首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant cell wall is of supermolecular architecture, and is composed of various types of heterogeneous polymers. A few thousand enzymes and structural proteins are directly involved in the construction processes, and in the functional aspects of the dynamic architecture in Arabidopsis thaliana. Most of these proteins are encoded by multigene families, and most members within each family share significant similarities in structural features, but often exhibit differing expression profiles and physiological functions. Thus, for the molecular dissection of cell wall dynamics, it is necessary to distinguish individual members within a family of proteins. As a first step towards characterizing the processes involved in cell wall dynamics, we have manufactured a gene-specific 70-mer oligo microarray that consists of 765 genes classified into 30 putative families of proteins that are implicated in the cell wall dynamics of Arabidopsis. By using this array system, we identified several sets of genes that exhibit organ preferential expression profiles. We also identified gene sets that are expressed differentially at certain specific growth stages of the Arabidopsis inflorescence stem. Our results indicate that there is a division of roles among family members within each of the putative cell wall-related gene families.  相似文献   

2.
Recent genomic projects reveal that about half of the gene repertoire in plant genomes is made up by multigene families. In this paper, a set of structural and phylogenetic analyses have been applied to compare the differently sized nicotianamine synthase (NAS) gene families in barley and rice. Nicotianamine acts as a chelator of iron and other heavy metals and plays a key role in uptake, phloem transport and cytoplasmic distribution of iron, challenging efforts for the breeding of iron-efficient crop plants. Nine barley NAS genes have been mapped, and co-linearity of flanking genes in barley and rice was determined. The combined analyses reveal that the NAS multigene family members in barley originated through at least one duplication event that occurred before the divergence of rice and barley. Additional duplications appear to have occurred within each of the species. Although we detected no evidence for positive selection of recently duplicated genes within species, codon-based tests revealed evidence for positive selection having contributed to the divergence of some amino acids. The integrated comparative and phylogenetic analysis improved our current view of NAS gene family evolution, might facilitate the functional characterization of individual members and is applicable to other multigene families. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

3.
Kishida T 《PloS one》2008,3(6):e2385
The olfactory receptor (OR) multigene family is responsible for the sense of smell in vertebrate species. OR genes are scattered widely in our chromosomes and constitute one of the largest gene families in eutherian genomes. Some previous studies revealed that eutherian OR genes diverged mainly during early mammalian evolution. However, the exact period when, and the ecological reason why eutherian ORs strongly diverged has remained unclear. In this study, I performed a strict data mining effort for marsupial opossum OR sequences and bootstrap analyses to estimate the periods of chromosomal migrations and gene duplications of OR genes during tetrapod evolution. The results indicate that chromosomal migrations occurred mainly during early vertebrate evolution before the monotreme-placental split, and that gene duplications occurred mainly during early mammalian evolution between the bird-mammal split and marsupial-placental split, coinciding with the reduction of opsin genes in primitive mammals. It could be thought that the previous chromosomal dispersal allowed the OR genes to subsequently expand easily, and the nocturnal adaptation of early mammals might have triggered the OR gene expansion.  相似文献   

4.
The likelihood of duplicate gene retention following polyploidy varies by functional properties (e.g. gene ontologies or protein family domains), but little is known about the effects of whole-genome duplication on gene networks related by a common physiological process. Here, we examined the effects of both polyploid and nonpolyploid duplications on genes encoding the major functional groups of photosynthesis (photosystem I, photosystem II, the light-harvesting complex, and the Calvin cycle) in the cultivated soybean (Glycine max), which has experienced two rounds of whole-genome duplication. Photosystem gene families exhibit retention patterns consistent with dosage sensitivity (preferential retention of polyploid duplicates and elimination of nonpolyploid duplicates), whereas Calvin cycle and light-harvesting complex gene families do not. We observed similar patterns in barrel medic (Medicago truncatula), which shared the older genome duplication with soybean but has evolved independently for approximately 50 million years, and in Arabidopsis (Arabidopsis thaliana), which experienced two nested polyploidy events independent from the legume duplications. In both soybean and Arabidopsis, Calvin cycle gene duplicates exhibit a greater capacity for functional differentiation than do duplicates within the photosystems, which likely explains the greater retention of ancient, nonpolyploid duplicates and larger average gene family size for the Calvin cycle relative to the photosystems.  相似文献   

5.
6.
The cellulose/xyloglucan framework underpins the cell wall of most flowering plants, and the processes of construction and restructuring of this framework are considered to be mediated by several different classes of enzymes such as cellulose synthetases, β-1,4 glucanases, xyloglucan endotransglucosylases/hydrolases (XTH) and expansins. The Arabidopsis sequencing project has revealed that these enzymes are encoded, without exception, by large multi-gene families. Comprehensive expression-analyses of the XTH gene family, as assisted by real-time RT-PCR procedure, have revealed that each member of the gene family exhibits an expression profile distinct from the other members. The results obtained thus far support the idea that each member of the XTH gene family is regulated specifically by different sets of plant hormones and is committed to a certain specific process in a specific tissue, at specific stages of development. Based on these considerations, we advance a hypothesis that the cell wall in a certain cell-type is constructed, maintained and restructured by a series of collaborative actions of a set of enzymes that are characteristic of the cell-wall type. This hypothesis assumes that a master gene, specific for each cell type, conducts a set of enzymes required for certain types of cell-wall structure and, thereby, defines the cell-wall type and, hence, cell type, during the process of plant development. Electronic Publication  相似文献   

7.
Partial and complete genome duplications occurred during evolution and resulted in the creation of new genes and gene families. We identified a novel and intricate human gene family located primarily in regions of segmental duplications on human chromosome 1. We named it NBPF, for neuroblastoma breakpoint family, because one of its members is disrupted by a chromosomal translocation in a neuroblastoma patient. The NBPF genes have a repetitive structure with high intragenic and intergenic sequence similarity in both coding and noncoding regions. These similarities might expose these genomic regions to illegitimate recombination, resulting in structural variation in the NBPF genes. The encoded proteins contain a highly conserved domain of unknown function, which we have named the NBPF repeat. In silico analysis combined with the isolation of multiple full-length cDNA clones showed that several members of this gene family are abundantly expressed in a large variety of tissues and cell lines. Strikingly, no discernable orthologues could be identified in the completed genomes of fruit fly, nematode, mouse, or rat, but sequences with low homology could be isolated from the draft canine and bovine genomes. Interestingly, this gene family shows primate-specific duplications that result in species-specific arrays of NBPF homologous sequences. Overall, this novel NBPF family reflects the continuous evolution of primate genomes that resulted in large physiological differences, and its potential role in this process is discussed.  相似文献   

8.
Barakat A  Müller KF  Sáenz-de-Miera LE 《Gene》2007,403(1-2):143-150
Cytoplasmic ribosomal protein (r-protein) genes in Arabidopsis thaliana are encoded by 80 multigene families that contain between two and seven members. Gene family members are typically similar at the protein sequence level, with the most divergent members of any gene family retaining 94% identity, on average. However, three Arabidopsis r-protein families - S15a, L7 and P2 - contain highly divergent family members. Here, we investigated the organization, structure, expression and molecular evolution of the L7 r-protein family. Phylogenetic analyses showed that L7 r-protein gene family members constitute two distinct phylogenetic groups. The first group including RPL7B, RPL7C and RPL7D has homologs in plants, animals and fungi. The second group represented by RPL7A is found in plants but has no orthologs from other fully-sequenced eukaryotic genomes. These two groups may have derived from a duplication event prior to the divergence of animals and plants. All four L7 r-protein genes are expressed and all exhibit a differential expression in inflorescence and flowers. RPL7A and RPL7B are less expressed than the other genes in all tissues analyzed. Molecular characterization of nucleic and protein sequences of L7 r-protein genes and analysis of their codon usage did not indicate any functional divergence. The probable evolution of an extra-ribosomal function of group 2 genes is discussed.  相似文献   

9.
Genome-level evolution of resistance genes in Arabidopsis thaliana   总被引:2,自引:0,他引:2  
Baumgarten A  Cannon S  Spangler R  May G 《Genetics》2003,165(1):309-319
Pathogen resistance genes represent some of the most abundant and diverse gene families found within plant genomes. However, evolutionary mechanisms generating resistance gene diversity at the genome level are not well understood. We used the complete Arabidopsis thaliana genome sequence to show that most duplication of individual NBS-LRR sequences occurs at close physical proximity to the parent sequence and generates clusters of closely related NBS-LRR sequences. Deploying the statistical strength of phylogeographic approaches and using chromosomal location as a proxy for spatial location, we show that apparent duplication of NBS-LRR genes to ectopic chromosomal locations is largely the consequence of segmental chromosome duplication and rearrangement, rather than the independent duplication of individual sequences. Although accounting for a smaller fraction of NBS-LRR gene duplications, segmental chromosome duplication and rearrangement events have a large impact on the evolution of this multigene family. Intergenic exchange is dramatically lower between NBS-LRR sequences located in different chromosome regions as compared to exchange between sequences within the same chromosome region. Consequently, once translocated to new chromosome locations, NBS-LRR gene copies have a greater likelihood of escaping intergenic exchange and adopting new functions than do gene copies located within the same chromosomal region. We propose an evolutionary model that relates processes of genome evolution to mechanisms of evolution for the large, diverse, NBS-LRR gene family.  相似文献   

10.
Stanley Sawyer's gene conversion detection method, implemented in his GENECONV computer program, was used to detect and characterize the gene conversions between the multigene family members of the yeast genome. This method gave different gene conversion frequencies and size distribution for gene families with two members and multigene families with more than two members. The 69 gene conversions detected in multigene families with more than two members occur at a frequency of 7.8% gene conversion/pair of genes compared and have an average size of 173+/-220 nucleotides. Larger gene conversions are found only between more similar genes, the genes involved in gene conversions are distributed almost randomly among the 16 yeast chromosomes, and the frequency of gene conversions increases as the distance between repeated genes decreases. In contrast to previous studies, no relationship was observed between the level of expression of a gene and its involvement in gene conversions. These analyses also suggest that gene conversions might occur by different mechanisms in closely linked genes and unlinked genes. The excess of converted regions at the 3? end of unlinked genes suggests that recombination with incomplete cDNA molecules is the main mechanism responsible for gene conversions between such genes.  相似文献   

11.
Both mean genomes size and the variance in genome size among species are smaller on average in birds (class Aves) than in the other tetrapod classes. In order to test whether loss of protein-coding genes has contributed to genome size reduction in birds, we compared the chicken genome and five mammalian genomes. Numbers of members (paralogs) were significantly lower in the chicken gene families than in the corresponding mammalian families. Phylogenetic analyses of chicken, mammal, and fish paralogs supported the hypothesis that chicken-specific loss of paralogs occurred much more frequently than mammal-specific gene duplications. Moreover, the phylogenetic analyses supported the hypothesis that a substantial majority of the paralogs lost in chicken originated from duplications prior to the most recent common ancestor of tetrapods and bony fishes. In addition to loss of paralogs, numerous gene families present in the mammalian genomes were missing in the chicken genome; over 1,000 of these families were found in bony fishes, implying presence of the family in the tetrapod ancestor. In the set of families with more members on average in the mammals than in the chicken, immune system function was associated with a greater degree of gene family size reduction in the chicken, consistent with other evidence that immune system gene families have become particularly compact in birds.  相似文献   

12.
Gene duplication events exert key functions on gene innovations during the evolution of the eukaryotic genomes. A large portion of the total gene content in plants arose from tandem duplications events, which often result in paralog genes with high sequence identity. Ubiquitin ligases or E3 enzymes are components of the ubiquitin proteasome system that function during the transfer of the ubiquitin molecule to the substrate. In plants, several E3s have expanded in their genomes as multigene families. To gain insight into the consequences of gene duplications on the expansion and diversification of E3s, we examined the evolutionary basis of a cluster of six genes, duplC-ATLs, which arose from segmental and tandem duplication events in Brassicaceae. The assessment of the expression suggested two patterns that are supported by lineage. While retention of expression domains was observed, an apparent absence or reduction of expression was also inferred. We found that two duplC-ATL genes underwent pseudogenization and that, in one case, gene expression is probably regained. Our findings provide insights into the evolution of gene families in plants, defining key events on the expansion of the Arabidopsis Tóxicos en Levadura family of E3 ligases.  相似文献   

13.
The aims of the study were to outline the sequence of eventsthat gave rise to the vertebrate insulin-relaxin gene familyand the chromosomal regions in which they reside. We analyzedthe gene content surrounding the human insulin/relaxin geneswith respect to what family they belonged to and if the duplicationhistory of investigated families parallels the evolution ofthe insulin-relaxin family members. Markov Clustering and phylogeneticanalysis were used to determine family identity. More than 15%of the genes belonged to families that have paralogs in theregions, defining two sets of quadruplicate paralogy regions.Thereby, the localization of insulin/relaxin genes in humansis in accordance with those regions on human chromosomes 1,11, 12, 19q (insulin/insulin-like growth factors) and 1, 6p/15q,9/5, 19p (insulin-like factors/relaxins) were formed duringtwo genome duplications. We compared the human genome with thatof Ciona intestinalis, a species that split from the vertebratelineage before the two suggested genome duplications. Two insulin-likeorthologs were discovered in addition to the already describedCi-insulin gene. Conserved synteny between the Ciona regionshosting the insulin-like genes and the two sets of human paralogonsimplies their common origin. Linkage of the two human paralogons,as seen in human chromosome 1, as well as the two regions hostingthe Ciona insulin-like genes suggests that a segmental duplicationgave rise to the region prior to the genome doublings. Thus,preserved gene content provides support that genome duplication(s)in addition to segmental and single-gene duplications shapedthe genomes of extant vertebrates.  相似文献   

14.
15.
Despite the completion of the sequencing of the entire genome of Arabidopsis thaliana (L.) Heynh., the exact determination of each single gene and its function remains an open question. This is especially true for multigene families. An approach that combines analysis of genomic structure, expression data and functional genomics to ascertain the role of the members of the multidrug-resistance-related protein ( MRP) gene family, a subfamily of the ATP-binding cassette (ABC) transporters from Arabidopsis is presented. We used cDNA sequencing and alignment-based re-annotation of genomic sequences to define the exact genic structure of all known AtMRP genes. Analysis of promoter regions suggested different induction conditions even for closely related genes. Expression analysis for the entire gene family confirmed these assumptions. Phylogenetic analysis and determination of segmental duplication in the regions of AtMRP genes revealed that the evolution of the extraordinarily high number of ABC transporter genes in plants cannot solely be explained by polyploidisation during the evolution of the Arabidopsis genome. Interestingly MRP genes from Oryza sativa L. (rice; OsMRP) show very similar genomic structures to those from Arabidopsis. Screening of large populations of T-DNA-mutagenised lines of A. thaliana resulted in the isolation of AtMRP insertion mutants. This work opens the way for the defined analysis of a multigene family of important membrane transporters whose broad variety of functions expands their traditional role as cellular detoxifiers.  相似文献   

16.
Yegorov S  Good S 《PloS one》2012,7(3):e32923
Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL) and relaxin family peptide receptors (RXFP). Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's) and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R) followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of incorporating paleogenomics data into understanding the evolution of gene families.  相似文献   

17.
Receptor-like kinases (RLKs) are a family of transmembrane proteins with versatile N-terminal extracellular domains and C-terminal intracellular kinases. They control a wide range of physiological responses in plants and belong to one of the largest gene families in the Arabidopsis genome with more than 600 members. Interestingly, this gene family constitutes 60% of all kinases in Arabidopsis and accounts for nearly all transmembrane kinases in Arabidopsis. Analysis of four fungal, six metazoan, and two Plasmodium sp. genomes indicates that the family was represented in all but fungal genomes, indicating an ancient origin for the family with a more recent expansion only in the plant lineages. The RLK/Pelle family can be divided into several subfamilies based on three independent criteria: the phylogeny based on kinase domain sequences, the extracellular domain identities, and intron locations and phases. A large number of receptor-like proteins (RLPs) resembling the extracellular domains of RLKs are also found in the Arabidopsis genome. However, not all RLK subfamilies have corresponding RLPs. Several RLK/Pelle subfamilies have undergone differential expansions. More than 33% of the RLK/Pelle members are found in tandem clusters, substantially higher than the genome average. In addition, 470 of the RLK/Pelle family members are located within the segmentally duplicated regions in the Arabidopsis genome and 268 of them have a close relative in the corresponding regions. Therefore, tandem duplications and segmental/whole-genome duplications represent two of the major mechanisms for the expansion of the RLK/Pelle family in Arabidopsis.  相似文献   

18.
19.
We have previously shown that computer simulations of processes that generate selectively advantageous changes together with random duplications and deletions give rise to genomes with many different genes embedded in a large amount of dispensable DNA sequence. We now explore the consequences of neutral changes on the evolution of genomes. We follow the consequences of sequence divergences that are neutral when they occur in dispensable sequences or extra copies of genes present in multigene families. We find that when divergence occurs at about the same frequency as duplication/deletion events, genomes carry repetitive sequences in proportion to their size. Inspection of the genomes as they evolved showed that multigene families were generated by relatively recent duplications of single genes and so would be expected to be highly homogeneous.  相似文献   

20.
Jiang D  Yin C  Yu A  Zhou X  Liang W  Yuan Z  Xu Y  Yu Q  Wen T  Zhang D 《Cell research》2006,16(5):507-518
To understand the expansion ofmulticopy microRNA (miRNA) families in plants, we localized the reported miRNA genes from Arabidopsis and rice to their chromosomes, respectively, and observed that 37% of 117 miRNA genes from Arabidopsis and 35% of 173 miRNA genes from rice were segmental duplications in the genome. In order to characterize whether the expression diversification has occurred among plant multicopy miRNA family members, we designed PCR primers targeting 48 predicted miRNA precursors from 10 families in Arabidopsis and rice. Results from RT-PCR data suggest that the transcribed precursors of members within the same miRNA family were present at different expression levels. In addition, although miRl60 and miR162 sequences were conserved in Arabidopsis and rice, we found that the expression patterns of these genes differed between the two species. These data suggested that expression diversification has occurred in multicopy miRNA families, increasing our understanding of the expression regulation of miRNAs in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号