相关基因NBS1单核苷酸多态性(SNPs)与原发性肝癌遗传易感性的关系,并对高分辨率单链构象多态性(SSCP)检测技术在SNPs分型中的适用性进行评估,本研究对来自中国汉族人群的327例原发性肝癌以及295例阴性对照中NBS1基因常见SNPs的稀有等位基因频率进行检测和分析.此外,对NBS1基因6个常见SNPs分别选择部分样本同时进行直接序列测定,以比较2种方法的检测效果.119例原发性肝癌以及95例肝硬化/慢性肝炎组织标本的SSCP分析结果表明,6个常见NBS1基因SNPs位点(102G>A, 320+208G/A, 553G>C, 1197T>C, 2016A>G和2071-30A>T)中,SNP 1197T>C的稀有等位基因频率为68.1%,显著高于肝硬化/慢性肝炎对照的57.9% (P = 0.0298).对该SNP位点另外采用208份肝细胞癌和200份健康人群血液标本进一步分析, 肝细胞癌SNP 1197T>C的稀有等位基因频率为66.8%,显著高于健康人群对照的58.8% (P = 0.0170).其他5个SNPs的稀有等位基因频率在原发性肝癌与肝硬化/慢性肝炎之间均无显著性差异.高分辨率SSCP分析法与直接序列测定法对所选样本的SNPs基因分型结果完全一致,而且直接测序法对PCR扩增产物质量的要求相对高分辨率SSCP分析更高.研究表明,中国汉族人群NBS1基因SNP 1197T>C可能与原发性肝癌的发生相关,高分辨率SSCP技术准确度与直接测序法相当,且操作更加简便易行,非常适用于大量样本多个已知SNPs的基因分型.  相似文献   

4.
用根据抗病基因保守区设计的一对简并性引物,从小麦-簇毛麦易位系6VS/6AL cDNA中PCR扩增获得一个具有抗病基因核苷酸结合位点(Nucleotide binding site,NBS)结构特点的DNA片段克隆N7。从小麦-簇毛麦易位系6VS/6AL基因组TAC(Transformation-competent artificial chromosome,TAC)文库的22块96孔板提取所有2112个克隆池(每个池含约1000个克隆)的质粒,再根据N7的核苷酸序列设计一对特异引物,用克隆池PCR(pooled PCR)法经分级筛选从文库中获得一个阳性克隆。以N7为探针,通过Southern杂交证实了该TAC克隆为真正含有抗病候选基因的克隆。研究结果表明克隆池PCR法对克隆数目巨大的基因组文库的筛选很有效。  相似文献   

5.
Early detection of many disorders, mainly inherited, is feasible with population-wide analysis of newborn dried blood spot samples. Phenylketonuria was the prototype disorder for newborn screening (NBS) and early dietary treatment has resulted in vastly improved outcomes for this disorder. Testing for primary hypothyroidism and cystic fibrosis (CF) was later added to NBS programs following the development of robust immunoassays and molecular testing. Current CF testing usually relies on a combined immunoreactive trypsin/mutation detection strategy. Multiplex testing for approximately 25 inborn errors of metabolism using tandem mass spectrometry is a relatively recent addition to NBS. The simultaneous introduction of many disorders has caused some re-evaluation of the traditional guidelines for NBS, because very rare disorders or disorders without good treatments can be included with minimal effort. NBS tests for many other disorders have been developed, but these are less uniformly applied or are currently considered developmental. This review focuses on Australasian NBS practices.  相似文献   

6.
Cystic fibrosis (CF) is one of the most frequently diagnosed autosomal-recessive diseases in the Caucasian population. For general-population CF carrier screening, the American College of Medical Genetics (ACMG)/American College of Obstetricians and Gynecologists (ACOG) have recommended a core panel of 23 mutations that will identify 49–98% of carriers, depending on ethnic background. Using a genotyping technology that can rapidly identify disease-causing mutations is important for high-throughput general-population carrier screening, confirming clinical diagnosis, determining treatment options, and prenatal diagnosis. Here, we describe a proof-of-concept study to determine whether the Ion Torrent Personal Genome Machine (PGM) sequencer platform can reliably identify all ACMG/ACOG 23 CF transmembrane conductance regulator (CFTR) mutations. A WT CF specimen along with mutant DNA specimens representing all 23 CFTR mutations were sequenced bidirectionally on the Ion Torrent 314 chip to determine the accuracy of the PGM for CFTR variant detection. We were able to reliably identify all of the targeted mutations except for 2184delA, which lies in a difficult, 7-mer homopolymer tract. Based on our study, we believe PGM sequencing may be a suitable technology for identifying CFTR mutations in the future. However, as a result of the elevated rate of base-calling errors within homopolymer stretches, mutations within such regions currently need to be evaluated carefully using an alternative method.  相似文献   

7.
Molecular diagnosis of monogenic diabetes and obesity is of paramount importance for both the patient and society, as it can result in personalized medicine associated with a better life and it eventually saves health care spending. Genetic clinical laboratories are currently switching from Sanger sequencing to next-generation sequencing (NGS) approaches but choosing the optimal protocols is not easy. Here, we compared the sequencing coverage of 43 genes involved in monogenic forms of diabetes and obesity, and variant detection rates, resulting from four enrichment methods based on the sonication of DNA (Agilent SureSelect, RainDance technologies), or using enzymes for DNA fragmentation (Illumina Nextera, Agilent HaloPlex). We analyzed coding exons and untranslated regions of the 43 genes involved in monogenic diabetes and obesity. We found that none of the methods achieves yet full sequencing of the gene targets. Nonetheless, the RainDance, SureSelect and HaloPlex enrichment methods led to the best sequencing coverage of the targets; while the Nextera method resulted in the poorest sequencing coverage. Although the sequencing coverage was high, we unexpectedly found that the HaloPlex method missed 20% of variants detected by the three other methods and Nextera missed 10%. The question of which NGS technique for genetic diagnosis yields the highest diagnosis rate is frequently discussed in the literature and the response is still unclear. Here, we showed that the RainDance enrichment method as well as SureSelect, which are both based on the sonication of DNA, resulted in a good sequencing quality and variant detection, while the use of enzymes to fragment DNA (HaloPlex or Nextera) might not be the best strategy to get an accurate sequencing.  相似文献   

8.
为快速准确、低成本、高通量地检测我国人群常见的遗传性胆红素代谢障碍及胆汁淤积综合征,选择了10个易感基因的全部外显子及内含子剪切区的SNP/CNV,建立了基于二代测序技术(next generation sequencing, NGS)的靶向捕获测序方法。通过6例已知突变位点的样本对该方法的准确性进行验证,准确率为100%。收集首都医科大学附属北京友谊医院遗传性胆红素代谢障碍及胆汁淤积综合征患者39例进行检测,共检测到58种突变。检测结果与HGMD、ClinVar、OMIM突变数据库比较,未报道的突变通过千人基因组数据集对比并按照哈温平衡检验(HWE_P>0.05)和χ 检验确定新突变19种。检测到的不同突变类型有效地揭示了该类疾病的遗传多样性。NGS方法的建立及应用为临床诊断提供了新的技术手段。  相似文献   

9.
The safety, quantitative method and delivery of faecal microbiota transplantation (FMT) vary a lot from different countries in practice. Recently, the improved methodology of FMT based on the automatic filtration, washing process and the related delivery was named as washed microbiota transplantation (WMT). First, this study aimed to describe the methodology development of FMT from manual to washing preparation from 2012 to 2021 in China Microbiota Transplantation System (CMTS), a centralized stool bank for providing a national non-profit service. The secondary aim is to describe donor screenings, the correlation between faecal weight and treatment doses, incidence of adverse events and delivery decision. The retrospective analysis on the prospectively recorded data was performed. Results showed that the success rate of donor screening was 3.1% (32/1036). The incidence rate of fever decreased significantly from 19.4% (6/31) in manual FMT to 2.7% (24/902) in WMT in patients with ulcerative colitis (UC), which made UC a considerable disease model to reflect the quality control of faecal microbiota preparation. We defined one treatment unit as 10 cm3 microbiota precipitation (1.0 × 1013 bacteria) based on enriched microbiota instead of rough faecal weight. For delivering microbiota, colonic transendoscopic enteral tube is a promising way especially for multiple WMTs or frequent colonic administration of drugs combined with WMT. This study should help improve the better practice of FMT for helping more patients in the future.  相似文献   

10.
Most people have left‐hemisphere dominance for various aspects of language processing, but only roughly 1% of the adult population has atypically reversed, rightward hemispheric language dominance (RHLD). The genetic‐developmental program that underlies leftward language laterality is unknown, as are the causes of atypical variation. We performed an exploratory whole‐genome‐sequencing study, with the hypothesis that strongly penetrant, rare genetic mutations might sometimes be involved in RHLD. This was by analogy with situs inversus of the visceral organs (left‐right mirror reversal of the heart, lungs and so on), which is sometimes due to monogenic mutations. The genomes of 33 subjects with RHLD were sequenced and analyzed with reference to large population‐genetic data sets, as well as 34 subjects (14 left‐handed) with typical language laterality. The sample was powered to detect rare, highly penetrant, monogenic effects if they would be present in at least 10 of the 33 RHLD cases and no controls, but no individual genes had mutations in more than five RHLD cases while being un‐mutated in controls. A hypothesis derived from invertebrate mechanisms of left‐right axis formation led to the detection of an increased mutation load, in RHLD subjects, within genes involved with the actin cytoskeleton. The latter finding offers a first, tentative insight into molecular genetic influences on hemispheric language dominance.  相似文献   

11.
Neonatal screening by DNA microarray: spots and chips   总被引:3,自引:0,他引:3  
Newborn screening (NBS) is a public-health genetic screening programme aimed at early detection and treatment of pre-symptomatic children affected by specific disorders. It currently involves protein-based assays and PCR to confirm abnormal results. We propose that DNA microarray technology might be an improvement over protein assays in the first stage of NBS. This approach has important advantages, such as multiplex analysis, but also has disadvantages, which include a high initial cost and the analysis/storage of large data sets. Determining the optimal technology for NBS will require that technical, public health and ethical considerations are made for the collection and extent of analysis of paediatric genomic data, for privacy and for parental consent.  相似文献   

12.
Mutation analysis of Taiwanese Wilson disease patients   总被引:5,自引:0,他引:5  
Wilson disease (WD) is an autosomal recessive disorder of copper metabolism, which is caused by mutation in copper-transporting ATPase (ATP7B). In the present study, we report a molecular diagnosis method to screen the WD chromosome in patients or in heterozygotic carriers in Taiwan. Exons 8, 11, 12, 13, 16, 17, and 18 of ATP7B are selected for the screening of mutations. The most common mutation, Arg778Leu or Arg778Gln, was first screened by PCR-RFLP then we combined single-stranded conformation polymorphism (SSCP) analysis followed by direct DNA sequencing on the DNA fragments with mobility shift on SSCP analysis. The diagnostic rate was compared with standard ATP7B whole gene sequencing analysis. Ten different mutations were identified among 29 WD patients; among them four were novel (Ala1168Pro, Thr1178Ala, Ala1193Pro, and Pro1273Gln). The false positive rates were tested against 100 normal individuals and listed as follows: exon 8: 5%; exon 11: 4%; exon 12: 6%; exon 13: 5%; exon 16: 5%; exon 17: 3%; exon 18: 4%. The Arg778Leu mutation exhibited the highest allelic frequency (43.1%). The detection rate of WD chromosomes is 65.52%, which is as sensitive as whole gene sequencing scanning. According to our results, WD chromosomes in Taiwan are predominantely located at exons 8, 11, 12, 13, 16, 17, and 18. The standard sequencing analysis on the entire gene is time consuming. We recommend screening these 7 exons first on those individuals who have a higher risk in having WD, before whole gene and promoter sequencing analysis in Taiwan.  相似文献   

13.
Polycystic kidney disease (PKD) is known to occur in three main forms, namely autosomal dominant PKD (ADPKD), autosomal recessive PKD (ARPKD) and syndromic PKD (SPKD), based on the clinical manifestations and genetic causes, which are diagnosable from the embryo stage to the later stages of life. Selection of the genetic test for the individuals with diagnostic imaging reports of cystic kidneys without a family history of the disease continues to be a challenge in clinical practice. With the objective of maintaining a limit on the time and medical cost of the procedure, a practical strategy for genotyping and targeted validation to resolve cystogene variations was developed in our clinical laboratory, which combined the techniques of whole-exome sequencing (WES), Long-range PCR (LR-PCR), Sanger sequencing and multiplex ligation–dependent probe amplification (MLPA) to work in a stepwise approach. In this context, twenty-six families with renal polycystic disorders were enrolled in the present study. Thirty-two variants involving four ciliary genes (PKD1, PKHD1, TMEM67 and TMEM107) were identified and verified in 23 families (88.5%, 23/26), which expanded the variant spectrum by 16 novel variants. Pathogenic variations in five foetuses of six families diagnosed with PKD were identified using prenatal ultrasound imaging. Constitutional biallelic and digenic variations constituted the pathogenic patterns in these foetuses. The preliminary clinical data highlighted that the WES + LR PCR-based workflow followed in the present study is efficient in detecting divergent variations in PKD. The biallelic and digenic mutations were revealed as the main pathogenic patterns in the foetuses with PKD.  相似文献   

14.
With molecular-genetic diagnostics of large sets of genes (gene panels, exome sequencing) becoming less expensive, it is expected that they will be increasingly used in clinical practice. This will especially affect those monogenic diseases which are heterogenic, that is, in which mutations of many different genes result in phenotypes that are clinically difficult to distinguish from each other. Respiratory chain defects are an example of such disorders. Exome sequencing allows for rapid, simultaneous screening of all genes that come into question.  相似文献   

15.
The completion of the human genome project will provide a vast amount of information about human genetic diversity. One of the major challenges for the medical sciences will be to relate genotype to phenotype. Over recent years considerable progress has been made in relating the molecular pathology of monogenic diseases to the associated clinical phenotypes. Studies of the inherited disorders of haemoglobin, notably the thalassaemias, have shown how even in these, the simplest of monogenic diseases, there is remarkable complexity with respect to their phenotypic expression. Although studies of other monogenic diseases are less far advanced, it is clear that the same level of complexity will exist. This information provides some indication of the difficulties that will be met when trying to define the genes that are involved in common multigenic disorders and, in particular, in trying to relate disease phenotypes to the complex interactions between many genes and multiple environmental factors.  相似文献   

16.
全外显子组测序研究已经应用在疾病、药物等方面,是临床研究中一种辅助分子诊断方法。该方法也逐步应用在临床ABO血型的判定中,由于目前临床血型判定的主要方法是血清学,疑难样本判定等问题无法解决,因此分子水平的基因测序方法提高了血型判定的准确性,比如PCR方法和基因芯片方法。为进一步提高ABO血型精细分型的准确性,通过分析全外显子组测序数据,开发了相关的VBA程序,能够快速自动化判定ABO精细分型,并且初步判定结果与临床判定结果一致,可以作为临床血型精确判定的辅助手段。  相似文献   

17.
王卓  申笑涵  施奇惠 《遗传》2021,(2):108-117
随着单细胞基因组测序技术的建立与发展,对细胞基因组特征的分析进入了单细胞水平。单细胞的基因组分辨率不但使研究人员能够在单细胞尺度上分析肿瘤细胞的异质性,也使得传统上难以检测的稀有细胞的基因组研究成为可能。这些稀有细胞往往具有重要的生物学意义或临床价值,如癌症患者血液中循环肿瘤细胞(circulatingtumorcell,CTC)的基因组检测或三代试管婴儿植入前胚胎细胞的遗传缺陷诊断与筛查(preimplantation genetic diagnosis/screening, PGD/PGS)。本文总结了近年来发展的各种单细胞基因组扩增技术及其优缺点,并介绍了单细胞基因组测序技术在肿瘤生物学和临床检测中的应用,以期为单细胞基因组测序技术在临床检测中应用开发提供参考。  相似文献   

18.

Background

Deidentified newborn screening bloodspot samples (NBS) represent a valuable potential resource for genomic research if impediments to whole exome sequencing of NBS deoxyribonucleic acid (DNA), including the small amount of genomic DNA in NBS material, can be overcome. For instance, genomic analysis of NBS could be used to define allele frequencies of disease-associated variants in local populations, or to conduct prospective or retrospective studies relating genomic variation to disease emergence in pediatric populations over time. In this study, we compared the recovery of variant calls from exome sequences of amplified NBS genomic DNA to variant calls from exome sequencing of non-amplified NBS DNA from the same individuals.

Results

Using a standard alignment-based Genome Analysis Toolkit (GATK), we find 62,000–76,000 additional variants in amplified samples. After application of a unique kmer enumeration and variant detection method (RUFUS), only 38,000–47,000 additional variants are observed in amplified gDNA. This result suggests that roughly half of the amplification-introduced variants identified using GATK may be the result of mapping errors and read misalignment.

Conclusions

Our results show that it is possible to obtain informative, high-quality data from exome analysis of whole genome amplified NBS with the important caveat that different data generation and analysis methods can affect variant detection accuracy, and the concordance of variant calls in whole-genome amplified and non-amplified exomes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1747-2) contains supplementary material, which is available to authorized users.  相似文献   

19.
AIMS: To evaluate the incidence of congenital adrenal hyperplasia (CAH) in the Northern Italian population and the efficiency of the North-Eastern Italy screening program. To adjust cut-off levels for 17-hydroxyprogesterone (17-OHP) in relation to gestational age and birth weight, comparing the benefits in terms of reduction of recall rates with the two approaches and ultimately choosing the better of the two. SUBJECTS AND METHODS: Since September 2001, blood samples from neonates born in North-Eastern Italy have been screened with a fluoroimmunoassay method for 17-OHP determination (DELFIA). A preliminary cut-off level of > or = 30 nmol/l was set both for term and preterm newborns. The values of 17-OHP were analysed using statistical methods in relation to gestational age and birth weight in order to modify the cut-off on the basis of our data. RESULTS: After 33 months of screening we screened 128,282 newborns and detected 6 affected babies. During the first 8 months of screening among the recalled babies, 89.6 and 78.1% were preterm and low-birth-weight newborns, respectively, with a recall rate of 2.59% for premature neonates and of 4.94% for babies with birth weights < 2,500 g. We chose a new cut-off value of 50 nmol/l for preterm newborns only and, after 4 months, the recall rate was reduced to 0.83% for these infants and to 1.83% for low-birth-weight infants. CONCLUSION: After 33 months of screening for CAH in North-Eastern Italy, we report an incidence of 1:21,380. In 5 out of 6 affected babies, the diagnosis was established only after a positive screening test, which prevented a severe salt-wasting crisis in these babies. The cut-off level related to gestational age led to a significant reduction in the number of false-positives among preterm babies.We therefore intend to continue with the screening program for CAH in North-Eastern Italy, keeping a gestational-age-related cut-off in the hope that our data may encourage a national screening program for CAH.  相似文献   

20.

Background

In order to optimally integrate the use of high-throughput sequencing (HTS) as a tool in clinical diagnostics of likely monogenic disorders, we have created a multidisciplinary “Genome Clinic Task Force” at the University Hospitals of Geneva, which is composed of clinical and molecular geneticists, bioinformaticians, technicians, bioethicists, and a coordinator.

Methods and results

We have implemented whole exome sequencing (WES) with subsequent targeted bioinformatics analysis of gene lists for specific disorders. Clinical cases of heterogeneous Mendelian disorders that could potentially benefit from HTS are presented and discussed during the sessions of the task force. Debate concerning the interpretation of identified variants and the content of the final report constitutes a major part of the task force’s work. Furthermore, issues related to bioethics, genetic counseling, quality control, and reimbursement are also addressed.

Conclusions

This multidisciplinary task force has enabled us to create a platform for regular exchanges between all involved experts in order to deal with the multiple complex issues related to HTS in clinical practice and to continuously improve the diagnostic use of HTS. In addition, this task force was instrumental to formally approve the reimbursement of HTS for molecular diagnosis of Mendelian disorders in Switzerland.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号