首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have cloned the entire coding region of a mouse germ cell-specific cDNA encoding a unique protein kinase whose catalytic domain contains only three consensus subdomains (I-III) instead of the normal 12. The protein possesses intrinsic Ser/Thr kinase activity and is exclusively expressed in haploid germ cells, localizing only in their nuclei, and was thus named Haspin (for haploid germ cell-specific nuclear protein kinase). Western blot analysis showed that specific antibodies recognized a protein of Mr 83,000 in the testis. Ectopically expressed Haspin was detected exclusively in the nuclei of cultured somatic cells. Even in the absence of kinase activity, however, Haspin caused cell cycle arrest at G1, resulting in growth arrest of the transfected somatic cells. In a DNA binding experiment, approximately one-half of wild-type Haspin was able to bind to a DNA-cellulose column, whereas the other half was not. In contrast, all of the deletion mutant Haspin that lacked autophosphorylation bound to the DNA column. Thus, the DNA-binding activity of Haspin may, in some way, be associated with its kinase activity. These observations suggest that Haspin has some critical roles in cell cycle cessation and differentiation of haploid germ cells.  相似文献   

2.
The specific activity of uridine 5'-triphosphate:alpha-d-glucose 1-phosphate uridyltransferase (EC 2.7.7.9) (also called uridine 5'-diphosphate [UDP]-glucose pyrophosphorylase) has been found to increase up to eightfold during spherule formation by the slime mold Physarum polycephalum. The enzyme accumulates during the first 8 to 9 h after initiation of spherule formation, declines to basal levels found in vegetative microplasmodia by 15 h, and is undetectable in completed spherules. Specific activities for UDP-glucose pyrophosphorylase in vegetative microplasmodia range from 15 to 30 nmol of UDP-glucose formed per min per mg of protein, whereas accumulated levels during spherule formation can attain a specific activity as high as 125 nmol of UDP-glucose formed per min per mg of protein. The scheduling and extent of accumulation are critically dependent on an early log-phase age of microplasmodia originally induced to form spherules. Spherule induction by 0.2 M or 0.5 M mannitol delays this schedule in a variable and unpredictable manner. Spherule-forming microplasmodia which have accumulated high levels of UDP-glucose pyrophosphorylase spontaneously excrete the enzyme when transferred to salts medium containing 0.2 M or 0.5 M mannitol. The excreted enzyme is subsequently destroyed or inactivated. Studies with preferential inhibitors of macromolecular synthesis indicate that accumulation of UDP-glucose pyrophosphorylase requires concomitant protein synthesis and prior ribonucleic acid synthesis.  相似文献   

3.
The EGF receptor has been purified from human epidermoid carcinoma A431 cells by affinity chromatography on wheat germ agglutinin-agarose and tyrosine-Sepharose. The purified EGF receptor was shown to be homogeneous by SDS-polyacrylamide gel electrophoresis and possessed EGF-sensitive tyrosine kinase activity. Kinetic analysis of the autophosphorylation indicated that approximately 1.4 mol of phosphate was incorporated per mol of the EGF receptor. When a synthetic tyrosine-containing peptide was used as a phosphorylatable substrate, the specific activity of the EGF-stimulated kinase was 66 nmol/min/mg.  相似文献   

4.
The effect of phospholipase A2 treatment of rat hepatocytes on CTP: phosphocholine cytidylyltransferase and phosphatidylcholine synthesis was investigated. Cytidylyltransferase is recovered from the cytosol and in a membrane-bound form with the microsomes. Digitonin treatment of cells causes rapid release into the medium of the cytosolic, but not the microsomal form of the cytidylyltransferase. Incubation of hepatocytes for 10 min with phospholipase A2 (0.9 units/dish) in the medium, resulted in a 33% decrease in the cytidylyltransferase activity released by digitonin treatment (2.5 +/- 0.15 nmol/min per mg compared to 3.9 +/- 0.10 nmol/min per mg in the control). In agreement with the digitonin experiments, incubation with 0.9 units/dish of phospholipase A2 resulted in a decrease in the cytidylyltransferase activity in the cytosol (from 4.3 +/- 0.10 nmol/min per mg to 2.6 +/- 0.14 nmol/min per mg) and a corresponding increase in the microsomal fraction (from 0.9 +/- 0.16 nmol/min per mg to 1.8 +/- 0.20 nmol/min per mg). The effect of phospholipase A2 on cytidylyltransferase translocation was concentration- and time-dependent. Incubation of hepatocytes in the presence of phospholipase A2 (0.9 units/dish) for 10 min prior to pulse-chase experiments resulted in an increase in radiolabel incorporation into phosphatidylcholine (from 2.4 +/- 0.02.10(-5) dpm/dish to 3.1 +/- 0.1.10(-5) dpm/dish) and a corresponding decrease in radiolabel associated with the choline (from 2.5 +/- 0.05.10(-5) to 1.4 +/- 0.03.10(-5) dpm) and phosphocholine fractions (from 8.5 +/- 0.07.10(-5) to 6.9 +/- 0.05.10(-5) dpm). We conclude that phospholipase A2 can cause a stimulation of CTP: phosphocholine cytidylyltransferase activity and phosphatidylcholine synthesis in cultured rat hepatocytes.  相似文献   

5.
Inorganic phosphate, amino acids and sugars are of obvious importance in lung metabolism. We investigated sodium-coupled transports with these organic and inorganic substrates in type II alveolar epithelial cells from adult rat after one day in culture. Alveolar type II cells actively transported inorganic phosphate and alanine, a neutral amino acid, by sodium-dependent processes. Cellular uptakes of phosphate and alanine were decreased by about 80% by external sodium substitution, inhibited by ouabain (30 and 41%, respectively) and displayed saturable kinetics. Two sodium-phosphate cotransport systems were characterized: a high-affinity one (apparent Km = 18 microM) with a Vmax of 13.5 nmol/mg protein per 10 min and a low-affinity one (apparent Km = 126 microM) with a Vmax of 22.5 nmol/mg protein per 10 min. Alanine transport had an apparent Km of 87.9 microM and a Vmax of 43.5 nmol/mg protein per 10 min. By contrast, cultured alveolar type II cells did not express sodium-dependent hexose transport. Increasing time in culture decreased Vmax values of the two phosphate transport systems on day 4 while sodium-dependent alanine uptake was unchanged. This study demonstrated the existence of sodium-dependent phosphate and amino acid transports in alveolar type II cells similar to those documented in other epithelial cell types. These sodium-coupled transports provide a potent mechanism for phosphate and amino acid absorption and are likely to play a role in substrate availability for cellular metabolism and in regulating the composition of the alveolar subphase. The decrease in phosphate uptake with time in culture is parallel to decrease in surfactant synthesis reported in cultured alveolar type II cells, suggesting that phosphate availability for surfactant synthesis may be accomplished by a sodium-dependent phosphate uptake.  相似文献   

6.
Pyruvate kinase activity in primary cultures of hepatocytes isolated from a normal rat was maintained at a constant level similar to that found in vivo (14.0 +/- 2.8 units per mg of DNA) for over 6 days when both dexamethasone and insulin were included in the medium. Yet the pyruvate kinase activity decreased 50% when the cells were cultured for 2 days and 4 days, respectively, in the presence of either dexamethasone or insulin alone. A brief, 10 min incubation of hepatocytes in the presence of dexamethasone was sufficient to maintain the enzyme activity of cells subsequently cultured for 4 days in the presence of insulin. The optimal dexamethasone concentration was 1 microM. Three other glucocorticoids were able to maintain the pyruvate kinase activity in cells cultured in medium containing insulin. The presence of the protein synthesis inhibitors, actinomycin D or cyclohexamide in cells cultured in the presence of dexamethasone and insulin resulted in a 25% decrease in the pyruvate kinase activity. Therefore, it is suggested that the synergistic effect of glucocorticoids and insulin to maintain pyruvate kinase activity in primary cultures of hepatocytes is dependent upon the ability of these cells to maintain protein synthesis.  相似文献   

7.
The characteristics of the insulin- and epidermal growth factor (EGF)-stimulated tyrosine-specific protein kinases in a wheat germ lectin-Sepharose-purified preparation of solubilized placenta membranes were compared. The specific activity of the insulin-stimulated kinase in this preparation was 72 nmol/min/mg whereas the specific activity of the EGF-stimulated kinase was 312 nmol/min/mg using a synthetic peptide as the phosphorylatable substrate. The two enzymes showed similar divalent metal ion requirements and nucleotide specificities. In addition, both kinases were inhibited by treatment with N-ethylmaleimide. However, the EGF-stimulated enzyme was more sensitive to modification by this reagent than was the insulin-stimulated kinase. When examined for their ability to utilize a number of different proteins as substrates, the insulin- and EGF-stimulated kinases exhibited similar but not identical substrate specificities. These similarities at the molecular level may be the basis of the similarity between the actions of insulin and EGF at the cellular level.  相似文献   

8.
The effect of insulin on phosphatidylcholine biosynthesis in cultured rat liver cells was assessed by measuring changes in the activity of the first enzyme in the choline pathway of phosphatidylcholine biosynthesis, choline kinase (ATP: cholinephosphortransferase, EC 2.7.1.32), in the presence or absence of the hormone. Choline kinase specific activity in liver cells incubated for 18 hours in the presence of 10?7M insulin increased two-fold from 3.4 ± 0.3 nmoles phosphorylcholine formed/min/mg protein to 7.5 ± 0.6 nmoles/min/mg protein. This effect was dose dependent and reversed by the addition of actinomycin D and cycloheximide. It is concluded that the increase in specific activity is due to synthesis of new enzyme rather than activation of existing enzyme.  相似文献   

9.
Tyrosine protein kinase activity has been estimated in purified testicular cells with the synthetic peptide substrate NH2-GLU-ASP-ALA-GLU-TYR-ALA-ALA-ARG-ARG-ARG-GLY-COOH. High levels of enzyme specific activity (56–165 pmol/mg/min) were found in the two populations of Leydig cells isolated by Metrizamide gradient centrifugation. Some activity was also detected in germinal cells, red cells and seminiferous tubules from testis but at levels 6–20 times lower than those found in the Leydig cell fractions. Higher levels of tyrosine protein kinase specific activity were found in population I than in population II Leydig cells.  相似文献   

10.
The concentration of phosphates and the kinetics of phosphate transfer reactions were measured in the human breast cancer cell line, T47D, using 31P-NMR spectroscopy. The cells were embedded in agarose filaments and perifused with oxygenated medium during the NMR measurements. The following phosphates were identified in spectra of perifused cells and of cell extracts: phosphorylcholine (PC), phosphorylethanolamine (PE), the glycerol derivatives of PC and PE, inorganic phosphate (Pi), phosphocreatine (PCr), nucleoside triphosphate (primarily ATP) and uridine diphosphate glucose. The rates of the transfers: PC----gamma ATP (0.2 mM/s), Pi----gamma ATP (0.2 mM/s) and the conversion beta ATP----beta ADP (1.3 mM/s) were determined from analysis of data obtained in steady-state saturation transfer and inversion recovery experiments. Data from spectrophotometric assays of the specific activity of creatine kinase (approx. 0.1 mumol/min per mg protein) and adenylate kinase (approx. 0.4 mumol/min per mg protein) suggest that the beta ATP----beta ADP rate is dominated by the latter reaction. The ratio between the rate of ATP synthesis from Pi and the rate of consumption of oxygen atoms (4 X 10(-3) mM/s) was approx. 50. This high value and preliminary measurements of the rate of lactate production from glucose, indicated that aerobic glycolysis is the main pathway of ATP synthesis.  相似文献   

11.
A method is described for preparing late spermatocytes form immature rat testes which yields about 2 · 105 cells per testis a purity of 70–80% and a viability of over 90%. The spermatocytes are highly agglutinable by both concanavalin A and wheat germ agglutinin but no major difference in lectin-mediated agglutinability was observed between late spermatocytes, early spermatids and spermatozoa. Isolated spermatocytes were capable of incorporating [14C]glucosmine into glycoprotein at a linear rate for about 50 min at 30°C and contained a glycoprotein N-acetylglucosaminyltransferase (8.6 nmol/mg protein per h) and a glycoprotein fucosyltransferase (4.5 nmol/mg protein per h) previously described in partially purified adult mouse testicular germinal cells. A Golgi-rich fraction was prepared from isolated spermatocytes wchich was enriched 15-fold in the N-acetylglucosaminyltransferase, 19-fold in the fucosyltransferase and 3-fold in a galactosyltransferase. These studies showed that late spermatocytes were higly active in glycoprotein synthesis. Studies on the incorporation of [35S]sulfate into sulfogalactoglycerolipid indicated that late spermatocytes were not the primary site of synthesis of this lipid although late spermatocytes were shown to be highly enriched in sulfogalactoglycerolipid (5 times the level in whole rat testis). Further, [35S]sulfogalactoglycerolipid took 5 weeks to migrate from its site of synthesis to the epididymis. These studies suggest that sulfogalactoglycerolipid is sulfated at a spermatocyte cell stage prior to the late (pachytene and diplotene) seprmatocyte stage.  相似文献   

12.
Using Northern blotting techniques we report that mRNA for Glutathione S-transferase-P (GST-P or GST 7-7) is present in rat testis. GST-P mRNA was detected in cultured Sertoli cells, cultured peritubular cells, as well as in transplantable Leydig cell tumor. However, no GST-P mRNA was detected in rat germ cell fractions. There was a marked increase in mRNA for GST-P from day 5 to day 20 in rats, after which a decrease was seen. The decreased level of mRNA for GST-P in the testis after 20 days of age, coincided in time with the exponential increase in germ cells, and accompanying relative decrease in somatic cells. The results show that mRNA for GST-P is primarily present in somatic cells of the rat testis.  相似文献   

13.
1. Palmitoyl-CoA synthetase activity was assayed in subfractions of control and Quaking, Jimpy, Shiverer and Trembler mouse brain. 2. Mouse brain palmitoyl-CoA synthetase activity is not altered during myelination. 3. Mouse brain enzyme activity (homogenate 1.5 +/- 0.3 nmol palmitoyl carnitine/min/per mg protein crude mitochondria 0.6 +/- 0.1 nmol/min/per mg protein and microsomes 1.9 +/- 0.3 nmol/min/per mg protein) does not differ markedly from rat and rabbit brain activity. 4. The lesions of the above mutants which affect myelination and lipid synthesis do not include the enzyme palmitoyl-CoA synthetase.  相似文献   

14.
The granular ATP released from chromaffin cells during the secretory response can be hydrolyzed by ectonucleotidases that are present in the plasma membrane of these cells. The ecto-ATPase activity showed a Km for ATP of 250 +/- 18 microM and a VMAX value of 167 +/- 25 nmol/10(6) cells x min (1.67 mumol/mg protein x min) for cultured chromaffin cells, while the ecto-ADPase activity showed a Km value for ADP of 375 +/- 40 microM and a VMAX of 125 +/- 20 nmol/10(6) cells x min (1.25 mumol/mg protein x min). The ecto 5'-nucleotidase activity of cultured chromaffin cells was more specific for the purine nucleotides, AMP and IMP, than for the pirimidine nucleotides, CMP and TMP. The Km for AMP was 55 +/- 5 microM and the VMAX value was 4.3 +/- 0.8 nmol/10(6) cells x min (43 nmol/mg protein x min). The nonhydrolyzable analogs of ADP and ATP, alpha, beta-methylene-adenosine 5'-diphosphate and adenylyl-(beta, gamma-methylene)-diphosphonate were good inhibitors of ecto 5'-nucleotidase activity, the KI values being 73.3 +/- 3.5 nM and 193 +/- 29 nM, respectively. The phosphatidylinositol-specific phospholipase C released the ecto-5'-nucleotidase from the chromaffin cells in culture, thus suggesting an anchorage through phosphatidylinositol to plasma membranes. The presence of ectonucleotidases in chromaffin cells may permit the recycling of the extracellular ATP exocytotically released from these neural cells.  相似文献   

15.
1. The development of the total rat brain creatine kinase was studied in brain homogenates. Until approx. 14-15 days after birth, the activity remains less than one-third that of the adult activity (207+/-6 units/g wet wt. s.d.; n=3). Over the next 10 days the activity increases markedly to the adult value and thereafter remains essentially constant. 2. In the adult brain, approx. 5% (11.9+/-2.2 units/g wet wt. s.d.; n=5) of the total creatine kinase is associated with the mitochondrial fraction. This creatine kinase could not be solubilized by sodium acetate solutions of up to 0.8m concentration, whereas 66% of the hexokinase associated with brain mitochondria was released under these conditions. 3. Rat brain mitochondria incubated in the presence of various concentrations of creatine (1, 5 and 10mm) and ADP (100mum) synthesized phosphocreatine at rates of approx. 4.5, 11 and 17.5nmol/min per mg of mitochondrial protein. Atractyloside (50mum) or oligomycin (1.5mug/mg of mitochondrial protein) completely inhibited the synthesis of phosphocreatine. 4. The apparent K(m) and V(max.) values of the mitochondrially bound rat brain creatine kinase were determined in both directions. The V(max.) in the direction of phosphocreatine synthesis is 237nmol/min per mg of mitochondrial protein, with an apparent K(m) for creatine of 1.67mm and for MgATP(2-) of 0.1mm, and in the reverse direction V(max.) is 489nmol/min per mg of mitochondrial protein, with an apparent K(m) for phosphocreatine of 0.4mm and for MgADP(-) of 27mum. 5. The results are discussed with reference to the role that the mitochondrially bound creatine kinase may play in the development of brain energy metabolism.  相似文献   

16.
Testosterone biosynthesis by Leydig cells can be modulated by estradiol. This modulation appears to occur at the 17-hydroxylase and 17,20-desmolase stage. In this study we have examined the effects of estradiol and progesterone on the activities of the 17-hydroxylase (17-OH) and 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) in rat ovarian tissue, to examine the hypothesis that estradiol may regulate these enzymes in the ovary as well as in the testis. Estradiol capsule implants produced a decrease in 17-OH activity (0.5 +/- 0.05 vs. 2.1 +/- 0.1 nmol/mg protein/min, mean +/- SEM, p less than 0.001), and an increase in 3 beta-HSD activity (15.5 +/- 0.9 vs 9.7 +/- 0.7 nmol/mg protein/min p less than 0.001). Progesterone injections produced a decrease in both 17-OH (0.9 +/- 0.1 vs. 2.3 +/- 0.2 p less than 0.005) and 3 beta-HSD (2.5 +/- .4 vs. 8.6 +/- 0.5; p less than 0.005) activities. We conclude that estradiol decreases 17-OH activity in the ovary as it does in the testis. This, coupled with an increase in 3 beta-HSD may explain the pre-ovulatory increase in progesterone seen in many species. Progesterone seems to decrease the steroidogenic activity of the ovarian tissue, perhaps offering an explanation for the gonadotropin resistance seen in corpus luteus bearing ovaries.  相似文献   

17.
It was shown that the cytosol fraction of bovine retinal rod outer segments contains three forms of tyrosine kinase. One of them was purified 171-fold to attain a specific activity of 1.6 nmol/min per mg protein. The isolated protein had a molecular weight of about 54,000 in SDS electrophoresis. It was shown that this protein is a tyrosine-specific protein kinase, capable of autophosphorylation at the tyrosine residues and restoration of kinase activity upon denaturation-renaturation.  相似文献   

18.
Plant constituents such as terpenes are major constituents of the essential oil in Eucalyptus sp. 1,8-Cineole and p-cymene (Terpenes present in high amounts in Eucalyptus leaves) are potential substrates for the CYP family of enzymes. We have investigated tolbutamide hydroxylase as a probe substrate reaction in both koala and terpene pretreated and control brushtail possum liver microsomes and examined inhibition of this reaction by Eucalyptus terpenes. The specific activity determined for tolbutamide hydroxylase in the terpene treated brushtails was significantly higher than that for the control animals (1865+/-334 nmol/mg microsomal protein per min versus 895+/-27 nmol/mg microsomal protein per min). The activity determined in koala microsomes was 8159+/-370 nmol/mg microsomal protein per min. Vmax values and Km values for the terpene treated possum, control, possum and koala were 1932-2225 nmol/mg microsomal protein per min and 0.80 0.81 mM; 1406-1484 nmol/mg microsomal protein per min and 0.87-0.92 mM and 5895-6403 nmol/mg microsomal protein per min and 0.067-0.071 mM, respectively. Terpenes were examined as potential inhibitors of tolbutamide hydroxylase activity. 1,8-Cineole was found to be a competitive inhibitor for the enzyme responsible for tolbutamide hydroxylation (Ki 15 microM) in the possum. In koala liver microsomes stimulation of tolbutamide hydroxylase activity was observed when concentrations of cineole were increased. Therefore, although inhibition was observed, the type of inhibition could not be determined.  相似文献   

19.
The specific activity in cells from lymph nodes, spleen and thymus was 32, 28 and 25 nmol/min per mg of cytosol protein, respectively, whereas that in bone marrow cells was significantly lower (10 units/mg of protein). No difference in specific DAN activity between isolated B- and T-lymphocytes was observed. Two types of lymphoid mouse cell lines (MOPC-31C plasmacytoma cells, S49 Cyc- lymphoma cells) showed specific activities similar to the normal lymphoid cells. In concanavalin A- stimulated spleen lymphocytes in culture there was a rapid increase in DAN activity shortly after maximum DNA synthesis, reaching a plateau 2-3 times the original level. The enzyme (DAN) of mouse tissues possessed the characteristic properties previously detected for the rat enzyme.  相似文献   

20.
Development of mitochondrial and microsomal choline phosphotransferase in the fetal guinea pig lung was investigated. The activity in fetal mitochondria was more than twice of that in fetal microsomes. However, in adult lung, the enzyme was distributed mostly in microsomes. In fetal lung, both the mitochondrial and microsomal enzyme activity was greatest at approx. 81% of the total gestation period (55 days). The specific activity in the microsomal fraction then declined until term, but increased again in the 24-h newborn from 1.0 to 2.3 nmol/min per mg protein. The activity in the mitochondrial fraction declined after 61 days (2.8 nmol/min per mg) to a minimal level at term (0.6 nmol/min per mg). Although the enzyme activity decreased from day 55 (1.2 nmol/min per mg), the amount of phosphatidylcholine gradually increased between day 55 and term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号