首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.

Background  

Photorhabdus are Gram negative entomopathogenic bacteria that also have a mutualistic association with nematodes from the family Heterorhabditis. An essential part of this symbiosis is the ability of the bacterium to colonize the gut of the freeliving form of the nematode called the infective juvenile (IJ). Although the colonization process (also called transmission) has been described phenomonologically very little is known about the underlying molecular mechanisms. Therefore, in this study, we were interested in identifying genes in Photorhabdus that are important for IJ colonization.  相似文献   

2.
Photorhabdus is an insect-pathogenic Gram negative enterobacterium found in the gut of Heterorhabditis nematodes. Photorhabdus is highly virulent to insects, and can kill insects rapidly upon injection at very low concentrations of one to few cells. We characterized the virulence of Photorhabdus symbionts isolated from the Heterorhabditis nematodes collected from various parts of India by injecting different concentrations of bacterial cells into fourth instar larval stage of insect Galleria mellonella. Photorhabdus luminescens ssp. akhurstii strain IARI-SGMG3 from Meghalaya was identified as the most virulent of all the tested strains on the basis of LT50 and LC50 values. This study forms a basis for further investigations on the genetic basis of virulence in Photorhabdus bacteria.  相似文献   

3.
Entomopathogenic nematodes of the genus Heterorhabditis live in symbiosis with pathogenic Photorhabdus bacteria. Heterorhabditis nematodes are entirely dependent on these bacteria for their food source; in return, the nematodes offer the bacteria a way to infect and kill insects. For their part, Photorhabdus bacteria are lethal to a broad range of insect hosts, to other nematodes, and to other microorganisms, but not to their Heterorhabditis hosts. These nematodes offer the potential to provide a robust experimental system for the in•depth study of a mutually beneficial symbiotic relationship, with both members of the partnership accessible to molecular and genetic studies. New genomic technologies offer the possibility for this potential to be realized, and for Heterorhabditis nematodes to become a standard model system for the investigation of host•symbiote relationships. We present a perspective on the application of these technologies to nematode•bacterial symbiosis and an update on our efforts to sequence three Heterorhabditis species reported at the recent NemaSym meeting.  相似文献   

4.
Association between bacteria Photorhabdus and their nematode hosts Heterorhabditis represents one of the emerging models in symbiosis studies. In this study, we isolated the bacterial symbionts of the nematode Heterorhabditis georgiana. Using gyrB sequences for phylogenetic analysis, these strains were shown to be part of the species of Photorhbdus luminescens but with clear separation from currently recognized subspecies. Physiological properties and DNA–DNA hybridization profiles also supported the phylogenetic relationship of these strains. Therefore, a new subspecies, Photorhabdus luminescens subsp. kleinii subsp. nov., is proposed with the type strain KMD37T (=DSM 23513 =ATCC =NRRL B-59419).  相似文献   

5.

Background  

Photorhabdus are Gram negative bacteria that are pathogenic to insect larvae whilst also having a mutualistic interaction with nematodes from the family Heterorhabditis. Iron is an essential nutrient and bacteria have different mechanisms for obtaining both the ferrous (Fe2+) and ferric (Fe3+) forms of this metal from their environments. In this study we were interested in analyzing the role of Fe3+ and Fe2+ iron uptake systems in the ability of Photorhabdus to interact with its invertebrate hosts.  相似文献   

6.
The effects of 17 Paenibacillus strains on root colonization by Glomus intraradices or Glomus mosseae and plant growth parameters (shoot and root weight) of mycorrhizal cucumber plants were examined. The Paenibacillus strains were originally isolated from mycorrhizal (G. intraradices) and non-mycorrhizal cucumber rhizosphere and/or hyphosphere, except for strain EJP73, which originated from a Pinus sylvestris-Lactarius rufus ectomycorrhiza. Root colonization of cucumber plants by G. intraradices or G. mosseae was unaffected by all seven strains of Paenibacillus polymyxa, but was decreased or increased by four strains of Paenibacillus macerans and strain EJP73 of Paenibacillus sp. Overall, shoot dry weight of cucumber grown in symbioses with either G intraradices or G. mosseae was unaffected by inoculation with all of the Paenibacillus strains, except for strain MB02-429 of P. macerans, which increased the shoot dry weight in the cucumber-G. mosseae symbiosis. On the other hand, several Paenibacillus strains caused altered root growth. Three strains of P. polymyxa and four strains of P. macerans increased the root fresh weight of the cucumber–G. intraradices symbiosis, whereas three strains of P. polymyxa and one strain of P. macerans as well as Paenibacillus sp. EJP73, decreased the root fresh weight of the cucumber–G. mosseae symbiosis. In conclusion, our results show that bacteria from several species of Paenibacillus differentially affect cucumber mycorrhizas.  相似文献   

7.
Three isolates of Verticillium leptobactrum proceeding from egg masses of root-knot nematodes (RKN) Meloidogyne spp. and soil samples collected in Tunisia were evaluated against second-stage juveniles (J2) and eggs of M. incognita, to determine the fungus biocontrol potential. In vitro tests showed that V. leptobactrum is an efficient nematode parasite. The fungus also colonized egg masses and parasitized hatching J2. In a greenhouse assay with tomato plants parasitized by M. incognita and M. javanica, V. leptobactrum was compared with isolates of Pochonia chlamydosporia and Monacrosporium sp., introducing the propagules into nematode-free or naturally infested soils. The V. leptobactrum isolates were active in RKN biocontrol, improving plants growth with a significant increase of tomato roots length, lower J2 numbers in soil or egg masses, as well as higher egg mortalities. In a second assay with M. javanica, treatments with three V. leptobactrum isolates reduced egg masses on roots as well as the density of J2 and the number of galls. To evaluate the fungus capability to colonize egg masses a nested Real-time polymerase chain reaction (PCR) assay, based on a molecular beacon probe was used to assess its presence. The probe was designed on a V. leptobactrum ITS region, previously sequenced. This method allowed detection of V. leptobactrum from egg masses, allowing quantitative DNA and fungal biomass estimations.  相似文献   

8.
The entomopathogenic nematode Steinernema feltiae strain Ustinov Russia was used on potato foliage to control larvae of the Colorado potato beetle, Leptinotarsa decemlineata (Say.) (Coleoptera: Chrysomelidae). Nematodes were applied in formulations of agar at 4%, 2%, 1% and 0.5% concentrations and compared to a control application of nematodes in water for nematode survival. Agar formulation significantly improved efficacy by increasing nematode survival through reduction in desiccation when compared to water-based formulation. More than 70% of infective juvenile nematodes (IJs) died after being incubated in the highest concentration of agar for 12 h, while only 8% mortality was recorded at the 1% concentration. Suspension of nematodes in 1% agar gel was shown to be efficacious in both laboratory and greenhouse tests for extension of the nematodes’ survival. Agar formulation droplets dried slower than control droplets by 127.8 min. Leptinotarsa decemlineata mortality significantly increased when insects were exposed to infective juvenile nematodes for four hours after application. In conclusion, the agar formulation enhanced nematode survival by providing a suitable environment thereby delaying dryingand increasing the possibility for nematodes to invade their host on the foliage.  相似文献   

9.
The Pythium biocontrol features of 17 Paenibacillus strains, all previously isolated from the rhizosphere, hyphosphere or bulk soil from mycorrhizal and non-mycorrhizal cucumber plants, were examined using a cucumber seedling emergence bioassay. Thirteen strains – four strains of Paenibacillus polymyxa, eight strains of P. macerans and one strain of Paenibacillus sp. – significantly increased the percentage of seedling emergence of seeds inoculated with agar plugs of Pythium aphanidermatum FC42. Overall, the efficacy of Pythium biocontrol did not seem to differ between isolates of Paenibacillus originating from either mycorrhizal or non-mycorrhizal systems. No strains significantly reduced the damping-off incidence caused by the aggressive isolate Pythium sp. B5. Two strains of P. macerans not only reduced the incidence of pre-emergence damping-off by 73%, but they also counteracted the plant growth-depressing effect of P. aphanidermatum FC42, so that 68–82% of the emerged seedlings remained healthy 7 days after sowing. Two strains of P. macerans and one strain of P. polymyxa also significantly increased the percentage of seedling emergence following inoculation with approximately 105 zoospores of P. aphanidermatum FC42. There was no significant difference between the dry weight of three selected bacteria-inoculated and -uninoculated plants in the absence of Pythium; however, the dry weight of bacteria-inoculated plants was significantly higher than that of the uninoculated control plants with bacteria in the presence of P. aphanidermatum FC42.  相似文献   

10.
For commercial use of the entomopathogenic nematodes Steinernema carpocapsae and Steinernema feltiae in biological control of insect pests, they are produced in liquid culture on artificial media pre-incubated with their symbiotic bacteria Xenorhabdus nematophila and Xenorhabdus bovienii, respectively. After 1 day of the bacterial culture, nematode dauer juveniles (DJs) are inoculated, which recover development. The adult nematodes produce DJ offspring, which are harvested and can be sprayed. This study determined optimal temperatures to obtain high DJ progeny within a short process time. Temperatures assessed were 23°C, 25°C, 27°C, and 29°C for S. carpocapsae and 20°C, 23°C, 25°C, and 27°C for S. feltiae. The recovery of inoculated DJs was hardly affected and was reduced only in S. carpocapsae at 29°C. The fecundity (eggs in uterus) in S. carpocapsae reached a maximum at 27°C; whereas, maximum yields were recorded at 25°C. For both Steinernema spp., highest DJ densities were obtained after 15 days incubation at 25°C. Optimal culture temperature for both nematode species is 25°C. S. carpocapsae was more sensible to suboptimal temperature than S. feltiae. Results on total DJ density and DJ proportion of the total nematode population were more variable at non-optimal temperature condition for S. carpocapsae than for S. feltiae. Suboptimal culture temperature also reduced DJ infectivity.  相似文献   

11.

Background  

Heterorhabditis bacteriophora is applied throughout the world for the biological control of insects and is an animal model to study interspecies interactions, e.g. mutualism, parasitism and vector-borne disease. H. bacteriophora nematodes are mutually associated with the insect pathogen, Photorhabdus luminescens. The developmentally arrested infective juvenile (IJ) stage nematode (vector) specifically transmits Photorhabdus luminescens bacteria (pathogen) in its gut mucosa to the haemocoel of insects (host). The nematode vector and pathogen alone are not known to cause insect disease. RNA interference is an excellent reverse genetic tool to study gene function in C. elegans, and it would be useful in H. bacteriophora to exploit the H. bacteriophora genome project, currently in progress.  相似文献   

12.
A procedure for in vitro plant regeneration of Alnus acuminata from epicotyls with cotyledonary buds was developed using different media formulations with different growth regulators and carbon sources. The development of multiple buds on explants at the initiation step was obtained with MS at 1/2 strength with either 1 or 2M of BAP but not without it. Multiplication gave up to 15 elongating shoots by explant, the best medium being MS supplemented with vitamins from B5 medium, 1M of BAP and 87mM sucrose. Rooting of about 88% occurred in the medium MS with 83 mM sucrose and 1M IBA. Alnus acuminata did not developed well on WPM. Roots of in vitro propagated plants were nodulated by Alnus-infective Frankia. The root nodules show a typical alder root nodule anatomy and differentiation pattern and effectively fixed nitrogen. Rhamnaceae-infective Frankia did not nodulate in vitro cultivated Alnus acuminata suggesting that symbiotic recognition was not altered by in vitro regeneration of the plant.  相似文献   

13.
A total of 534 isolates were selectively obtained from different plant rhizospheres based on their growth on nitrogen-free medium and their resistance to 80°C for 15 min. Of the 534 isolates, 23 isolates had nifH gene and exhibited nitrogenase activities. Based on 16S rDNA sequence, G + C content assay and DNA-DNA hybridization, the 23 isolates which divided into four monophyletic clusters were all belonged to the Paenibacillus genus. nifH gene deduced amino acid alignment aLnalysis revealed that cluster I, including 15 isolates, showed the highest NifH identity with Paenibacillus genus; while cluster II identified as P. stellifer by DNA-DNA hybridization was consistent with four uncultured bacterial clones. This study suggested that the nitrogen-fixing Paenibacillus were distributed in various ecosystems and prevalent in different plant rhizospheres. It was the first demonstration that nitrogen fixation existed in P. jamilae and P. stellifer. In eight isolates identified as P. stellifer species, a novel nifH gene was detected in Paenibacillus.  相似文献   

14.
Haptoglossa spp. (Lagenidiales, Oomycetes) have been known to parasitize microscopic animals by means of a "gun" cell that shoots an infection cell, named the sporidium, into the body of the animal. A thallus grown from the sporidium changes into a zoosporangium at maturation to produce a number of zoospores that encyst after a swarming period, and the resulting cysts germinate to produce gun cells. In Haptoglossa zoospora, endoparasitic in nematodes, the cysts of primary zoospores that swam for about 5 min did not develop gun cells but produced secondary zoospores that swam for about 3 h. After encystment of the secondary zoospores, each secondary cyst germinated to produce a gun cell. In the present study, the secondary zoospores of the genus Haptoglossa could be recorded with a videocassette recorder for the first time. The videocassette recording also revealed the infection of a nematodes by H. zoospora and H. heterospora to be composed of two steps of injection of a sporidium by the gun cell, in which the gun cell came in contact with the cuticle of a nematode and produced a spherical adhesorium on the tip of the cell in 0.07–0.1 s in both species. The adhesorium was ∼2 μm in H. zoospora and ∼4 μm in H. heterospora. When the adhesorium infiated to full size, it shot the sporidium into the nematode's body in 0.5–0.65 s and in 0.2–0.5 (or rarely 1.0) s in H. zoospora and H. heterospora, respectively. After shooting, the empty gun cell with an empty cyst case was separated from the cuticle immediately in both species. Received: October 3, 2001 / Accepted: December 13, 2001  相似文献   

15.
To construct an evolutionary hypothesis for the genus Frankia, gyrB (encoding gyrase B), nifH (encoding nitrogenase reductase) and glnII (encoding glutamine synthetase II) gene sequences were considered for 38 strains. The overall clustering pattern among Frankia strains based on the three analyzed sequences varied among themselves and with the previously established 16S rRNA gene phylogeny and they did not reliably reflect clear evolution of the four discerned Frankia clusters (1, 2, 3 and 4). Based on concatenated gyrB, nifH and glnII, robust phylogenetic trees were observed with the three treeing methods (Maximum Likelihood, Parsimony and Neighbor-Joining) and supported by strong bootstrap and posterior probability values (>75%) for overall branching. Cluster 4 (non-infective and/or non-nitrogen-fixing Frankia) was positioned at a deeper branch followed by cluster 3 (Rhamnaceae and Elaeagnaceae infective Frankia), while cluster 2 represents uncultured Frankia microsymbionts of the Coriariaceae, Datiscaceae, Rosaceae and of Ceanothus sp. (Rhamnaceae); Cluster 1 (Betulaceae, Myricaceae and Casuarinaceae infective Frankia) appears to have diverged more recently. The present study demonstrates the utility of phylogenetic analyses based upon concatenated gyrB, nifH and glnII sequences to help resolve previously unresolved or poorly resolved nodes and will aid in describing species among the genus Frankia.  相似文献   

16.
Predation of the entomopathogenic nematode, Steinernema feltiae (Rhabditida: Steinernematidae), by Sancassania sp. (Acari: Acaridae) isolated from field-collected scarab larvae was examined under laboratory conditions. Adult female mites consumed more than 80% of the infective juvenile (IJ) stage of S. feltiae within 24 h. When S. feltiae IJs were exposed to the mites for 24 h and then exposed to Galleria mellonella (Lepidoptera: Pyralidae) larvae, the number of nematodes penetrating into the larvae was significantly lower compared to S. feltiae IJs that were not exposed to mites (control). Soil type significantly affected the predation rate of IJs by the mites. Mites preyed more on nematodes in sandy soil than in loamy soil. We also observed that the mites consumed more S. feltiae IJs than Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae). No phoretic relationship was observed between mites and nematodes and the nematodes did not infect the mites.  相似文献   

17.
Nuclear envelope morphology protein 1 (NEM1) along with a phosphatidate phosphatase (PAH1) regulates lipid homeostasis and membrane biogenesis in yeast and mammals. We investigated four putative NEM1 homologues (TtNEM1A, TtNEM1B, TtNEM1C and TtNEM1D) in the Tetrahymena thermophila genome. Disruption of TtNEM1B, TtNEM1C or TtNEM1D did not compromise normal cell growth. In contrast, we were unable to generate knockout strain of TtNEM1A under the same conditions, indicating that TtNEM1A is essential for Tetrahymena growth. Interestingly, loss of TtNEM1B but not TtNEM1C or TtNEM1D caused a reduction in lipid droplet number. Similar to yeast and mammals, TtNem1B of Tetrahymena exerts its function via Pah1, since we found that PAH1 overexpression rescued loss of Nem1 function. However, unlike NEM1 in other organisms, TtNEM1B does not regulate ER/nuclear morphology. Similarly, neither TtNEM1C nor TtNEM1D is required to maintain normal ER morphology. While Tetrahymena PAH1 was shown to functionally replace yeast PAH1 earlier, we observed that Tetrahymena NEM1 homologues did not functionally replace yeast NEM1. Overall, our results suggest the presence of a conserved cascade for regulation of lipid homeostasis and membrane biogenesis in Tetrahymena. Our results also suggest a Nem1-independent function of Pah1 in the regulation of ER morphology in Tetrahymena.  相似文献   

18.
Chen R  Li H  Zhang L  Zhang J  Xiao J  Ye Z 《Plant cell reports》2007,26(7):895-905
Several root-knot nematode (Meloidogyne spp.) resistance genes have been discovered in different pepper (Capsium annuum L.) lines; however, none of them has yet been cloned. In this study, a candidate root-knot nematode resistance gene (designated as CaMi) was isolated from the resistant pepper line PR 205 by degenerate PCR amplification combined with the RACE technique. Expression profiling analysis revealed that this gene was highly expressed in roots, leaves, and flowers and expressed at a lower level in stems and was not detectable in fruits. To verify the function of CaMi, a sense vector containing the genomic DNA spanning the full coding region of CaMi was constructed and transferred into root-knot nematode susceptible tomato plants. Sixteen transgenic plants carrying one to five copies of T-DNA inserts were generated from two nematode susceptible tomato cultivars. RT-PCR analysis revealed that the expression levels of CaMi gene varied in different transgenic plants. Nematode assays showed that the resistance to root-knot nematodes was significantly improved in some transgenic lines compared to untransformed susceptible plants, and that the resistance was inheritable. Ultrastructure analysis showed that nematodes led to the formation of galls or root knots in the susceptible lines while in the resistant transgenic plants, the CaMi gene triggered a hypersensitive response (HR) as well as many necrotic cells around nematodes. Rugang Chen and Hanxia Li are contributed equally to this work.  相似文献   

19.
Bacillus nematocida is a Gram-positive bacterium capable of killing nematodes. Our recent studies identified an extracellular serine protease Bace16 in B. nematocida as a candidate of pathogenic factor in the infection against nematodes, which displayed a high similarity with the serine protease family subtilisin BPN’, and the MEROPS ID is S08.034. To further confirm the roles that bace16 played in the mechanism of nematocidal pathogenesis, recombinant mature Bace16 (rm-Bace16) was expressed in Escherichia coli strain BL21 using pET-30 vector system. Bioassay experiments demonstrated that the purified recombinant protease had the ability to degrade nematode cuticles and kill nematodes. In addition, a bace16 knockout mutant of B. nematocida constructed by homologous recombination showed considerably lower proteolytic activity and less than 50% nematocidal activity than the wild-type strain. These results confirmed that Bace16 could serve as an important virulence factor during the infectious process. Qiuhong Niu and Xiaowei Huang contributed equally to this work.  相似文献   

20.
We tested the influence of extracts from three medicinal herbs —Salvia miltiorrhiza, Schizandra chinensis, andEugenia caryophyllata — on activity of the nematodeRhabditis elongate. Treatment with f.caryophyllata was most useful, causing the greatest decrease in populations and mobility, but did not have any detrimental effect on the initial growth of the host microorganism,Escherichia coli. For example, when 0.5 g/L of the extract was added to an inoculated liquid culture, we counted 710 nematodes/mL, with a multiplication rate 5 times greater than the initial population. This was in contrast to the control sample, which had a count of 1100 nematodes/mL and a growth ratio of 11. For our field test, nematode mobility in the presence of the extract also decreased, to 6.8 mm/day, compared with 20 mm/day for the control. Likewise, when 1.0 g/L of the extract was added to the soil, the total number of nematodes was reduced to only 30- to 40% of the control population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号