首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W Ferro  J C Eeken 《Mutation research》1985,149(3):385-398
The influence of defects in DNA repair processes on X-ray-induced genetic damage in post-meiotic male germ cell stages of Drosophila melanogaster was studied using the 'maternal effects approach'. Basc males were irradiated in N2, air or O2 either as 48-h-old pupae (to sample spermatids) or as 3-4-day-old adults (to sample mature spermatozoa) and mated to females of 3 repair-deficient strains (mei-9a: excision-repair-deficient; mei-41D5: post-replication-repair-deficient; mus(1)101D1: post-replication-repair-deficient and impaired in DNA synthesis). Simultaneous controls involving mating of males to repair-proficient females (mei+) were run. The frequencies of sex-linked recessive lethals and of autosomal translocations were determined following standard genetic procedures. The responses elicited in the different crosses with repair-deficient females were compared with those in mei+ crosses. The main findings are the following: with mei-9 females, the frequencies of recessive lethals are higher after irradiation of spermatids in N2, but not after irradiation in air of O2 (relative to those in the mei+ crosses); this result is different from that obtained in earlier work with spermatozoa, in which cell stage, higher yields of recessive lethals were obtained after irradiation of males in either N2 or air; in the mei-9 crosses, there are no significant differences in response (relative to mei+) after irradiation of either spermatozoa or spermatids in O2; the translocation frequencies in the mei-9 crosses are similar to those in the mei+ crosses, irrespective of the treated germ cell stage or the irradiation atmosphere; irradiation of either spermatozoa or spermatids in N2, air or O2 does not result in any differential recovery of recessive lethals in the mei-41 relative to mei+ crosses; irradiation of spermatids in N2 and of spermatozoa in air leads to a higher recovery of translocations in the mei-41 crosses; and after irradiation of spermatids or spermatozoa in any of the gaseous atmospheres, the frequencies of recessive lethals and of translocations are lower in the mus-101 crosses. The differences in responses (between cell stages, in different gaseous atmospheres and with different repair-deficient females) are explained on the basis of both qualitative and quantitative differences in the composition of the initial lesions and the extent to which their repair may be affected by the defects present in the different repair-deficient females. Several discrepancies between expectations based on biochemical results and the genetic results are pointed out.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The response of fully mature motile sperm and late spermatids when challenged with X-radiation at 0 degrees C has been studied in sex-linked recessive lethals, II-III translocations and dominant lethality experiments. At 0 degrees C a significant increase in both mutagenic and clastogenic damage was detected compared to that obtained at 24 degrees C. Furthermore, the results of experiments performed with different postirradiation temperatures demonstrate that the low temperature during irradiation was the sole factor responsible for the observed increase. In the recessive lethal and translocation tests the response of late spermatids was higher than that shown by motile spermatozoa. As a whole, the results, which are rather similar to data reported on the effect of irradiation in oxygen of the same cell stages, suggest that the low temperature acted as a dose-modifying factor.  相似文献   

3.
The response of Drosophila melanogaster male germ cells to the induction of mutation by ethyl methanesulfonate (EMS) and diethyl sulfate (DES) and the influence of pre-treatments with butylated hydroxytoluene (BHT) were studied. Careful sampling of cell stages revealed that fully mature motile sperm were less sensitive to the induction of sex-linked recessive lethals by EMS than late spermatids, and that the remaining cell stages presented a fairly homogeneous response to the mutagen. The frequency of lethals induced by DES could be grouped into two plateaus: the first one, with a higher mutation rate, comprised motile and immotile sperm and late spermatids, the second one, medium and early spermatids. No sparing action of BHT was detected in any of the developing germ cells treated with EMS or DES, whereas an increase in sex-linked recessive lethal frequency was observed in some experiments in early spermatids. The enhancement of damage is attributed to impairment of repair achieved through the ability of BHT to modify enzymic activity.  相似文献   

4.
A Shimada  N Egami 《Mutation research》1984,125(2):221-227
Males of the fish Oryzias latipes were treated with various chemicals and then mated with normal females. The fertility and hatchability of the eggs laid by the parents were examined, and the dominant lethal effects were estimated. Mitomycin C induced dominant lethals in the fish spermatids and spermatocytes after the males had been treated with concentrations of 2.5 and 25 micrograms/ml. Methyl methanesulfonate (MMS) induced dominant lethals in spermatozoa and spermatozoa and spermatids after the injection of 200 and 400 mg/kg. These results are in good agreement with the results obtained with mice. However, the effects of ethyl methanesulfonate (EMS) were not clear on spermatogenic cells at any stage. We could not recognize any significant induction of dominant lethals by urethanes, bleomycin, caffeine, and two kinds of food-color additives, at least under the present experimental conditions.  相似文献   

5.
The antineoplastic agent Procarbazine was tested for the induction of genetic damage in Drosophila melanogaster. The compound was administered to adult males by oral application. The following types of genetic damage were measured: (1) sex-linked recessive lethals; (2) dominant lethals; (3) total and partial sex-chromosome loss; and (4) translocations. Procarbazine is highly mutagenic in causing recessive lethal mutations in all stages of spermatogenesis. In sperm a clear-cut concentration-effect relationship is not apparent, but in spermatids such a relationship is obtained for mutation induction at low levels of procarbazine exposure, while at high concentrations the induction of recessive lethals is not a function of concentration. A low induction of total sex-chromosome loss (X,Y) and dominant lethals was observed in metabolically active germ cells (spermatids), but procarbazine failed to produce well-defined breakage events, such as partial sex-chromosome loss (YL,YS) and II-III translocations. The results obtained in Drosophila melanogaster are discussed and compared with the mutational pattern reported in the mouse after procarbazine treatment.  相似文献   

6.
The schistosomicidal agent hycanthone was tested for mutagenicity in Drosophila melanogaster. The compound was administered either by injection into adult males or by larval feeding. The following types of genetic damage were measured:(1) complete and mosaic sex-linked recessive lethal mutations; (2) II–III translocations; and (3) dominant lethals.In postmeiotic germ cells, especially in late spermatids, a pronounced increase was found in the frequency of sex-linked recessive lethals, both completes and mosaics. By contrast, translocations and dominant lethals were not induced.  相似文献   

7.
Yegorova and colleagues (1978) showed that a mutant strain of Drosophila melanogaster (ebony) was more sensitive to UV-induced killing of embryos and also less proficient in photoreactivating (PR) ability than a wild-type (Canton-S) strain and that the genes governing UV sensitivity and PR ability were different and presumably located on the autosomes. The experiments reported in the present paper were designed to compare the patterns of sensitivity of these 2 strains and their hybrids to X-irradiation. The sensitivity of the larvae to the killing effects of X-irradiation, and of male and female germ-cell stages to the X-ray induction of genetic damage was studied.It was found that the larvae of the ebony strain are more sensitive to X-ray-induced killing than those of the Canton-S strain. The frequencies of radiation-induced dominant lethals and sex-linked recessive lethals are higher in spermatozoa sampled from ebony males than in those of Canton-S males. In spermatozoa sampled from hybrid males, the yields of dominant lethals are no higher than in those sampled from Canton-S males and do not seem to depend on the origin of the X-chromosome. There are no statistically significant differences between the ebony and Canton-S strains in the sensitivity of their spermatozoa to the induction of autosomal translocations.Stage-7 oocytes sampled from ebony females are more sensitive to the X-ray induction of dominant lethality than are those from Canton-S females; oocytes sampled from hybrid females manifest a level of sensitivity that is significantly lower than that in either parental strain. The frequencies of X-chromosome losses induced in in this germ-cell stage are significantly lower in ebony than in Canton-S females at least at the exposure level of 3000 R at which 3 experiments were carried out. There are no measurable differences in the amount of dominant lethality induced in stage-14 oocytes of ebony, Canton-S and hybrid females.When X-irradiated Berlin-K males are mated to ebony or Canton-S females, the yields of dominant lethals are higher when ebony females are used, showing that there is a “maternal effect” for this kind of damage. Such a maternal effect is also found for sex-linked recessive lethals (irradiated Muller-5 males mated to ebony or Canton-S females). However, when irradiated ring-X-chromosome-carrying males are mated to ebony or Canton-S females, the frequencies of paternal sex-chromosome losses (scored as XO males) are lower when ebony females are used.These results have been interpreted on the assumption that the ebony strain is homozygous for recessive, autosomal genes that confer increased radiosensitivity and that the Canton-S strain carries the normal, wild-type alleles for these genes. The higher yields of dominant and recessive lethals in mature spermatozoa and of dominant lethals in stage-7 oocytes are a consequence of an enhanced sensitivity to the mutagenic (in particular, to the chromosome-breaking) effects of X-irradiation and/or of defective repair of radiation-induced genetic damage. The lower yield of XO males from irradiated stage-7 oocytes of ebony females is probably a consequence of a defect in the repair of chromosome-breakage effects, resulting in the conversion of potential X losses in females into dominant lethals. The “maternal effects” for dominant lethals, sex-linked recessive lethals and for the loss of ring-X chromosomes are assumed to have a common causal basis, namely, a defective repair of chromosome-breakage events in the females of the ebony strain.  相似文献   

8.
W Ferro 《Mutation research》1983,107(1):79-92
Muller-5 males were irradiated with X-rays in nitrogen, in air or in oxygen (followed by nitrogen or oxygen post-treatments in the nitrogen and oxygen series) and were mated to females of a repair-proficient strain (mei+) or to those of a strain known to be deficient in excision repair of UV damage (in somatic cells). The latter strain, designated as mei-9a, is also known to be sensitive, in the larval stages, to the killing effects of UV, X-rays and to a number of chemical mutagens. The frequencies of sex-linked recessive lethals and autosomal translocations induced in the spermatozoa of males were determined and compared. The frequencies of sex-linked recessive lethals in the mei-9 control groups were consistently higher than in the mei+ groups. Irradiation in air or in nitrogen led to significantly higher yields of recessive lethals when the irradiated males were mated to mei-9 females, whereas, after irradiation in oxygen, the yields were similar with both kinds of female. No significant differences in the frequencies of reciprocal translocations were observed between the mei+ and mei-9 groups after irradiation of the males in nitrogen, in air or in oxygen. Likewise, no differential effects of the contrasting post-treatments (nitrogen versus oxygen), either for recessive lethals or for translocations, could be discerned. These results are considered to support the notion that the kinds of genetic damage induced in mature spermatozoa in air or in nitrogen are qualitatively similar (at least with respect to the component(s) that lead to the production of recessive lethal mutations), but clearly different when induced in an oxygen atmosphere. The enhanced yields of recessive lethals with mei-9 females (after irradiation of the males either in air or in nitrogen) has been interpreted on the assumption that the mei-9 mutant is also deficient for the repair of X-ray-induced, recessive lethal-generating premutational lesions. Possible reasons for the lack of differences between the mei+ and mei-9 groups with respect to translocation yields and for the absence of measurable differences in response between the contrasting post-treatments (after irradiation of the males in nitrogen) are discussed.  相似文献   

9.
Cyclophosphamide (CPA) and mitomen (DMO) are chemical mutagens that require metabolic activation to produce their biological effect. We have used an in vivo UDS assay in various meiotic and postmeiotic germ-cell stages of male mice to study DNA repair after treatment with these chemicals. EMS, a compound requiring no metabolic activation, was also used for comparative purposes.CPA and DMO induced UDS in meiotic through early-to-midspermatid stages, but no UDS was detected in late spermatids and mature sperm. While EMS produced a maximum UDS response in the germ cells immediately after treatment, CPA and DMO did not produce a maximum response until ~0.5 to 1 h after injection. This delay is attributed to the time required for CPA and DMO to be enzymatically vonverted active alkylating metabolites.Unlike the results found with EMS, mutation frequencies (dominant lethals, translocations, specific-locus mutations) following CPA treatment are not noticeably reduced in germ-cell stages in which UDS occurred. In the case of DMO, mutations are induced only in mature spermatozoa, and these germ-cell stages represent only a fraction of those in which no UDS is detected. The results with CPA and DMO thus still leave unclear the relationship between DNA repair and the differential spermatogenic response of mice to genetic damage.  相似文献   

10.
Ohmi Ohnishi 《Genetics》1977,87(3):519-527
The efficiency of the adult feeding method for EMS treatment in Drosophila melanogaster was studied by measuring the frequency of induced recessive lethals on the second chromosome. The treatment was most effective when mature spermatozoa or spermatids were treated and was much less effective on earlier stages. The number of mutations induced was proportional to the concentration except at the highest doses. The recessive lethal rate was estimated to be about 0.012 per second chromosome per 10(-4) M. In addition, about 0.004-0.005 recessive lethals per 10(-4) M were found in a later generation in chromosomes that had not shown the lethal effect in the previous generation. When the experiments are done in a consistent manner and gametes treated as mature sperm or spermatids are sampled, the results are highly reproducible. However, modifications of the procedure, such as starvation before EMS treatment, can considerably alter the effectiveness of the mutagen.  相似文献   

11.
The molecular dosimetry of methyl methanesulfonate (MMS) in the germ cells of male mice has been investigated. The mice were injected i.p. with 100 mg/kg of [3H]MMS and methylations per sperm head, per deoxynucleotide, and per unit of protamine were then determined over a 3-week period. The methylations per sperm head paralleled the dominant lethal frequency curve for MMS, reaching a maximum of between 22 and 26 million methylations per vas sperm head 8-11 days after treatment. Methylation of sperm DNA was greatest at 4 h (the earliest time point studied) after treatment, with 16.6 methylations/10(5) deoxynucleotides. DNA methylation gradually decreased during the subsequent 3-week period. The methylation of germ-cell DNA did not increase in the stages most sensitive to MMS (late spermatids leads to early spermatozoa) and was not correlated with the dominant lethal frequency curve for MMS. However, methylation of protamine did increase in the germ-cell stages most sensitive to MMS, and showed an excellent correlation with the incidence of dominant lethals produced by MMS in the different germ-cell stages. The pattern of alkylation produced by MMS in the developing germ-cell stages of the mouse is similar to that found for EMS. However, for equimolar exposures, MMS alkylates the germ cells 5-7 times more than does EMS. Hydrolyzed samples of protamine from [3H]MMS-exposed animals were subjected to thin-layer chromatography and amino acid analysis. Both procedures showed that most of the labeled material recovered from the hydrolysates co-chromatographed with authentic standards of S-methyl-L-cysteine. The amino acid analyses showed an average of approximately 80% of the labeled material eluting with S-methyl-L-cysteine. The mechanism of action of both MMS and EMS on the developing germ cells appears to be similar. The occurrence of S-methyl-L-cysteine as the major reaction product in sperm protamine after MMS exposure supports our initial model of how dominant lethals are induced in mouse germ cells by these chemicals: Alkylation of cysteine sulfhydryl groups contained in mouse-sperm protamine blocks normal disulfide-bond formation, preventing proper chromatin condensation in the sperm nucleus. Subsequent stresses produced in the chromatin structure eventually lead to chromosome breakage, with resultant dominant lethality.  相似文献   

12.
The induction of mutations following combined treatment with acrylamide (AA) plus X-rays has been determined using the dominant lethal mutations test in Pzh:SFISS male mice. Combinations of a mutagenic dose of both agents (1.00 Gy, 125 mg/kg b.w.) and a non-mutagenic dose, i.e., a dose that alone does not produce dominant lethals (0.25 Gy, 25 mg/kg b.w.), were used. For the discussion of the effects of combined action of X-rays and acrylamide the term 'enhancement in risk' was used whenever the effects observed after combined exposure significantly exceeded the sum of the effects produced separately by the agents. Such an enhanced risk has been observed in late spermatids after combined action of X-rays and AA at non-mutagenic doses, and in spermatozoa, spermatids and late spermatocytes after exposure to mutagenic doses.  相似文献   

13.
X-linked recessive lethal frequencies in mature spermatozoa were studied in repair-deficient Drosophila strains. Frequencies of spontaneous and ethylnitrosourea-induced lethals were enhanced in mus(I)104DI+ and unchanged in mei-9IL+. In addition, the majority of lethals was fixed in stages preceding mature spermatozoa. It was shown that premutational lesions (spontaneous and ethylnitrosourea-induced in both mutants) arise in germ cells, these lesions being realized into mutations in the next generations.  相似文献   

14.
The data reported in this paper extend earlier results on the effects of hycanthone in Drosophila. The main findings are the following. (1) A refined brood-pattern analysis of hycanthone-induced sex-linked recessive lethals confirmed the specific sensitivity of mid- and late spermatids. Injection of young males (0–20 h old) did not cause a shift in the brood pattern, but tended to produce higher rates of recessive lethals than injection of 4-day-old males, although the difference was not significant. (2) An autosomal recessive lethal test (chromosome 2) similarly showed a low sensitivity of premeiotic stages. (3) Feeding of hycanthone was much less effective than injection. This difference was not observed for the methyl analog lucanthone. From the observation that hycanthone- and lucanthone-induced mutations exhibited different germ-cell-stage sensitivity patterns, it was concluded that lucanthone does not (at least not exclusively) act via metabolic activation to hycanthone. (4) After injection, the hycanthone analogs IA-4-N-oxide and IA-4-N-oxide were marginally mutagenic. (5) It was shown previously that hycanthone was ineffective in producing breakage events, in Drosophila. In this report, hycanthone is shown to be weakly active in inducing ring-X chromosome loss. This emphasizes the relat ive sensitivity of the ring-X-loss test, in comaprison with the tests that etect translocations or dominant lethals.  相似文献   

15.
Ionizing radiation-induced dominant lethal mutations in all spermatogenic stages. After irradiation of male mice with 200 R the yield of induced mutations in early spermatids was twice the yield in spermatozoa, late spermatids, and spermatocytes. After irradiation with 400 R or 800 R the spermatocytes were the most sensitive stage for the induction of dominant lethal mutations. The frequency of radiation-induced dominant lethal mutations in postspermatogonial stages was dose-dependent. The yield of dominant lethal mutations in spermatogonia was independent of the dose.  相似文献   

16.
Wild-type (Oregon-K) Drosophila melanogaster males were X-irradiated and mated to Oster females (y scs1 In49sc8; bw; st pp) that had received a 20 R X-ray exposure (Group MF) or no irradiation (group M). Mature spermatozoa of the irradiated males were sampled and the frequencies of dominant lethals, sex-linked recessive lethals and 2–3 translocations were measured. In the group in which the irradiated males were mated to irradiated females, the survival of eggs was significantly higher than in the group in which only the males were irradiated. However, there was no consistent and detectable difference between the two groups with respect to the frequencies of recessive lethals and translocations.The relatively higher egg survival in the MF group is amenable to an interpretation based on an inducible repair process in females that acts on radiation damage induced in spermatozoa but, such an explanation is inadequate to explain the other results. It is concluded that the observations considered together preclude a general and unifying interpretation based on a low-dose-X-ray-inducible genetic repair process in females (acting on damage in spermatozoa). Possible reasons for the discrepancy between the expectation of differences in response between the MF and M groups (in sex-linked lethal and translocation frequencies) and the observation of no consistent differences between them are discussed.  相似文献   

17.
Summary In a survey of sperm antigens in the rat, a new intra-acrosomal antigen was found using a monoclonal antibody MC41 raised against rat epididymal spermatozoa. The MC41 was immunoglobulin G1 and recognized spermatozoa from rat, mouse and hamster. Indirect immunofluorescence with MC41 specifically stained the crescent region of the anterior acrosome of the sperm head. Immuno-gold electron microscopy demonstrated that the antigen was localized within the acrosomal matrix. Immunoblot study showed that MC41 recognized a band of approximately 165000 dalton in the extract of rat sperm from the cauda epididymidis. Immunohistochemistry with MC41 demonstrated that the antigen was first detected in approximately step-2 spermatids, and distributed over the entire cytoplasmic region of spermatids from step 2 to early step 19. The head region became strongly stained in late step-19 spermatids and then in mature spermatozoa. Distinct immunostaining was not found in the developing acrosome of spermatids throughout spermiogenesis. These results suggest that the MC41 antigen is a unique intra-acrosomal antigen which is accumulated into the acrosome during the terminal step of spermiogenesis.  相似文献   

18.
It is widely accepted that mature mammalian oocytes are induced to resume meiosis by a sperm-borne oocyte-activating factor(s) (sperm factor, SF) immediately after normal fertilization or intracytoplasmic sperm injection. The SF is most likely a soluble factor that is localized within the cytoplasm of mature spermatozoa, but the exact stage at which it appears during spermatogenesis and its localization after oocyte activation is not fully understood, except in the mouse. First, we injected mature spermatozoa and spermatogenic cells from cynomolgus monkeys into mouse oocytes to assess their oocyte-activating capacity. More than 90% of mouse oocytes were activated after injection of monkey spermatozoa. Round spermatids and primary spermatocytes (late pachytene to diplotene) also activated oocytes (93% and 79%, respectively). Injection of monkey spermatozoa and spermatids induces intracellular Ca(2+) oscillations in a pattern similar to that seen following normal fertilization. Most spermatocytes did not produce typical intracellular Ca(2+) oscillations. Second, we transferred pronuclei or cytoplasts from mouse oocytes that had been activated by monkey spermatozoa or spermatids into intact mature mouse oocytes by electrofusion in order to examine the localization of the SF after pronuclear formation. Some of the SF was localized within the pronuclei, but some stayed in the ooplasm. This study demonstrated that spermatogenic cells of cynomolgus monkeys acquire oocyte-activating capacity at much earlier stages than those of mice, and that the monkey SF has a pronucleus-directing nature, although to a lesser extent than the mouse SF.  相似文献   

19.
Ubiquitin was purified from chicken testis and its content, biosynthesis and formation of conjugates was determined in germinal cells at successive stages of spermatogenesis. Free ubiquitin increased markedly during spermatogenesis, reaching its maximum level in early spermatids. High levels of ubiquitin were still present in late spermatids but were not detectable in mature spermatozoa. Biosynthesis of ubiquitin occurred in vitro in a fraction containing meiotic and pre-meiotic cells, and during spermiogenesis, in early and late spermatids. The cellular content of free ubiquitin increased after ATP depletion, especially in early spermatids. Lysates of chicken testis cells, particularly those obtained from spermatids, were able to form nuclear (24 and 27 kDa) and extranuclear (55-90 kDa) ubiquitin conjugates in vitro. The presence of increasing levels of ubiquitin and ubiquitin conjugates in chicken spermatids may suggest a possible involvement of this protein in the marked changes of protein turnover, chromatin structure and cell-cell interactions that spermatids undergo during spermiogenesis.  相似文献   

20.
Summary The low dose of 0.2 mg/kg TEM allows the production of viable zygotes from the most sensitive stage of spermatogenesis. The frequency of translocations among offspring conceived during this peak period of sterility at 10–14 days p.i. is greater than among those conceived earlier, so that as the fertility of the treated males decreases (i.e. the percentage of dominant lethals increases) the frequency of translocations among their offspring increases. The results provide presumptive evidence that the spermatids are more sensitive to the mutagenic action of TEM than are the mature spermatozoa. A comparison of the incidence of translocations induced by TEM with that induced by X-rays is made and the significance of the occurrence of sterile animals among the F1 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号