首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Proper dorsal--ventral pattern formation of the optic cup is essential for vertebrate eye morphogenesis and retinotectal topographic mapping. Previous studies have suggested that midline tissue-derived Sonic hedgehog (Shh) molecules play critical roles in establishing the bilateral eye fields and in determining the proximal--distal axis of the eye primordium. Here, we have examined the temporal requirements for Shh during the optic vesicle to optic cup transition and after early optic cup formation in chick embryos. Both misexpressing Shh by virus and blocking Shh activity by antibodies resulted in disruption of ventral ocular tissues. Decreasing endogenous Shh signals unexpectedly revealed a sharp morphological boundary subdividing dorsal and ventral portions of the optic cup. In addition, Shh signals differentially influenced expression patterns of genes involved in ocular tissue specification (Pax6, Pax2, and Otx2) and dorsal--ventral patterning (cVax) within the ventral but not dorsal optic cup. Ectopic Shh suppressed expression of Bone Morphogenetic Protein 4 (BMP4) in the dorsal retina, whereas reducing endogenous Sonic hedgehog activity resulted in a ventral expansion of BMP4 territory. These results demonstrate that temporal requirements for Shh signals persist after the formation of the optic cup and suggest that the early vertebrate optic primordium may be subdivided into dorsal and ventral compartments. We propose a model in which ventrally derived Shh signals and dorsally restricted BMP4 signals act antagonistically to regulate the growth and specification of the optic primordium.  相似文献   

5.
Dorsal and ventral specification in the early optic vesicle appears to play a crucial role in the proper development of the eye. In the present study, we performed embryonic transplantation and organ culturing of the chick optic vesicle in order to investigate how the dorsal-ventral (D-V) polarity is established in the optic vesicle and what role this polarity plays in proper eye development. The left optic vesicle was cut and transplanted inversely in the right eye cavity of host chick embryos. This method ensured that the D-V polarity was reversed while the anteroposterior axis remained normal. The results showed that the location of the choroid fissure was altered from the normal (ventral) to ectopic positions as the embryonic stage of transplantation progressed from 6 to 18 somites. At the same time, the shape of the optic vesicle and the expression patterns of Pax2 and Tbx5, marker genes for ventral and dorsal regions of the optic vesicle, respectively, changed concomitantly in a similar way. The crucial period was between the 8- and 14-somite stages, and during this period the polarity seemed to be gradually determined. In ovo explant culturing of the optic vesicle showed that the D-V polarity and choroid fissure formation were already specified by the 10-somite stage. These results indicate that the D-V polarity of the optic vesicle is established gradually between 8- and 14-somite stages under the influence of signals derived from the midline portion of the forebrain. The presumptive signal(s) appeared to be transmitted from proximal to distal regions within the optic vesicle. A severe anomaly was observed in the development of optic vesicles reversely transplanted around the 10-somite stage: the optic cup formation was disturbed and subsequently the neural retina and pigment epithelium did not develop normally. We concluded that establishment of the D-V polarity in the optic vesicle plays an essential role in the patterning and differentiation of the neural retina and pigment epithelium.  相似文献   

6.
EphB receptor tyrosine kinases and ephrin-B ligands regulate several types of cell-cell interactions during brain development, generally by modulating the cytoskeleton. EphB/ephrinB genes are expressed in the developing neural tube of early mouse embryos with distinct overlapping expression in the ventral midbrain. To test EphB function in midbrain development, mouse embryos compound homozygous for mutations in the EphB2 and EphB3 receptor genes were examined for early brain phenotypes. These mutants displayed a morphological defect in the ventral midbrain, specifically an expanded ventral midline evident by embryonic day E9.5-10.5, which formed an abnormal protrusion into the cephalic flexure. The affected area was comprised of cells that normally express EphB2 and ephrin-B3. A truncated EphB2 receptor caused a more severe phenotype than a null mutation, implying a dominant negative effect through interference with EphB forward (intracellular) signaling. In mutant embryos, the overall number, size, and identity of the ventral midbrain cells were unaltered. Therefore, the defect in ventral midline morphology in the EphB2;EphB3 compound mutant embryos appears to be caused by cellular changes that thin the tissue, forcing a protrusion of the ventral midline into the cephalic space. Our data suggests a role for EphB signaling in morphological organization of specific regions of the developing neural tube.  相似文献   

7.
Optic nerve formation requires precise retinal ganglion cell (RGC) axon pathfinding within the retina to the optic disc, the molecular basis of which is not well understood. At CNS targets, interactions between Eph receptor tyrosine kinases on RGC axons and ephrin ligands on target cells have been implicated in formation of topographic maps. However, studies in chick and mouse have shown that both Eph receptors and ephrins are also expressed within the retina itself, raising the possibility that this receptor-ligand family mediates aspects of retinal development. Here, we more fully document the presence of specific EphB receptors and B-ephrins in embryonic mouse retina and provide evidence that EphB receptors are involved in RGC axon pathfinding to the optic disc. We find that as RGC axons begin this pathfinding process, EphB receptors are uniformly expressed along the dorsal-ventral retinal axis. This is in contrast to the previously reported high ventral-low dorsal gradient of EphB receptors later in development when RGC axons map to CNS targets. We show that mice lacking both EphB2 and EphB3 receptor tyrosine kinases, but not each alone, exhibit increased frequency of RGC axon guidance errors to the optic disc. In these animals, major aspects of retinal development and cellular organization appear normal, as do the expression of other RGC guidance cues netrin, DCC, and L1. Unexpectedly, errors occur in dorsal but not ventral retina despite early uniform or later high ventral expression of EphB2 and EphB3. Furthermore, embryos lacking EphB3 and the kinase domain of EphB2 do not show increased errors, consistent with a guidance role for the EphB2 extracellular domain. Thus, while Eph kinase function is involved in RGC axon mapping in the brain, RGC axon pathfinding within the retina is partially mediated by EphB receptors acting in a kinase-independent manner.  相似文献   

8.
9.
The tyrosine kinase receptor EphB4 interacts with its ephrinB2 ligand to act as a bidirectional signaling system that mediates adhesion, migration, and guidance by controlling attractive and repulsive activities. Recent findings have shown that hematopoietic cells expressing EphB4 exert adhesive functions towards endothelial cells expressing ephrinB2. We therefore hypothesized that EphB4/ephrinB2 interactions may be involved in the preferential adhesion of EphB4-expressing tumor cells to ephrinB2-expressing endothelial cells. Screening of a panel of human tumor cell lines identified EphB4 expression in nearly all analyzed tumor cell lines. Human A375 melanoma cells engineered to express either full-length EphB4 or truncated EphB4 variants which lack the cytoplasmic catalytic domain (ΔC-EphB4) adhered preferentially to ephrinB2-expressing endothelial cells. Force spectroscopy by atomic force microscopy confirmed, on the single cell level, the rapid and direct adhesive interaction between EphB4 and ephrinB2. Tumor cell trafficking experiments in vivo using sensitive luciferase detection techniques revealed significantly more EphB4-expressing A375 cells but not ΔC-EphB4-expressing or mock-transduced control cells in the lungs, the liver, and the kidneys. Correspondingly, ephrinB2 expression was detected in the microvessels of these organs. The specificity of the EphB4-mediated tumor homing phenotype was validated by blocking the EphB4/ephrinB2 interaction with soluble EphB4-Fc. Taken together, these experiments identify adhesive EphB4/ephrinB2 interactions between tumor cells and endothelial cells as a mechanism for the site-specific metastatic dissemination of tumor cells. AACR.  相似文献   

10.
Cardiovascular ephrinB2 function is essential for embryonic angiogenesis   总被引:7,自引:0,他引:7  
EphrinB2, a transmembrane ligand of EphB receptor tyrosine kinases, is specifically expressed in arteries. In ephrinB2 mutant embryos, there is a complete arrest of angiogenesis. However, ephrinB2 expression is not restricted to vascular endothelial cells, and it has been proposed that its essential function may be exerted in adjacent mesenchymal cells. We have generated mice in which ephrinB2 is specifically deleted in the endothelium and endocardium of the developing vasculature and heart. We find that such a vascular-specific deletion of ephrinB2 results in angiogenic remodeling defects identical to those seen in the conventional ephrinB2 mutants. These data indicate that ephrinB2 is required specifically in endothelial and endocardial cells for angiogenesis, and that ephrinB2 expression in perivascular mesenchyme is not sufficient to compensate for the loss of ephrinB2 in these vascular cells.  相似文献   

11.
12.
Increasing evidence implicates the interaction of the EphB4 receptor with its preferred ligand, ephrinB2, in pathological forms of angiogenesis and in tumorigenesis. To identify the molecular determinants of the unique specificity of EphB4 for ephrinB2, we determined the crystal structure of the ligand binding domain of EphB4 in complex with the extracellular domain of ephrinB2. This structural analysis suggested that one amino acid, Leu-95, plays a particularly important role in defining the structural features that confer the ligand selectivity of EphB4. Indeed, all other Eph receptors, which promiscuously bind many ephrins, have a conserved arginine at the position corresponding to Leu-95 of EphB4. We have also found that amino acid changes in the EphB4 ligand binding cavity, designed based on comparison with the crystal structure of the more promiscuous EphB2 receptor, yield EphB4 variants with altered binding affinity for ephrinB2 and an antagonistic peptide. Isothermal titration calorimetry experiments with an EphB4 Leu-95 to arginine mutant confirmed the importance of this amino acid in conferring high affinity binding to both ephrinB2 and the antagonistic peptide ligand. Isothermal titration calorimetry measurements also revealed an interesting thermodynamic discrepancy between ephrinB2 binding, which is an entropically driven process, and peptide binding, which is an enthalpically driven process. These results provide critical information on the EphB4*ephrinB2 protein interfaces and their mode of interaction, which will facilitate development of small molecule compounds inhibiting the EphB4*ephrinB2 interaction as novel cancer therapeutics.  相似文献   

13.
Eph receptor (Eph)‐ephrin signaling plays an important role in organ development and tissue regeneration. Bidirectional signaling of EphB4–ephrinB2 regulates cardiovascular development. To assess the role of EphB4–ephrinB2 signaling in cardiac lineage development, we utilized two GFP reporter systems in embryonic stem (ES) cells, in which the GFP transgenes were expressed in Nkx2.5+ cardiac progenitor cells and in α‐MHC+ cardiomyocytes, respectively. We found that both EphB4 and ephrinB2 were expressed in Nkx2.5‐GFP+ cardiac progenitor cells, but not in α‐MHC‐GFP+ cardiomyocytes during cardiac lineage differentiation of ES cells. An antagonist of EphB4, TNYL‐RAW peptides, that block the binding of EphB4 and ephrinB2, impaired cardiac lineage development in ES cells. Inhibition of EphB4–ephrinB2 signaling at different time points during ES cell differentiation demonstrated that the interaction of EphB4 and ephrinB2 was required for the early stage of cardiac lineage development. Forced expression of human full‐length EphB4 or intracellular domain‐truncated EphB4 in EphB4‐null ES cells was established to investigate the role of EphB4‐forward signaling in ES cells. Interestingly, while full‐length EphB4 was able to restore the cardiac lineage development in EphB4‐null ES cells, the truncated EphB4 that lacks the intracellular domain of tyrosine kinase and PDZ motif failed to rescue the defect of cardiomyocyte development, suggesting that EphB4 intracellular domain is essential for the development of cardiomyocytes. Our study provides evidence that receptor‐kinase‐dependent EphB4‐forward signaling plays a crucial role in the development of cardiac progenitor cells. J. Cell. Biochem. 116: 467–475, 2015. © 2014 The Authors. Journal of Cellular Biochemistry published by Wiley Periodicals, Inc.  相似文献   

14.
Eph受体是酪氨酸蛋白激酶受体家族中最大的亚家族,ephrin(Eph受体相互作用蛋白)是其配体,它们是膜结合蛋白,相互依赖进行信号转导.内居蛋白(syntenin)与Pick1属于PDZ结构域(PSD-95/Dlg-/Zo-1 domain)蛋白,报道称能与ephrinB配体结合,但是否受Eph受体调控尚未见报道.以RAW264.7细胞株为研究对象,通过蛋白质印迹及/或免疫荧光分析显示RAW264.7细胞经RANKL诱导的破骨细胞表达ephrinB2、内居蛋白(syntenin)和Pick1三个蛋白质.将提前成簇的可溶性EphB4蛋白加入培养液,与ephrinB2配体结合,用来研究EphB4/ephrinB2逆向信号对syntenin和Pick1表达水平变化的影响.免疫印迹及Real-time RT-PCR分析结果显示,在EphB4-Fc实验组中Pick1的蛋白质及mRNA水平都有明显增加,然而在EphB4-Fc实验组与Fc对照组别间syntenin的蛋白质及mRNA水平未见明显变化.免疫共沉淀结果显示,syntenin和Pick1不能与ephrinB2共沉淀.以上结果初步探索了体外破骨细胞分化过程中,EphB4/ephrinB2逆向信号对PDZ结构域蛋白(ephrinB2配体潜在的下游信号分子)表达变化的调控.  相似文献   

15.
Little is known about how the generation of specific neuronal types at stereotypic positions within the hindbrain is linked to Hox gene-mediated patterning. Here, we show that during neurogenesis, Hox paralog group 2 genes control both anteroposterior (A-P) and dorsoventral (D-V) patterning. Hoxa2 and Hoxb2 differentially regulate, in a rhombomere-specific manner, the expression of several genes in broad D-V-restricted domains or narrower longitudinal columns of neuronal progenitors, immature neurons, and differentiating neuronal subtypes. Moreover, Hoxa2 and Hoxb2 can functionally synergize in controlling the development of ventral neuronal subtypes in rhombomere 3 (r3). Thus, in addition to their roles in A-P patterning, Hoxa2 and Hoxb2 have distinct and restricted functions along the D-V axis during neurogenesis, providing insights into how neuronal fates are assigned at stereotypic positions within the hindbrain.  相似文献   

16.
Eph receptors comprise the largest family of receptor tyrosine kinases consisting of eight EphA receptors (with five corresponding glycosyl-phosphatidyl-inositol-anchored ephrinA ligands) and six EphB receptors (with three corresponding transmembrane ephrinB ligands). Originally identified as neuronal pathfinding molecules, genetic loss of function experiments have identified EphB receptors and ephrinB ligands as crucial regulators of vascular assembly, orchestrating arteriovenous differentiation and boundary formation. Despite these clearly defined rate-limiting roles of the EphB/ephrinB system for developmental angiogenesis, the mechanisms of the functions of EphB receptors and ephrinB ligands in the cells of the vascular system are poorly understood. Moreover, little evidence can be found in the recent literature regarding complementary EphB and ephrinB expression patterns that occur in the vascular system and that may bring cells into juxtapositional contact to allow bi-directional signaling between neighboring cells. This review summarizes the current knowledge of the role of EphB receptors and ephrinB ligands during embryonic vascular assembly and discusses recent findings on EphB/ephrinB-mediated cellular functions pointing to the crucial role of the Eph/ephrin system in controlling vascular homeostasis in the adult.Eph/ephrin work in the laboratory of the authors is supported by a grant from the Deutsche Forschungsgemeinschaft (Au83/3–2 within the SPP1069 "Angiogenesis")  相似文献   

17.
Vax2 is a homeobox gene whose expression is confined to the ventral region of the prospective neural retina. Overexpression of this gene at early stages of development in Xenopus and in chicken embryos determines a ventralisation of the retina, thus suggesting its role in the molecular pathway that underlies eye development. We describe the generation and characterisation of a mouse with a targeted null mutation of the Vax2 gene. Vax2 homozygous mutant mice display incomplete closure of the optic fissure that leads to eye coloboma. This phenotype is not fully penetrant, suggesting that additional factors contribute to its generation. Vax2 inactivation determines dorsalisation of the expression of mid-late (Ephb2 and Efnb2) but not early (Pax2 and Tbx5) markers of dorsal-ventral polarity in the developing retina. Finally, Vax2 mutant mice exhibit abnormal projections of ventral retinal ganglion cells. In particular, we observed the almost complete absence of ipsilaterally projecting retinal ganglion cells axons in the optic chiasm and alteration of the retinocollicular projections. All these findings indicate that Vax2 is required for the proper closure of the optic fissure, for the establishment of a physiological asymmetry on the dorsal-ventral axis of the eye and for the formation of appropriate retinocollicular connections.  相似文献   

18.
We report that targeted inactivation of the Eph receptor ligand ephrinB1 in mouse caused perinatal lethality, edema, defective body wall closure, and skeletal abnormalities. In the thorax, sternocostal connections were arranged asymmetrically and sternebrae were fused, defects that were phenocopied in EphB2/EphB3 receptor mutants. In the wrist, loss of ephrinB1 led to abnormal cartilage segmentation and the formation of additional skeletal elements. We conclude that ephrinB1 and B class Eph receptors provide positional cues required for the normal morphogenesis of skeletal elements. Another malformation, preaxial polydactyly, was exclusively seen in heterozygous females in which expression of the X-linked ephrinB1 gene was mosaic, so that ectopic EphB-ephrinB1 interactions led to restricted cell movements and the bifurcation of digital rays. Our findings suggest that differential cell adhesion and sorting might be relevant for an unusual class of X-linked human genetic disorders, in which heterozygous females show more severe phenotypes than hemizygous males.  相似文献   

19.
Pittman A  Chien CB 《Neuron》2002,35(3):409-411
Retinal axons project to their central targets along two orthogonal topographic axes, anterior-posterior (A-P) and dorsal-ventral (D-V). While ephrin-A/EphA signaling determines A-P topography, little has been known about the molecular mechanisms guiding axons along the D-V axis. Two papers by Mann et al. and Hindges et al. in this issue of Neuron provide evidence for both forward and reverse ephrin-B/EphB signaling in regulating D-V topography.  相似文献   

20.
Although the etiology of early events in rheumatoid arthritis (RA) remains undefined, an anomaly in T cell homeostasis and hyperproliferation of synovial-lining cells are involved in the disease process. Since it has been reported that the ephrin/Eph receptor system plays important signaling roles in inflammation processes, we attempted to examine ephrinB molecules in T cells and synovial cells derived from RA in this study. The expression level of ephrinB1 was significantly high in synovial fibroblasts and CD3-positive exudate lymphocytes in synovial tissues derived from patients with RA compared with those in osteoarthritis (OA). Protein and mRNA levels of ephrinB1 were also higher in peripheral blood lymphocytes (PBLs) prepared from patients with RA than those from normal controls. Similar results were obtained from an animal model of human RA, collagen antibody-induced arthritis mice. Moreover, a recombinant ephrinB1/Fc fusion protein stimulated normal PBLs to exhibit enhanced migration and production of TNF-alpha. EphrinB1/Fc also activated synovial cells established from patients with RA to produce IL-6. Tyrosine phosphorylation of EphB1 was induced in these cells by ephrinB1/Fc. The CpG islands in the 5' upstream regulatory region of the ephrinB1 gene were hypomethylated in RA patients compared with those of normal donors. These results suggest that ephrinB1 and EphB1 receptors play an important role in the inflammatory states of RA, especially by affecting the population and function of T cells. Inhibition of the ephrinB/EphB system might be a novel target for the treatment of RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号