首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Two field experiments were established to assess the competitiveness of foreign bradyrhizobia in infecting the promiscuous soybean cultivar TGX 536-02D. Seeds were inoculated with antibiotic mutants of the bradyrhizobia strains before planting after land preparation. Soybean plants were harvested at pre-determined days after planting for estimating nodule number, nodule dry weight, nodule occupancy, shoot dry weight and seed yield. Results show that nodule number and dry weight significantly increased and showed great variability at 84 days after planting (DAP), probably due to differences in the ability of inoculant bradyrhizobia to form nodules with the soybean cultivar TGX 536-02D. Increased shoot dry weight, %N, total N and seed yield were a result of increased nodulation by the effective and competitive inoculant Bradyrhizobium strains. Strain USDA 110 occupied the highest percentage of nodule sites because it was more competitive than the other Bradyrhizobium strains. These results show that there was high potential for increasing growth and seed yield of the promiscuous soybean cultivar TGX 536-02D by inoculation with foreign Bradyrhizobium strains.  相似文献   

2.
Foliar chlorosis of soybean (Glycine max [L.] Merr.) resulting from nodulation by rhizobitoxine-producing (RT+) strains of Bradyrhizobium japonicum is commonly less severe in the field than under greenhouse conditions. Differences in nutritional conditions between the field and greenhouse may contribute to this phenomenon. In particular, field-grown plants obtain some N from soil sources, whereas in the greenhouse soybean is often grown in low-N rooting media to emphasize symbiotic responses. Therefore, we examined the effect of NO3 - on the expression of RT-induced symptoms. Soybean plants inoculated with RT+ bradyrhizobia were grown for 42 days in horticultural vermiculite receiving nutrient solution amended with 0.0, 2.5, or 7.5 mM KNO3. Foliar chlorosis decreased with increasing NO3 - application whereas nodule mass per plant was generally increased by NO3 - application. Total amounts of nodular RT remained constant or increased with NO3 - application, but nodular concentrations of RT decreased. Chlorosis severity was negatively correlated with shoot dry weight, chlorophyll concentration, and total shoot N content. It was concluded that application of NO3 - can reduce the negative effects of RT production on the host plant. This suggests that any NO3 - present in field soils may serve to limit chlorosis development in soybeans.Abbreviations RT rhizobitoxine - RT+ rhizobitoxine-producing - Lb leghemoglobin Published as Miscellaneous Paper No. 1429 of the Delaware Agricultural Experiment Station.  相似文献   

3.
Lima bean (Phaseolus lunatus L.) cultivars vary widely in their growth habit and seed size. Preliminary experiments indicated that a large-seeded pole cultivar (King of the Garden) formed many more nodules than a small-seeded bush cultivar (Henderson). The relative importance of seed size and shoot mass in determining nodule number and mass was assessed in five lima bean cultivars differing in seed size and growth habit. Between cultivars, significant positive correlations between initial seed mass, plant weight and nodule number and mass were observed during the first four weeks after planting. Comparisons within cultivars indicated a strong correlation between nodule mass and shoot dry weight. The influence of plant morphology on nodule formation and mass was secondary to the effects of seed and shoot mass. As plants matured, the increase in nodule mass paralleled the increase in plant mass, while nodule number was relatively stable after day 18. These results suggest that the highly regulated process of nodule formation was under the influence of seed derived factors, while the continued accumulation of nodule tissue was related to shoot growth.  相似文献   

4.
The influence of canopy development in soybean on the survival of corn earworm, Heliothis zea (Boddie) (Lepidoptera: Noctuidae), egg and larval stages and population dynamics of arthropod fauna were evaluated in field trials during 1986–88 in eastern North Carolina. Soybean canopy size decreased as soybean cyst nematode, Heterodera glycines Ichinohe (Nematoda: Heteroderidae), initial population densities increased. Plant species composition of the soybean canopy was affected by weed population densities. Mortality of H. zea larvae due to parasitism and infection with entomopathogens was greater in closed canopy and (or) weedy soybeans than in very open and (or) weed free soybeans. Predation and parasitism of corn earworm eggs were similar across nematode and weed density treatments. Natural enemy populations increased to highest levels during July in closed canopy and (or) weedy soybeans, coinciding with availability of largest prey population reservoirs. A delay in colonization of very open and (or) weed free soybeans by beneficial arthropods until mid to late August allowed greater H. zea larval survival than in closed canopy and (or) weedy soybeans. Arthropod species richness was generally greatest in closed canopy and (or) weedy soybeans during mid to late July, with differences becoming nonsignificant in August and early September. Mean and maximum ambient temperatures were higher and relative humidities lower in open canopy than in closed canopy plots. These conditions were less favorable for development of pathogens and natural enemies.  相似文献   

5.
Nodule formation on alfalfa (Medicago sativa L.) roots was determined at different inoculum dosages for wild-typeRhizobium meliloti strain RCR2011 and for various mutant derivatives with altered nodulation behavior. The number of nodules formed on the whole length of the primary roots was essentially constant regardless of initial inoculum dosage or subsequent bacterial multiplication, indicative of homeostatic regulation of total nodule number. In contrast, the number of nodules formed in just the initially susceptible region of these roots was sigmoidally dependent on the number of wild-type bacteria added, increasing rapidly at dosages above 5·103 bacteria/plant. This behavior indicates the possible existence of a threshold barrier to nodule initiation in the host which the bacteria must overcome. When low dosages of the parent (103 cells/plant) were co-inoculated with 106 cells/plant of mutants lacking functionalnodA, nodC, nodE, nodF ornodH genes, nodule initiation was increased 10- to 30-fold. Analysis of nodule occupancy indicated that these mutants were able to help the parent (wild-type) strain initiate nodules without themselves occupying the nodules. Co-inoculation withR. trifolii orAgrobacterium tumefaciens cured of its Ti plasmid also markedly stimulated nodule initiation by theR. meliloti parent strain. Introduction of a segment of the symbiotic megaplasmid fromR. meliloti intoA. tumefaciens abolished this stimulation.Bradyrhizobium japonicum and a chromosomal Tn5 nod- mutant ofR. meliloti did not significantly stimulate nodule initiation when co-inoculated with wild-typeR. meliloti. These results indicate that certainnod gene mutants and members of theRhizobiaceae may produce extracellular signals that supplement the ability of wild-typeR. meliloti cells to induce crucial responses in the host.Abbreviations EH emergent root hairs - kb kilobase - RDU relative distance unit - RT root tip This is journal article No. 188-87 of the Ohio Agricultural Research and Development Center  相似文献   

6.
Summary Biological nitrogen fixation is considered an important trait of cowpeas (Vigna unguiculata (L.) Walp. var. California Blackeye No. 5) for economical production yet the process does not alone provide the quantity of nitrogen required by the plant for maximum productivity. Two experiments were undertaken to determine the potential of an increase in nodule mass and number of bacteroids resulting in increased nitrogen fixation. Cowpeas were grown in a glasshouse for 7 weeks under conditions forcing near total dependence on biological nitrogen fixation for growth. Nodule mass on the roots was varied by inoculating seeds with various ratios of effective and ineffective rhizobia that could be identified serologically and by the color of nodule formed. The results of both experiments demonstrated a linear relationship between total nodule mass formed by the effective rhizobia and quantity of nitrogen fixed. The regression coefficients were high in both experiments (r=0.99** and 0.91**). The relationship between total nitrogen fixed and total number of bacteroids of the effective strain was not consistent. In one experiment the regression coefficient was 0.93** but in the other experiment it was 0.65**. From these results it appears that there is good potential for increasing nitrogen fixation in cowpeas by increasing nodule mass. An increase in nodule mass would also result in an increase in the number of bacteroids.  相似文献   

7.
Four methods of placement of DBCP (l,2-dibromo-3-chloropropane) and a single method of application of ethoprop (0-ethyl S,S-dipropyl phosphorodithioate) wexe compared in each of two areas for control of nematodes on soybeans. One area was a Marlboro sand infested with Hoplolaimus columbus. The other area was a Fuquay loamy sand infested with Meloidogne incognita. Soybean yields were increased and numbers of H. columbus in the row 0-20 cm deep were decreased similarly by all methods of DBCP application in Marlboro soil. All DBCP treatments increased the average soybean yields and decreased numbers of M. incognita larvae in the row 0-20 cm deep in the Fuquay soil. Average root-knot indices were reduced by all DBCP treatments except with placement 40 cm deep beneath the row. Similarly, placement of all or part of the DBCP 20 cm deep and 13 cm to either side of the row resulted in greater average yields than placement of the DBCP 40 cm deep. Apparently, control of M. incognita is more critical 0-20 cm deep than 20-40 cm deep for increasing soybean yields. DBCP did not control H. columbus as effectively as it did M. incognita. Control of H. columbus and M. incognita was not obtained at 0-20-cm and 20-40-cm depths 30 cm and 45 cm from the row regardless of the method used to apply DBCP. H. columbus and M. incognita were controlled more effectively and soybean yields were higher with DBCP at 13.6 kg a.i./ha than with ethoprop at 4.5 kg a.i./ha.  相似文献   

8.
Elevated CO2 may increase dry mass production of canopies directly through increasing net assimilation rate of leaves and also indirectly through increasing leaf area index (LAI). We studied the effects of CO2 elevation on canopy productivity and development in monospecific and mixed (1:1) stands of two co-occurring C3 annual species, Abutilon theophrasti, and Ambrosia artemisiifolia. The stands were established in the glasshouse with two CO2 levels (360 and 700 l/l) under natural light conditions. The planting density was 100 per m2 and LAI increased up to 2.6 in 53 days of growth. Root competition was excluded by growing each plant in an individual pot. However, interference was apparent in the amount of photons absorbed by the plants and in photon absorption per unit leaf area. Greater photon absorption by Abutilon in the mixed stand was due to different canopy structures: Abutilon distributed leaves in the upper layers in the canopy while Ambrosia distributed leaves more to the lower layers. CO2 elevation did not affect the relative performance and light interception of the two species in mixed stands. Total aboveground dry mass was significantly increased with CO2 elevation, while no significant effects on leaf area development were observed. CO2 elevation increased dry mass production by 30–50%, which was mediated by 35–38% increase in the net assimilation rate (NAR) and 37–60% increase in the nitrogen use efficiency (NUE, net assimilation rate per unit leaf nitrogen). Since there was a strong overall correlation between LAI and aboveground nitrogen and no significant difference was found in the regression of LAI against aboveground nitrogen between the two CO2 levels, we hypothesized that leaf area development was controlled by the amount of nitrogen taken up from the soil. This hypothesis suggests that the increased LAI with CO2 elevation observed by several authors might be due to increased uptake of nitrogen with increased root growth.  相似文献   

9.
Inoculated soybeans (Glycine max L. (Merrill)) were grown in controlled environments to evaluate the relationship between genotype and plant water status on nodule function, nitrogen assimilation, growth rates, and seed yield. Plants were grown under well-watered (WW) and water-stressed (WS) conditions during the linear pod-filling growth stage in sand culture using N-free nutrient solution. Dry matter and N accumulation were greater for the drought-adapted Plant Introduction 416937 (PI) than for Forrest, a commercially adapted genotype of similar phenology. These differences are attributed to: (i) more favorable internal water balance throughout the pod-filling period (higher total leaf water potential), (ii) higher photosynthetic function (more total leaf area and higher net carbon exchange rates), and (iii) stronger nodule function (larger nodule mass, greater specific and total nodule activity, and thus more nitrogen assimilation) for the PI than for Forrest. While Forrest out yielded the PI under WW conditions, the percentage reduction in seed mass per plant was less for the PI than for Forrest when both genotypes were exposed to desiccating conditions. The inference is that soybean germplasm with the capacity to maintain tissue turgidity, and thus leaf and nodule function, during reproductively-imposed desiccation may reduce the extent to which yield is compromised during drought. These findings have implications for the role of symbiotic nitrogen fixation in conserving yield under dry weather conditions.Abbreviations DAE Days After Emergence - NCE Net CO2 Exchange - PI PI 416937 - SNA Specific Nodule Activity - TNA Total Nodule Activity - WS Water Stressed - WW Well Watered  相似文献   

10.
In this work the effect of inoculation with Bradyrhizobium japonicum S2492 on soybean (Glycine max (L) Merr) growth, nodulation and yield in nitrogen-deficient soil of Uzbekistan was studied. The field experiments were carried out in Tashkent Province of Uzbekistan in a randomized complete block design with four replicates of each treatment. The results revealed positive effects on growth, nodule number and yields of soybean after inoculation with B. japonicum S2492. The yield of soybean varieties was 48% higher for inoculated than for uninoculated plants. The effect of the inoculation was specific for variety but not for growth type. The protein and oil contents of seeds also increased after inoculation. It was concluded that B. japonicum S2492 can be considered as a biofertilizer for increasing the productivity of soybean in nitrogen-deficient soils in Uzbekistan.  相似文献   

11.
Rennie  R. J.  Rennie  D. A.  Siripaibool  C.  Chaiwanakupt  P.  Boonkerd  N.  Snitwongse  P. 《Plant and Soil》1988,112(2):183-193
The practice of seeding soybeans following paddy rice in Thailand has encountered difficulties in seedling germination, nodulation and crop establishment. This research project evaluated the choice of a non-fixing control to quantify N2 fixation by15N isotope dilution, and the effect of tillage regime, soybean cultivar, strain ofBradyrhizobium japonicum and P fertilization on yield and N2 fixation after paddy rice in northern and central Thailand.Japanese non-nodulating lines Tol-0 and A62-2 were the most appropriatecontrol plants for15N isotope dilution for Thai soybeans in these soils which contained indigenous rhizobia. Cereals such as maize, sorghum and barley were also appropriate controls at some sites. The choice of the appropriate non-fixing control plant for the15N isotope dilution technique remains a dilemma and no alternative exists other than to use several possible controls with each experiment. Acetylene reduction assay (ARA) proved of little value for screening varieties on their N2 fixing capacity.The recommended Thai soybean cultivars (SJ1, 2, 4, 5) and an advanced line 16–4 differed little in their ability to support N2 fixation or yield, possibly due to similar breeding ancestry. The ten AVRDC (ASET) lines showed considerable genotypic control in their ability to utilize their three available N sources (soil, fertilizer, atmosphere) and to translate them into yields. None of these lines were consistently superior to Thai cultivars SJ4 or SJ5 although ASET lines 129, 209 and 217 showed considerable promise.Neither recommended Thai or ASET cultivars were affected by tillage regime. Zero tillage resulted in superior N2 fixation and yield at two sites but conventional tillage was superior at another site. Soybean cultivars grown in Thailand were well adapted to zero tillage. Levels of N2 fixation were similar to world figures, averaging more than 100 kg N ha–1 and supplying over 50% of the plant's N yield. However, seed yields seldom exceeded 2 t ha–1, well below yields for temperately-grown soybeans. It is not clear why Thai soybeans support N2 fixation, but do not translate this into higher seed yields.  相似文献   

12.
O'Hara  G. W.  Hartzook  A.  Bell  R. W.  Loneragan  J. F. 《Plant and Soil》1993,155(1):333-336
The effects of Bradyrhizobium (strains NC92 and TAL1000) and Fe supply on nodulation and nitrogen fixation of two peanut (Arachis hypogaea L.) cultivars (cv. Tainan 9 (Fe inefficient) and cv. 71-234 (Fe efficient)) grown under Fe deficient conditions (imposed by adding 40% CaCO3 to a ferruginous soil) were examined in a glasshouse experiment. When inoculated with TAL1000 without Fe, both cultivars had low shoot N concentration, very low nodule numbers and weight and no measurable acetylene reduction activity per plant. Inoculation with NC92 without Fe increased all these parameters substantially; addition of Fe with NC92 had no further effect on N concentration but doubled nodule number, weight and acetylene reduction activity per plant. Addition of Fe with TAL1000 increased all parameters to the same level as Fe+NC92, indicating that the poorer nodulation and N2 fixation of TAL1000 in the absence of Fe, resulted from a poorer ability in getting its Fe supply from the alkaline soil. The nodules from all treatments with measurable activity had the same specific acetylene reduction activity suggesting that Fe deficiency limited nodule development.The results support previous suggestions that Bradyrhizobium strains differ greatly in their ability to obtain Fe from soils and that selection of Fe efficient strains could complement plant breeding in the selection of legume crops for Fe deficient soils.  相似文献   

13.
Rye (Secale cereale L.), wheat (Triticum aestivum L.), and annual ryegrass (Lolium multiflorum Lam.) are commonly double cropped with soybean (Glycine max L.). Recent greenhouse studies have shown variability in plant-parasitic nematode response to cool season grass species and cultivars. However, subsequent soybean performance was not affected by previous annual ryegrass cultivar in the green-house. The objective of this research was to determine whether winter cover crop species or cultivars affected nematode populations and subsequent performance of soybean in teh field. Four cultivars of annual ryegrass, wheat, and rye, and a fallow control were seeded on a Suffolk sandy loam (fine-loamy, siliceous, thermic Typic Hapuldult) soil in each of three years. Nematode-susceptible soybeans were seeded following forage removal. Soil samples for nematode counts were taken immediately before soybean harvest each year. In another experiment, one cultivar each of annual ryegrass, wheat, and rye, and a fallow control were followed by three soybean cultivars selected for differing nematode susceptibility. Grass cultivars did not affect nematode populations under succedding soybean. The only nematodes affected by grass species in either experiment were Pratylenchus spp., Heterodera glycines Ichinohe, and Tylenchorhynchus claytoni (Kofoid and White) Chitwood. Nematode population means were usually low following ryegrass and high following the fallow control. High soybean yields followed the fallow control, and low soybean yields followed annual ryegrass.  相似文献   

14.
Chuiko  N. V.  Antonyuk  T. S.  Kurdish  I. K. 《Microbiology》2002,71(4):391-396
The investigation of the chemotactic response of Bradyrhizobium japonicum to amino acids, carbohydrates, multiatomic alcohols, organic acids, and soybean extracts showed that the extracts of some soybean varieties (Chernoburaya and Beskluben'kovaya) contain repellents. This indicates that the soybeans of host plants contain effectors that may play a role at the early stages of their interaction with nodule bacteria.  相似文献   

15.
【目的】探究花生根瘤菌Bradyrhizobium sp.MM6的Ⅲ型分泌系统(T3SS)的结构及其在根瘤菌与不同宿主建立共生关系中的作用。【方法】同源比对分析菌株MM6的T3SS基因簇的结构特征,并采用三亲本接合转移的方法构建T3SS调节基因ttsI突变菌株;通过蛭石结瘤和石蜡切片实验,比较突变体与野生型的共生固氮表型差异。【结果】经预测,MM6的T3SS基因簇编码区长约34.1 kb,可分为3个区域,包含10个保守结构基因和8个效应蛋白基因,与B.diazoefficiens USDA110相应基因的序列相似性为83%–93%;成功构建了MM6的ttsI突变株;ttsI突变株与野生型分别与花生(S523和Y45)、野大豆和大豆中黄57结瘤,ttsI突变体在花生中的总瘤数显著增加(P<0.05),根瘤中含菌细胞更多;ttsI突变体在野大豆中平均每株植物增加4个根瘤,根瘤中含菌细胞更多,地上部干重相比野生型MM6显著增加(P<0.05);在大豆中黄57中,野生型MM6能形成红色的有效根瘤,ttsI突变体不结瘤,且植株叶片发黄,地上部干重相比野生型MM6显著降低(P<0.05)。【结论】MM6的T3SS在花生和野大豆共生体系中起着有害的作用,而在大豆中黄57的共生体系中起着有利的作用。  相似文献   

16.
Soil solarization is a preplanting technique used in hot climates to control weeds and soilborne pathogens consisting of mulching the soil surface with polyethylene sheets. The increase in temperature associated with solarized soil could affect nitrogen availability for grain legume crops through effects on nitrogen fixing soil microorganisms or other mechanisms. To examine the effects of solarization on natural root nodulation and nitrogen accumulation and partitioning in the plant, two solarization field experiments were carried out over two planting seasons, involving genotypes of both faba bean (Vicia faba) and chickpea (Cicer arietinum). The effect of sowing date was also studied in the first season. Solarization increased the maximum soil temperature by 9–10 °C in the first, and by 13–15 °C in the second season. At 5 cm below the solarized soil surface, a temperature of over 46 °C prevailed for 146 and 280 h over the two respective seasons, while this temperature was not attained in unmulched soil. Solarization delayed the initiation of nodulation and consistently reduced the nodule number per host plant, but generated an approximate doubling of mean nodule weight. The total nodule mass per plant was not affected by the treatment in the first season, but was reduced in the second season. Solarization significantly increased the concentrations of NO3 -N, Na+, Zn2+, Ca2+ and K+ in the soil extract, and the total nitrogen accumulated in the whole plant. This latter increase was due to both higher plant growth and a greater plant nitrogen concentration. The increased nitrogen level in the plant was not uniform with respect to plant component, varying from 57% in the roots to 198% in the pods and seeds. The plants grown in non-solarized soil accumulated about 31% of their total N content in the shoots of the parasitic weed Orobanche crenata. Solarization dramatically improved grain yield by 300–900% in both seasons and in all genotypes studied, due to increased N availability in soil, N accumulation in plants, improved plant growth, and complete control of the parasite weed O. crenata. On the basis of these beneficial effects, soil solarization, which avoids site contamination and is suited to organic farming, should be a good opportunity in Mediterranean areas where the level and stability of grain yields are low, and the infestation of O. crenata is high.  相似文献   

17.
The distribution of leghemoglobin (Lb) in resin-embedded root nodules of soybean (Glycine max (L.) Merr.) was investigated using immunogold labeling. Using anti-Lb immunoglobulin G and protein A-gold, Lb or its apoprotein was detected both in cells infected by Bradyrhizobium japonicum and in uninfected interstitial cells. Leghemoglobin was present in the cytoplasm, exclusive of the organelles, and in the nuclei of both cell types. In a comparison of the density of labeling in adjacent pairs of infected and uninfected cells, Lb was found to be about four times more concentrated in infected cells. This is the first report of Lb in uninfected cells of any legume nodule; it raises the possibility that this important nodule-specific protein may participate in mediating oxygen flow to host plant organelles throughout the infected region of the nodule.Abbreviations BSA bovine serum albumin - IgG immunoglobulin G - kDA kilodalton - Lb leghemoglobin - TBST Tris-buffered saline plus Tween 20  相似文献   

18.
Summary Inoculation with vesicular-arbuscular (VA) mycorrhizal fungiGlomus fasciculatus, G. mosseae, G. etunicatus orAcaulospora scrobiculatus, increased plant dry weight and seed yields of pot-grown soybean plants in sterilized soil. Inoculation with a mixture ofG. fasciculatus, G. mosseae andG. etunicatus, orG. fasciculatus alone, increased seed yields and other agronomic traits of soybean plants grown in a no-tillage, rice-stubble field.  相似文献   

19.
柏祥  古小治 《广西植物》2018,38(3):332-340
与本地植物的种间竞争是影响外来植物能否成功入侵的关键因素之一,该研究通过受控模拟试验研究了本地植物芦苇(Phragmites australis)和外来入侵植物反枝苋(Amaranthus retroflexus)在淹水和干旱两种水分条件下混种密度(6∶2、4∶4和2∶6)对其种间竞争的影响。结果表明:(1)芦苇和反枝苋的相对产量与相对产量总和均小于1,即两种植物存在种间竞争。(2)种间竞争使芦苇和反枝苋的生长均受到了不同程度的抑制,表现在两者的株高和生物量均随着竞争者密度的增加而降低。(3)植株地上部分和地下部分的氮浓度表现出与株高和生物量相同的趋势,且在不同水分条件下存在差异。(4)芦苇和反枝苋分别在淹水和干旱环境下具有较强竞争力,但在各自较高混种密度下亦具有较强竞争力。可见,芦苇和反枝苋的种间竞争受到了水分和混种密度的影响。因此,在有反枝苋分布的湿地中,植物生长初期可通过增加土壤水分和/或增加芦苇等本地植物的种群密度以降低反枝苋的种群密度来限制其竞争能力,防止反枝苋在湿地中生长建群和扩散入侵。  相似文献   

20.
Four species of Casuarina were raised in the glasshouse and inoculated with nodules collected from nine different geographical areas within Australia. Isolations ofFrankia were attempted from 10 of the Casuarina-Frankia nodule combinations using two methods, a nodule dissection and a filtration method. With both techniquesFrankia isolates were obtained from four of the 10Frankia sources. Spores were not observed in sections of nodules from the four sources from whichFrankia was isolated, whereas spores were observed in the remaining six nodule sources. For selected nodule sources a range of isolation media were tried, but no improvement in the isolation success rate was achieved. The effect of host species on ease of isolation was studied. The results obtained suggested it was theFrankia strain and not the host plant species which determined the ease of isolation from Casuarina nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号