首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Tethered bilayer lipid membranes (tBLMs) are important tools for studying protein–lipid interactions. The widely used methodology for the preparation of these membranes is the fusion of phospholipid vesicles from an aqueous medium onto an anchored phospholipid layer. The preparation of phospholipid vesicles is a long and tedious procedure. There is another simple method, rapid solvent exchange, for preparing lipid membranes. However, there is a lack of information on the effects of the preparation method of tBLMs on their interactions with proteins. Therefore, we present in this paper a comparative study on the binding of lysozyme onto tBLMs prepared by the abovementioned methods. The prepared tBLMs have either zwitterionic or anionic characteristics. The results show that lysozyme binding onto the prepared tBLMs is unaffected by the preparation method of the tBLMs, suggesting that the tedious fusion method might be replaced by the simple rapid solvent exchange method without altering the level of protein–lipid interactions.  相似文献   

2.
D S Hagen  J H Weiner  B D Sykes 《Biochemistry》1979,18(10):2007-2012
We have utilized a nonperturbing nuclear magnetic resonance technique, specifically measuring sensitivity of the chemical shift of fluorotyrosyl residues to change in solvent from H2O to D2O, to demonstrate that the tyrosyl residues of fluorotyrosyl M13 coat protein in phospholipid vesicles are not accessible to solvent i.e., are buried in the hydrophobic portion of the bilayer. The two fluorotyrosyl residues of the protein did show partial exposure to solvent (42% and 65% with respect to aqueous m-fluorotyrosine) when the protein was incorporated into deoxycholate micelles, pointing to differences in conformation of micellar protein with respect to vesicle-associated protein. M13 coat protein in phospholipid vesicles was not sensitive to lactoperoxidase-catalyzed iodination, supporting the NMR results. Coat protein in deoxycholate micelles showed release of fluorotyrosyl residues upon Pronase digestion, but only after an observed change in environment. The observed changes suggest that proteolytic digestion studies of membrane proteins should be interpreted with the possibility of artifacts related to conformational changes in mind. M13 coat protein in phospholipid vesicles did not demonstrate release of fluorotyrosine by Pronase, again pointing to differences between protein in micelles and in vesicles and corroborating the NMR result.  相似文献   

3.
Human placental anticoagulant protein-I (PAP-I) is a member of the lipocortin/calpactin/annexin family of Ca2+-dependent phospholipid binding proteins. PAP-I was labeled with fluorescein 5-isothiocyanate (1 mol/mol); this derivative had anticoagulant activity identical to the unlabeled protein and could be used to measure Ca2+-dependent binding to phospholipid vesicles through changes in fluorescence quenching. At 1.2 mM Ca2+, 0.50 M ionic strength, pH 7.4, 25 degrees C, fluorescein-labeled PAP-I bound to phospholipid vesicles containing 80% phosphatidylcholine, 20% phosphatidylserine with a Kd of 1.2 +/- 0.2 nM (mean +/- S.D.). At an ionic strength of 0.15 M, the Kd decreased to less than 0.1 nM. Prothrombin and factor Xa both competed with fluorescein-labeled PAP-I for binding to anionic phospholipid vesicles, but with affinities at least 1000-fold weaker than PAP-I. PAP-I bound only weakly (Kd greater than 2 x 10(-5) M) to neutral or anionic phospholipid monomers, and this binding was not calcium-dependent. These results show that the affinity of PAP-I for anionic phospholipid surfaces is sufficient to explain its potency as an in vitro anticoagulant.  相似文献   

4.
Liver FABP (fatty-acid-binding protein) binds a variety of non-polar anionic ligands including fatty acids, fatty acyl CoAs, lysophospholipids and bile acids. Liver FABP is also able to bind to anionic phospholipid vesicles under conditions of low ionic strength, and membrane binding results in the release of bound ligand. However, the molecular interactions involved in binding to the phospholipid interface and the mechanism of ligand release are not known. Ligand release could be due to a significant conformational change in the protein at the interface or interaction of a phospholipid molecule with the ligand-binding cavity of the protein resulting in ligand displacement. Two portal mutant proteins of liver FABP, L28W and M74W, have now been used to investigate the binding of liver FABP to anionic phospholipid vesicles, monitoring changes in fluorescence and also fluorescence quenching in the presence of brominated lipids. There is a large increase in fluorescence intensity when the L28W mutant protein binds to vesicles prepared from DOPG (dioleoyl-sn-phosphatidylglycerol), but a large decrease in fluorescence intensity when the M74W mutant binds to these vesicles. The Br(4)-phospholipid prepared by bromination of DOPG dramatically quenches both L28W and M74W, consistent with the close proximity of a fatty acyl chain to the tryptophan residues. The binding of liver FABP to DOPG vesicles is accompanied by only a minimal change in the CD spectrum. Overall, the results are consistent with a molecule of anionic phospholipid interacting with the central cavity of the liver FABP, possibly involving the phospholipid molecule in an extended conformation.  相似文献   

5.
The association of the major coat protein of fd bacteriophage with a phospholipid bilayer was investigated by analyzing the protein's susceptibility to proteolysis and its circular dichroism spectrum when incorporated into single-walled phospholipid vesicles. In the limits tested, this association appeared to be independent of the mass ratio of protein to lipid and of vesicle size, phospholipid composition, and method of preparation. The circular dichroism data are consistent with a similar "membrane-bound" conformation for all cases of vesicle-associated coat protein and for deoxycholate micelle-associated coat protein. Proteolysis of coat protein associated with deoxycholate micelles and with phospholipid vesicles defined the central hydrophobic core presumed to represent that portion of the protein which associates with membrane bilayers in vivo. The isolated core, which assumed a predominantly beta-type conformation in detergent solution, maintained a beta conformation when associated with a vesicle phospholipid bilayer.  相似文献   

6.
A new, simple and versatile method to measure phospholipid transfer has been developed, based on the use of a fluorescent phospholipid derivative, 1-acyl-2-parinaroylphosphatidylcholine. Vesicles prepared of this phospholipid show a low level of fluorescence due to interactions between the fluorescent groups. When phospholipid transfer protein and vesicles consisting of non-labeled phosphatidylcholine are added the protein catalyzes an exchange of phosphatidylcholine between the labeled donor and non-labeled acceptor vesicles. The insertion of labeled phosphatidylcholine into the non-labeled vesicles is accompanied by an increase in fluorescence due to abolishment of self-quenching. The initial rate of fluorescence enhancement was found to be proportional to the amount of transfer protein added. This assay was applied to determine the effect of membrane phospholipid composition on the activity of the phosphatidylcholine-, phosphatidylinositol- and non-specific phospholipid transfer proteins. Using acceptor vesicles of egg phosphatidylcholine and various amounts of phosphatidic acid it was observed that the rate of phosphatidylcholine transfer was either stimulated, inhibited or unaffected by increased negative charge depending on the donor to acceptor ratio and the protein used. In another set of experiments acceptor vesicles were prepared of phosphatidylcholine analogues in which the ester bonds were replaced with ether bonds or carbon-carbon bonds. Assuming that only a strictly coupled exchange between phosphatidylcholine and analogues gives rise to the observed fluorescence increase, orders of substrate preference could be established for the phosphatidylcholine- and phosphatidylinositol transfer proteins.  相似文献   

7.
The endothelial cell protein C receptor (EPCR) functions as an important regulator of the protein C anticoagulant pathway by binding protein C and enhancing activation by the thrombin-thrombomodulin complex. EPCR binds to both protein C and activated protein C (APC) with high affinity. A soluble form of EPCR (sEPCR) circulates in plasma and inhibits APC anticoagulant activity. In this study, we investigate the mechanisms by which sEPCR modulates APC function. Soluble EPCR inhibited the inactivation of factor Va by APC only in the presence of phospholipid vesicles. By using flow cytometric analysis in the presence of 3 mM CaCl(2) and 0. 6 mM MgCl(2), sEPCR inhibited the binding of protein C and APC to phospholipid vesicles (K(i) = 40 +/- 7 and 33 +/- 4 nM, respectively). Without MgCl(2), the K(i) values increased approximately 4-fold. Double label flow cytometric analysis using fluorescein-APC and Texas Red-sEPCR indicated that the APC.sEPCR complex does not interact with phospholipid vesicles. By using surface plasmon resonance, we found that sEPCR also inhibited binding of protein C to phospholipid in a dose-dependent fashion (K(i) = 32 nM). To explore the possibility that sEPCR evokes structural changes in APC, fluorescence spectroscopy studies were performed to monitor sEPCR/Fl-APC interactions. sEPCR binds saturably to Fl-APC (K(d) = 27 +/- 13 nM) with a maximum decrease in Fl-APC fluorescence of 10.8 +/- 0.6%. sEPCR also stimulated the amidolytic activity of APC toward synthetic substrates. We conclude that sEPCR binding to APC blocks phospholipid interaction and alters the active site of APC.  相似文献   

8.
The binding of activated protein C to factors V and Va   总被引:8,自引:0,他引:8  
Activated protein C has been derivatized with the active site-directed fluorophore 2-(dimethylamino)-6-naphthalenesulfonylglutamylglycylarginyl chloromethyl ketone (2,6-DEGR-APC). Covalently modified activated protein C has been used to investigate the binding interactions of the protein to factors V and Va in the presence of phospholipid vesicles. The fluorescence polarization of the 6-dimethylaminonaphthalene-2-sulfonyl moiety increased saturably with increasing phospholipid concentrations in the presence or absence of factor V or Va. Differences in the limiting polarization values indicated distinguishable differences in the interactions between 2,6-DEGR-APC and phospholipid in the presence of factor V or Va. The dissociation constant calculated for the 2,6-DEGR-APC/phospholipid interaction (7.3 X 10(-8) M) was not significantly altered by factor V but was decreased to 7 X 10(-9) M in the presence of factor Va. The interaction between 2,6-DEGR-APC and factor V or Va was characterized by a 1:1 stoichiometry. The binding of 2,6-DEGR-APC to factor V or Va in the presence of phospholipid could be reduced in a competitive manner by diisopropylphosphofluoridate-treated activated protein C. An analysis of the displacement curves indicated that the binding of 2,6-DEGR-APC was indistinguishable from the binding of diisopropylphosphofluoridate-treated activated protein C. The interaction between 2,6-DEGR-APC and phospholipid-bound factor Va was further examined using the isolated subunits of factor Va. Fluorescence polarization changes observed with component E of Va (light chain) closely corresponded with the changes observed with factor Va, whereas isolated component D (heavy chain) had little influence on the binding of 2,6-DEGR-APC to phospholipid vesicles. The data presented are consistent with the interpretation that component E of factor Va contains a binding site for activated protein C.  相似文献   

9.
Membrane vesicles were prepared by osmotic lysis of spheroplasts from M13-infected Escherichia coli. Reduced nicotinamide adenine dinucleotide (NADH) oxidase (reduced NAD: oxidoreductase, EC 1.6.99.3) and Mg2+-Ca2+-activated adenosine triphosphatase (ATP phosphohydrolase, EC 3.6.1.3), which are normally localized to the inner surface of the cytoplasmic membrane, were 50% acceesible to their polar substrates in these vesicles. The major coat protein of coliphage M13 is also bound to the cytoplasmic membrane (prior to phage assembly) but with its antigenic sites exposed to the exterior of the cell. Antibody to M13 coat protein was used to fractionate membrane vesicles. Neither agglutinated nor unagglutinated vesicles had altered NADH oxidase and adenosine triphosphatase specific activities. This is inconsistent with such vesicles being a mixture of correctly oriented and completely inverted membrane sacs and suggests that NADH oxidase, adenosine triphosphatase, M13 coat protein, or all three proteins rearrange during vesicle preparation.  相似文献   

10.
Rate constants for human factor Va inactivation by activated human protein C (APC) were determined in the absence and presence of Ca2+ ions, protein S and varying concentrations of phospholipid vesicles of different lipid composition. APC-catalyzed factor Va inactivation in free solution (in the presence of 2 mM Ca2+) was studied under first-order reaction conditions with respect to both APC and factor Va and was characterized by an apparent second-order rate constant of 6.1 x 10(5) M-1 s-1. Stimulation of APC-catalyzed factor Va inactivation by phospholipids was dependent on the concentration and composition of the phospholipid vesicles. Optimal acceleration (230-fold) of factor Va inactivation was observed with 10 microM phospholipid vesicles composed of 20 mol% dioleoylglycerophosphoserine (Ole2GroPSer) and 80 mol% dioleoylglycerophosphocholine (Ole2GroPCho). At higher vesicle concentrations and at higher molar fractions of Ole2GroPSer some inhibition of APC-catalyzed factor Va inactivation was observed. Membranes that contained anionic phospholipids other than phosphatidylserine also promoted factor Va inactivation. The ability of different anionic lipids to enhance factor Va inactivation increased in the order phosphatidylethanolamine less than oleic acid less than phosphatidic acid less than phosphatidylglycerol less than phosphatidylmethanol less than phosphatidylserine. APC-catalyzed factor Va inactivation in the presence of phospholipid vesicles could be saturated with respect to factor Va and the reaction obeyed Michaelis-Menten kinetics. Both the Km for factor Va and the Vmax of factor Va inactivation were a function of the phospholipid concentration. The Km increased from 1 nM at 2.5 microM phospholipid (Ole2GroPSer/Ole2GroPCho 20:80, mol/mol) to 65 nM at 250 microM phospholipid. The Vmax increased from 20 mol factor Va inactivated.min-1.mol APC-1 at 2.5 microM phospholipid to 62 mol factor Va inactivated.min-1.mol APC-1 at 10 microM phospholipid and remained constant at higher phospholipid concentrations. Protein S appeared to be a rather poor stimulator of APC-catalyzed factor Va inactivation. Protein-S-dependent rate enhancements were only observed in reaction mixtures that contained negatively charged phospholipid vesicles. Independent of the concentration and the lipid composition of the vesicles, protein S caused a twofold stimulation of APC-catalyzed factor Va inactivation. This suggests that, in the human system, enhancement of APC binding to phospholipid vesicles by protein S is of minor importance. Considering that protein S is a physiologically essential antithrombotic agent, it is likely that other factors or phenomena contribute to the in vivo antithrombotic action of protein S.  相似文献   

11.
Alcadeinalpha (Alcalpha) is an evolutionarily conserved type I membrane protein expressed in neurons. We show here that Alcalpha strongly associates with kinesin light chain (K(D) approximately 4-8x10(-9) M) through a novel tryptophan- and aspartic acid-containing sequence. Alcalpha can induce kinesin-1 association with vesicles and functions as a novel cargo in axonal anterograde transport. JNK-interacting protein 1 (JIP1), an adaptor protein for kinesin-1, perturbs the transport of Alcalpha, and the kinesin-1 motor complex dissociates from Alcalpha-containing vesicles in a JIP1 concentration-dependent manner. Alcalpha-containing vesicles were transported with a velocity different from that of amyloid beta-protein precursor (APP)-containing vesicles, which are transported by the same kinesin-1 motor. Alcalpha- and APP-containing vesicles comprised mostly separate populations in axons in vivo. Interactions of Alcalpha with kinesin-1 blocked transport of APP-containing vesicles and increased beta-amyloid generation. Inappropriate interactions of Alc- and APP-containing vesicles with kinesin-1 may promote aberrant APP metabolism in Alzheimer's disease.  相似文献   

12.
The activation of bovine protein C by factor Xa   总被引:2,自引:0,他引:2  
A complex composed of factor Xa and phospholipid vesicles assembled in the presence of calcium ions catalyzes a discrete cleavage of the heavy chain of bovine protein C that is indistinguishable from that produced by thrombin as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This cleavage generates an active site capable of hydrolyzing small substrates and inactivating factor Va function in the prothrombinase complex. Activation of protein C by factor Xa requires both calcium ions and phospholipid vesicles and proceeds at a rate an order of magnitude greater than that observed for alpha-thrombin in solution. gamma-Carboxyglutamic acid-domainless protein C is not activated by factor Xa, consistent with the requirement for phospholipid and distinguishing this reaction from protein C activation by thrombin. Thrombomodulin serves as a cofactor for the factor Xa-catalyzed reaction, forming a 1:1 complex with factor Xa (apparent Kd = 5.7 X 10(-10) M) and stimulating the saturated rate of protein C activation by factor Xa (kcat = 149 min-1) to levels comparable with the thrombin-thrombomodulin complex. Protein C activation by factor Xa is not inhibited by the specific thrombin inhibitor dansyl-N-(3-ethyl-1,5-pentanediyl)amide but is inhibited by antithrombin III, tripeptide-chloromethyl ketones, and the monoclonal antibody alpha-BFX-2b that is highly specific for factor Xa. These data indicate that thrombomodulin is promiscuous in its role as a cofactor and suggest the existence of an alternative pathway for protein C activation in vivo.  相似文献   

13.
The integration of functional proteins in the phospholipid bilayer is one of the most crucial features of biological membrane architecture. Phospholipid-protein interactions play an important role in the functions of bounded proteins in the phospholipid membrane. When the phospholipid-protein interactions occur, the protein structure tends to alter, which can result in a change in the isoelectric points (pI) of protein. Capillary isoelectric focusing (cIEF) with whole-column imaging detection (WCID) is an attractive technique that has the features of simple operation, high resolution, and fast separation without focused band mobility for detection of amphoteric biomolecules. In this study, a cIEF-WCID method was developed to characterize the phospholipids-protein interactions by monitoring the protein cIEF profiles. Seven proteins with different pI and molecular mass , and a zwitterionic phosphatidylcholine (PC) with zwitterionic properties, were used to evaluate the feasibility of the cIEF-WCID approach in the study of phospholipid-protein interactions. The cIEF profiles changed in response to the changes in protein conformation, clearly exhibiting interactions between the PC vesicles and the targeted proteins. The formation of PC-protein complex was observed in the cIEF electropherograms. It was demonstrated that seven proteins displayed distinct interactions with the PC vesicles due to their different chemical and physical properties. The influences of the PC concentration, incubation time, and incubation temperature on the phospholipids-protein interactions were investigated. This study validated a novel analytical approach for the characterization of phospholipid-protein interactions.  相似文献   

14.
Membrane-associated phosphatidylserine synthase was purified from Saccharomyces cerevisiae (Bae-Lee, M., and Carman, G. M. (1984) J. Biol. Chem. 259, 10857-10862) and reconstituted into phospholipid vesicles containing phosphatidylcholine/phosphatidylethanolamine/ phosphatidylinositol/phosphatidylserine. Reconstitution was performed by removing detergent from an octyl glucoside/phospholipid/Triton X-100/enzyme mixed micelle by Sephadex G-50 super-fine chromatography. The average diameter of the vesicles was 90 nm, and the enzyme was reconstituted asymmetrically with the active site facing outward. The enzymological properties of reconstituted phosphatidylserine synthase were determined in the absence of detergent. The enzyme was reconstituted into vesicles with phospholipid compositions approximating those of wild type and mutant strains of S. cerevisiae. Reconstituted activity was modulated by the phosphatidylinositol/phosphatidylserine ratio in the vesicles. The modulation of activity observed in the vesicles is enough to account for some of the fluctuations in the phosphatidylserine content in vivo.  相似文献   

15.
A method has been developed for the functional reconstitution of membrane proteins in phospholipid vesicles. This method is an extension of a previously published procedure (Ueno, M., Tanford, C. and Reynolds, A. (1984) Biochemistry 23, 3070-3076) for the formation of unilamellar vesicles from mixed micelles of egg phosphatidylcholine and dodecyl octaoxyethylene ether. Mixed micelles are formed from detergent-solubilized protein and egg-yolk phospholipid vesicles. These micelles are subjected to repeated passage through small columns filled with Amberlite XAD-2 beads. Several carrier proteins from the inner mitochondrial membrane have been reconstituted in this way; experimental data are shown for the aspartate/glutamate carrier and the ADP/ATP carrier. Certain parameters proved to be important for optimal efficiency of reconstitution: the ratio of detergent/phospholipid in the mixed micelles, the concentration of phospholipid during the hydrophobic chromatography, the ratio of phospholipid/protein, (d) the ratio of detergent/Amberlite XAD 2 beads, the number of column passages, and the type of detergent. After optimization of these parameters, phospholipid vesicles with a diameter of about 150 nm were obtained. The main advantage of this procedure, however, lies in the fact that high amounts of membrane protein can be incorporated into the phospholipid vesicles, i.e. up to 15% (w/w).  相似文献   

16.
A purified preparation of sarcoplasmic reticulum from rabbit skeletal muscle has been found to consist of a heterogeneous population of vesicles. Isopycnic centrifugation was used to obtain "light" and "heavy" vesicles from the upper and lower ends of a 25 to 45% (w/w) linear sucrose gradient. Each fraction accounted for about 10 to 15% of the total vesicles. The remainder of the vesicles were of intermediate density and banded between the light and heavy fraction. Light vesicles were composed of about equal amounts of phospholipid and Ca-2+ pump protein which contained approx. 90% of the protein. Heavy vesicles contained in addition to the Ca-2+ pump protein (55-65% of the protein) two other major protein components, the Ca-2+ binding and M55 proteins which accounted for 20-25 and 5-7% of the protein of these vesicles, respectively. The sarcoplasmic reticulum subfractions had 32-P-labelled phosphoenzyme levels proportional to their Ca-2+ pump protein content and contained similar Ca-2+-stimulated ATPase activities. They were capable of accumulating Ca-2+ in the presence of ATP and of releasing the accumulated Ca-2+ when placed into a medium with a low Ca-2+ concentration. The vesicles differed significantly in that heavy vesicles had a greater number of non-specific Ca-2+ binding sites than light vesicles (approx. 220 vs 75 nmol of bound Ca-2+ per mg protein), in accordance with their high content of Ca-2+ binding protein. Electron dense material could be seen within the compartment of heavy but not light vesicles. Removal of Ca-2+ binding and M55 proteins from heavy vesicles resulted in empty membranous structures consisting mainly of Ca-2+ pump protein and phospholipid. Electron micrographs of sections of muscle showed dense material in terminal cisternae but not in longitudinal sections of sarcoplasmic reticulum. These experiments are consistent with the interpretation that (1) the electron dense material inside heavy vesicles may be referable to Ca-2+ binding and/or M55 proteins, and that (2) light and heavy vesicles may be derived from the longitudinal sections and terminal cisternae of sarcoplasmic reticulum, respectively.  相似文献   

17.
Phospholipid lipid transfer protein (PLTP) mimics high-density lipoprotein apolipoproteins in removing cholesterol and phospholipids from cells through the ATP-binding cassette transporter A1 (ABCA1). Because amphipathic alpha-helices are the structural determinants for ABCA1 interactions, we examined the ability of synthetic peptides corresponding to helices in PLTP to remove cellular cholesterol by the ABCA1 pathway. Of the seven helices tested, only one containing PLTP residues 144-163 (p144), located at the tip of the N-terminal barrel, promoted ABCA1-dependent cholesterol efflux and stabilized ABCA1 protein. Mutating methionine 159 (Met-159) in this helix in PLTP to aspartate (M159D) or glutamate (M159E) nearly abolished the ability of PLTP to remove cellular cholesterol and dramatically reduced PLTP binding to phospholipid vesicles and its phospholipid transfer activity. These mutations impaired PLTP binding to ABCA1-generated lipid domains and PLTP-mediated stabilization of ABCA1 but increased PLTP binding to ABCA1. PLTP interactions with ABCA1 also mimicked apolipoproteins in activating Janus kinase 2; however, the M159D/E mutants were also able to activate this kinase. Structural analyses showed that the M159D/E mutations had only minor effects on PLTP conformation. These findings indicate that PLTP helix 144-163 is critical for removing lipid domains formed by ABCA1, stabilizing ABCA1 protein, interacting with phospholipids, and promoting phospholipid transfer. Direct interactions with ABCA1 and activation of signaling pathways likely involve other structural determinants of PLTP.  相似文献   

18.
The binding of the major water-soluble lens protein alpha-crystallin to the lens plasma membrane has been investigated by reassociating purified alpha-crystallin with alpha-crystallin-depleted membranes and with phospholipid vesicles in which the lens membrane protein MP26 had been reconstituted. alpha-Crystallin reassociates at high affinity (Kd = 13 X 10(-8)M) with alkali-washed lens plasma membranes but not with lens plasma membranes treated with guanidine/HCl, nor with phospholipid vesicles or erythrocyte membranes. Binding to lens plasma membranes is dependent on salt, temperature and pH and occurs in a saturable manner. Reconstitution of MP26 into phospholipid vesicles and subsequent analysis of alpha-crystallin binding suggests the involvement of this transmembrane protein. Binding ist not influenced by pretreatment of membranes with proteases, suggesting that the 4-kDa cytoplasmic fragment of MP26 is not necessary for alpha-crystallin binding. Labeling experiments using (trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine as a probe for intrinsic membrane proteins further showed that alpha-crystallin contains hydrophobic regions on its surface which might enable this protein to make contact with the lipid bilayer. Newly synthesized alpha-crystallin, in lens culture, is not associated with the plasma membrane, suggesting that the assembly of alpha-crystallin aggregates does not take place in a membrane-bound mode.  相似文献   

19.
20.
We studied the effect of fetal calf serum and serum protein fractions on the interaction of phospholipid vesicles consisting of phosphatidylcholine, cholesterol and dicetylphosphate (molar ratio 7 : 2 : 1), with rat liver parenchymal cells in a primary monolayer culture. During incubation of such vesicles with fetal calf serum part of the labeled phosphatidylcholine is transferred to a lipoprotein particle similar to the one we identified previously as a derivative of high density lipoprotein (Scherphof, G., Roerdink, F.H., Waite, M. and Parks, J. (1978) Biochim. Biophys. Acta 542, 296–307). When the particle thus formed is incubated with the cells a transfer of the phospholipid label to the cells is observed. When vesicles are incubated with the cells in presence of serum such lipoprotein-mediated lipid transfer may conceivably contribute to the total lipid uptake observed. However, we found that the presence of fetal calf serum in the culture medium greatly diminished rather than increased the total transfer of liposomal lipid to the cells. Also bovine serum albumin and bovine β-globulins reduced this transfer, although to a lesser extent than whole serum. α-Globulins, on the other hand, were as effective as complete serum in reducing the uptake of liposomal phospholipid. A γ-globulin fraction failed to exhibit any effect on the uptake of [14C]phosphatidylcholine by the cells.All protein fractions which were able to inhibit cellular uptake of liposomal phospholipid were shown to bind to the phospholipid vesicles. Furthermore, lipid vesicles preincubated with fetal calf serum and then separated from it showed reduced transfer of labeled phosphatidylcholine to parenchymal cells.These observations were taken to suggest that the diminished uptake of liposomal lipid may be caused by a modification of the liposomal surface membrane as a result of the binding of certain serum proteins. On the other  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号