首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During spermatogenesis, germ cells undergo mitotic and meiotic divisions to form haploid round spermatids which mature to functional elongated spermatozoa. During this process there occurs remodeling of cell structure and loss of most of the cytoplasm and a large fraction of cellular proteins. To evaluate the role of the ubiquitin proteolytic system in this protein loss, we measured levels of ubiquitinated proteins and rates of ubiquitin conjugation in extracts of testes from rats of different ages. Endogenous ubiquitin-protein conjugates increased till day 30 and then reached a plateau. In parallel, there was a progressive increase in the rate of conjugation of ubiquitin to proteins in testis extracts from these animals. To test the importance of two major ubiquitin conjugating enzyme families in the conjugation, immunoprecipitation of UBC2 or UBC4 from 10- and 30-day-old testis extracts was carried out and the remaining conjugation activity in supernatants was assayed. Depletion of either enzyme family resulted in decreased conjugation. However, most of the conjugation activity and, more importantly, the increased conjugation during development were UBC4-dependent. Immunocytochemistry demonstrated a marked increase in expression of UBC4 in spermatids, consistent with the UBC4-dependent activation of conjugation seen in vitro. In situ hybridization studies evaluated the contribution of various UBC4 isoforms to this induction. UBC4-1 mRNA was expressed in most cells. UBC4-2 mRNA was restricted to germ cells with high levels of expression in round and elongated spermatids. UBC4-testis had previously been shown to be expressed only in spermatids. Our data suggest that induction of various UBC4 isoforms activates overall conjugation and plays an important role in the cellular remodeling and protein loss occurring during spermatogenesis.  相似文献   

2.
3.
Spermatogenesis is a highly complicated metamorphosis process of male germ cells. Recent studies have provided evidence that the ubiquitin–proteasome system plays an important role in sperm head shaping, but the underlying mechanism is less understood. In this study, we localized membrane-associated RING-CH (MARCH)7, an E3 ubiquitin ligase, in rat testis. Northern blot analysis showed that March7 mRNA is expressed ubiquitously but highly in the testis and ovary. In situ hybridization of rat testis demonstrated that March7 mRNA is expressed weakly in spermatogonia and its level is gradually increased as they develop. Immunohistochemical analysis detected MARCH7 protein expression in spermiogenic cells from late round spermatids to elongated spermatids and in epididymal spermatozoa. Moreover, MARCH7 was found to be localized to the caudal end of the developing acrosome of late round and elongating spermatids, colocalizing with β-actin, a component of the acroplaxome. In addition, MARCH7 was also detected in the developing flagella and its expression levels were prominent in elongated spermatids. We also showed that MARCH7 catalyzes lysine 48 (K48)-linked ubiquitination. Immunolocalization studies revealed that K48-linked ubiquitin chains were detected in the heads of elongating spermatids and in the acrosome/acroplaxome, neck, midpiece and cytoplasmic lobes of elongated spermatids. These results suggest that MARCH7 is involved in spermiogenesis by regulating the structural and functional integrity of the head and tail of developing spermatids.  相似文献   

4.
The distribution, quantitation, and synthesis of high mobility group (HMG) proteins during spermatogenesis in the rat have been determined. HMG1, -2, -14, and -17 were isolated from rat testes by Bio-Rex 70 chromatography combined with preparative gel electrophoresis. Amino acid analysis revealed that each rat testis HMG protein was similar to its calf thymus analogue. Tryptic peptide maps of somatic and testis HMG2 showed no differences and, therefore, failed to detect an HMG2 variant. Testis levels of HMG proteins, relative to DNA content, were equivalent to other tissues for HMG1 (13 micrograms/mg of DNA), HMG14 (3 micrograms/mg of DNA), and HMG17 (5 micrograms/mg of DNA). The testis was distinguished in that it contained a substantially higher level of HMG2 than any other rat tissue (32 micrograms/mg of DNA). HMG protein levels were determined from purified or enriched populations of testis cells representing the major stages of spermatogenesis; spermatogonia and early primary spermatocytes, pachytene spermatocytes, early spermatids, and late spermatids; and testicular somatic cells. High levels of HMG2 in the testis were due to pachytene spermatocytes and early spermatids (56 +/- 4 and 47 +/- 6 micrograms/mg of DNA, respectively). Mixtures of spermatogonia and early primary spermatocytes showed lower levels of HMG2 (12 +/- 3 micrograms/mg of DNA) similar to proliferating somatic tissues, whereas late spermatids had no detectable HMG proteins. The somatic cells of the testis, including isolated populations of Sertoli and Leydig cells, showed very low levels of HMG2 (2 micrograms/mg of DNA), similar to those in nonproliferating somatic tissues. HMG proteins were synthesized in spermatogonia and primary spermatocytes, but not in spermatids. Rat testis HMG2 exhibited two bands on acid-urea gels. A "slow" form comigrated with somatic cell HMG2, while the other "fast" band migrated ahead of the somatic form and appeared to be testis-specific. The "fast" form of HMG2 accounted for the large increase of HMG2 levels in rat testes. These results show that the very high level of HMG2 in testis is not associated with proliferative activity as previously hypothesized.  相似文献   

5.
6.
N Agell  M Chiva  C Mezquita 《FEBS letters》1983,155(2):209-212
Electrophoretic analysis of acid-soluble chromosomal proteins isolated from rooster testis cell nuclei at different stages of spermatogenesis, revealed that the nuclear content of a protein identified by its solubility, electrophoretic mobility and amino acid analysis as the protein conjugate histone H2A-ubiquitin (uH2A, A24) changed markedly from meiotic cells to late spermatids. The protein was not detectable in tetraploid primary spermatocytes; it was present in 1.7% of the total amount of nucleosomal core histones in early spermatids and reached its maximum level (3.5% and 11%) at the end of spermiogenesis, when histones are replaced by the protamine galline.  相似文献   

7.
The relative proportions of four major chicken histone H1 subtypes (referred to as H1a, H1b, H1c and H1d) change markedly in different chicken tissues. The relative amount of H1c is higher in nonreplicating somatic tissues, such as liver, than in replicating immature testis. The proportion of H1c sharply decreases as spermatogenesis proceeds, being much lower in mature than in immature testis. It has been proposed that the relative increment of H1c correlates with low rates of cell division in chicken tissues. It was assumed that the sharp decrease in H1c observed during maturation of chicken testis was a consequence of the intensification of proliferative activity in spermatogonia (Berdnikov et al., 1976). Our results, however, clearly show that the decrease of H1c during maturation is due to the low levels of this protein in postreplicative stages of spermatogenesis, where H1c is barely detectable. These results suggest that the presence of the arginine-rich H1c subtype would neither be compatible with the relaxed structure of acetylated chromatin present in active replicating cells nor with the hyperacetylated chromatin characteristic of postreplicative late spermatids undergoing the nucleohistone nucleoprotamine transition.  相似文献   

8.
9.
Park CJ  Lee JE  Oh YS  Shim S  Nah WH  Choi KJ  Gye MC 《Theriogenology》2011,75(3):445-458
The expression of claudin-1 and -11, tight junctions (TJs) proteins was examined in immature and adult pheasant (Phasianus colchicus) testes. Claudin-1 and -11 cDNA were highly similar to those of human, mice, and chicken. Claudin-1 mRNA and protein (21 kDa) levels in immature testes were higher than those of adult testis. In immature testes until 6 weeks of age, Claudin-1 was found at contacts between adjacent Sertoli cells and between Sertoli cells and germ cells. In adult testis, Claudin-1 was found in early spermatocytes migrating the blood testis barrier (BTB). Blood vessels were positive for claudin-1. Claudin-11 mRNA and protein (21 kDa) increased during adulthood development of testis. In immature testis, Claudin-11 was found in apicolateral contacts between adjacent Sertoli cells, indicating its involvement in cell adhesion in immature testis. In adult testis, strong wavy Claudin-11 immunoreactivity was parallel to basal lamina at the basal part of seminiferous epithelium, indicating that Claudin-11 at the inter-Sertoli TJs may act as a structural element of the BTB. Weak Claudin-1 and -11 immunoreactivity at contacts between Sertoli cells to elongating/elongated spermatids, meiotic germ cells, and basal lamina suggests that they also participate in the cell-cell and cell-extracellular matrix adhesion in pheasant testis. Testosterone increased claudin-11 mRNA in testis organ culture and Sertoli cell primary culture, suggesting positive regulation of claudin-11 gene by androgen in Sertoli cells of pheasant testis. This is the first report on the claudins expression at BTB in avian testis.  相似文献   

10.
Ubiquitination is required throughout all developmental stages of mammalian spermatogenesis. The two ubiquitin C-terminal hydrolase (UCH) enzymes, UCH-L1 and UCH-L3, deubiquitinate ubiquitin-protein conjugates and control the cellular balance of ubiquitin. These two UCH isozymes have 52% amino acid identity and share significant structural similarity. A new function of these two closely related UCH enzymes during spermatogenesis which is associated with germ cell apoptosis has been analyzed. Apoptosis, in general, is thought to be partly regulated by the ubiquitin-proteasome system. During spermatogenesis, apoptosis controls germ cell numbers and eliminates defective germ cells to facilitate testicular homeostasis. In this paper, I review the distinct function of the two UCH isozymes in the testis of gad and Uchl3 knockout mice, which are strongly but reciprocally expressed during spermatogenesis. In addition, the importance of UCHL1-dependent apoptosis for normal spermatogenesis and sperm quality control is discussed.  相似文献   

11.
12.
13.
Proteins immunologically related to intermediate filaments have been identified in the sperm fibrous sheath but remain uncharacterized. We isolated and characterized a novel intermediate filament-related protein (FS39) localized to the fibrous sheath of the sperm tail. We used Northern blot analysis to establish that FS39 is transcribed predominantly in the testis of mice >18-20 days old. At this age, spermatogenesis has proceeded to the development of the first round haploid spermatids. In situ hybridization revealed that FS39 mRNA is first detectable in late step 3 spermatids, is at its highest level during steps 9 and 10, and diminishes in steps 13 and 14. Western blot analysis identified a single protein of 39 kDa in mouse and rat testis and epididymis, suggesting the protein is conserved in rodents. Indirect immunofluorescence localized FS39 to the fibrous sheath of the sperm tail, and in testis sections expression was detected from step 13 and step 14 spermatids onward, indicating FS39 is under translational control. Southern blot analysis showed FS39 to be a single copy gene, and hybridization to human genomic DNA suggested that a human equivalent gene is present. These results demonstrate that FS39 is transcribed in testis tissue during the haploid phase of spermatogenesis, is present in mature sperm, and codes for a novel 39-kDa intermediate filament-related protein of the fibrous sheath.  相似文献   

14.
Full-length cDNA of a novel mouse gene upregulated in late stages of spermatogenic cells was cloned from mouse testis using overlapping RT-PCR and RACE. The mRNA of the gene was expressed mainly in diplotene/pachytene spermatocytes, round and elongating spermatids. We named this gene as SRG-L (Spermatogenesis Related Gene expressed in late stages of spermatogenic cells, GenBank Accession No. AY352586). The tissue-specific analysis showed a higher expression level in testis and spleen. The gene is mapped on chromosome 8q33.1 and contains 18 exons. The full-length of cDNA is 2,843 bp with an open reading frame (ORF) of 2,625 bp that encodes a 104 kDa protein (874 amino acids) with a putative transmembrane region. The bioinformatics analysis revealed that the SRG-L has two conserved regions, transglutaminase-like homologues domain and D-serine dehydratase domain, rich phosphorylation sites and methylation sites. The SRG-L protein was detected in diplotene/pachytene spermatocytes and spermatids by immunohistochemical staining and Western blot. The results suggest that SRG-L may play definite roles regulating differentiation of germ cells during spermatogenesis, particularly during meiosis and spermiogenesis.  相似文献   

15.
Spermatogenic immunoglobulin superfamily (SgIGSF) is a mouse protein belonging to the immunoglobulin superfamily expressed in the spermatogenic cells of seminiferous tubules. We produced a specific polyclonal antibody against SgIGSF. Western blot analysis of the testes from postnatal developing mice using this antibody demonstrated multiple immunopositive bands of 80-130 kDa, which increased in number and size with the postnatal age. Enzymatic N-glycolysis caused reduction in the size of these bands to 70 kDa, indicating that SgIGSF is a glycoprotein and its glycosylation pattern and extent are developmentally regulated. Immunohistochemical analysis of the adult testis demonstrated that SgIGSF was present in the spermatogenic cells in the earlier steps of spermatogenesis and increased in amount from intermediate spermatogonia through zygotene spermatocytes but was diminished in the steps from early pachytene spermatocytes through round spermatids. After meiosis, SgIGSF reappeared in step 7 spermatids and was present in the elongating spermatids until spermiation. The immunoreactivity was localized primarily on the cell membrane. Consistent with the findings in adult testes, the analysis of the developing testes revealed that SgIGSF was expressed separately in the spermatogenic cells in earlier and later phases. Sertoli cells had no expression of SgIGSF, whereas both SgIGSF immunoprecipitated from the testis lysate and produced in COS-7 cells was shown to bind to the surface of Sertoli cells in primary culture. These results suggested that SgIGSF on the surface of spermatogenic cells binds to some membrane molecules on Sertoli cells in a heterophilic manner and thereby may play diverse roles in the spermatogenesis.  相似文献   

16.
In previous studies we identified an epididymal gene that exhibits homology to the cystatin family of cysteine protease inhibitors. The expression of this gene, termed CRES (cystatin-related epididymal and spermatogenic), was shown to be highly restricted to the proximal caput epididymal epithelium with less expression in the testis and no expression in the 24 other tissues examined. In this report, studies were carried out to examine CRES gene expression in the testis as well as to characterize the CRES protein in the testis and epididymis. In situ hybridization experiments revealed that within the testis CRES gene expression is stage-specific during spermatogenesis and is exclusively expressed by the round spermatids of Stages VII-VIII and the early elongating spermatids of Stages IX and X. Immunohistochemical studies demonstrated that CRES protein was transiently expressed in both the testis and epididymis. Within the testis the protein was localized to the elongating spermatids, whereas within the epididymis CRES protein was exclusively synthesized by the proximal caput epithelium and then secreted into the lumen. Surprisingly, the secreted CRES protein had completely disappeared from the epididymal lumen by the distal caput epididymidis. Western blot analysis of testicular and epididymal proteins showed that the CRES antibody specifically recognized a predominant 19 kDa CRES protein and a less abundant 14 kDa form. These observations suggest that the CRES protein performs a specialized role during sperm development and maturation. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Separation of labelled nuclei by sedimentation velocity at unit gravity (Staput method) was used to study the timing of histone synthesis and replacement by testis-specific basic nuclear protein (TSP) during spermatogenesis in the mouse. Animals were injected (intratesticularly) with 1.25 micronCi per testis 3H-arginine or 2.5 micronCi per testis 3H-lysine, testis nuclei were separated, and the acid extract of each nuclear fraction was analyzed by acrylamide gel electrophoresis. The distribution of labelled histones and TSP in separated nuclei was assessed 2 h after incorporation. Changes in the labelled histone and TSP content of nuclei during subsequent differentiation (1--34 days post-label) was followed in fractions of separated testis cell nuclei and in nuclei of cauda epididymal spermatozoa. Analysis of total histone and (TSP) content indicated quantitative changes during development. Nuclei from primary spermatocytes had relatively larger amounts of histones H1 and H4. Spermatid nuclei showed a relative reduction in histones H1 and H4, coincident with the appearance of TSP in these nuclei. These results suggested that synthesis and/or removal of certain histones must occur in late primary spermatocyte and early spermatid stages of spermatogenesis. Results of labelling experiments indicated several periods of histone synthesis during spermatogenesis: (1) closely associated with the last DNA synthesis(i.e., in early primary spermatocytes), (2) late in meiotic prophase (i.e., in pachytene primary spermatocytes) and (3) simultaneous with TSP synthesis (i.e., in late spermatids). Histone H1 was more heavily labelled toward the end of the primary spermatocyte period. Histone H4 was more heavily labelled in the early primary spermatocyte period, and again at the time of TSP synthesis in spermatids. Histones synthesized before the pachytene primary spermatocyte stage appeared to be replace, but histones synthesized later in spermatogenesis appeared to be at least partially retained in epididymal spermatozoa. These results suggested that repeated specific alterations in the protein complement of the nucleus are an integral part of spermatogenic differentiation in the mouse.  相似文献   

18.
19.
NEDD8 is a ubiquitin-like protein that controls vital biological events through its conjugation to target proteins. Previously, we identified a negative regulator of the NEDD8 conjugation system, NEDD8 ultimate buster-1 (NUB1), that recruits NEDD8 and its conjugates to the proteasome for degradation. Recently, we performed yeast two-hybrid screening with NUB1 as bait and isolated a ubiquitin precursor UbC1 that is composed of nine tandem repeats of a ubiquitin unit through alpha-peptide bonds. Interestingly, NUB1 interacted with UbC1 through its UBA domain. Further study revealed that the UBA domain interacted with alpha-peptide bond-linked polyubiquitin, but not with isopeptide bond-linked polyubiquitin, indicating that the UBA domain of NUB1 is a specific acceptor for the linear ubiquitin precursor. A functional study revealed that an unidentified protein that was immunoprecipitated with NUB1 served as a ubiquitin C-terminal hydrolase for UbC1. Thus, NUB1 seems to form a protein complex with the unidentified ubiquitin C-terminal hydrolase and recruit UbC1 to this complex. This might allow the ubiquitin C-terminal hydrolase to hydrolyze UbC1, in order to generate ubiquitin monomers. Northern blot analysis showed that the mRNAs of both NUB1 and UbC1 were enriched in the testis. Furthermore, in situ hybridization showed that both mRNAs were strongly expressed in seminiferous tubules of the testis. These results may imply that the UbC1 hydrolysis mediated by NUB1 is involved in cellular functions in the seminiferous tubules such as spermatogenesis.  相似文献   

20.
During spermatogenesis, a large fraction of cellular proteins is degraded as the spermatids evolve to their elongated mature forms. In particular, histones must be degraded in early elongating spermatids to permit chromatin condensation. Our laboratory previously demonstrated the activation of ubiquitin conjugation during spermatogenesis. This activation is dependent on the ubiquitin-conjugating enzyme (E2) UBC4, and a testis-particular isoform, UBC4-testis, is induced when histones are degraded. Therefore, we tested whether there are UBC4-dependent ubiquitin protein ligases (E3s) that can ubiquitinate histones. Indeed, a novel enzyme, E3Histone, which could conjugate ubiquitin to histones H1, H2A, H2B, H3, and H4 in vitro, was found. Only the UBC4/UBC5 family of E2s supported E3Histone-dependent ubiquitination of histone H2A, and of this family, UBC4-1 and UBC4-testis are the preferred E2s. We purified this ligase activity 3,600-fold to near homogeneity. Mass spectrometry of the final material revealed the presence of a 482-kDa HECT domain-containing protein, which was previously named LASU1. Anti-LASU1 antibodies immunodepleted E3Histone activity. Mass spectrometry and size analysis by gel filtration and glycerol gradient centrifugation suggested that E3Histone is a monomer of LASU1. Our assays also show that this enzyme is the major UBC4-1-dependent histone-ubiquitinating E3. E3Histone is therefore a HECT domain E3 that likely plays an important role in the chromatin condensation that occurs during spermatid maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号