首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of inbred lines of chickens have been shown to be resistant or susceptible to systemic salmonellosis caused by Salmonella enterica serovar Gallinarum in adult birds, or by S. enterica serovar Enteritidis and S. enterica serovar Typhimurium in young chicks. Resistant lines show only moderate pathology and low mortality rates, whereas susceptible lines display extensive pathological changes and higher levels of mortality following Salmonella infection. Genetic resistance to salmonellosis is dominant and not linked to sex, MHC or Slc11a1 (formerly known as Nramp1), which leads to resistance in mice and other species. A novel locus encoding resistance to salmonellosis has been identified on chicken chromosome 5, and designated SAL1. The nature of the differences in pathology found between resistant and susceptible chicken lines in vivo indicates that resistance is expressed at the level of the mononuclear phagocyte system. Macrophages from adult resistant line birds cleared Salmonella serovar Gallinarum from infected macrophages within 24 h, whereas Salmonella bacteria persisted within macrophages from susceptible line birds for at least 48 h. Clearance of Salmonella by macrophages was accompanied by a strong and reproducible respiratory burst response in resistant lines, but little or no response in susceptible lines. Macrophages from an outbred chicken line showed variable responses. No differences were seen in macrophage nitric oxide production in cells from resistant or susceptible lines. These differences suggest that increased macrophage antimicrobial activity correlates with resistance and that macrophage activity plays an important role in genetic resistance to systemic salmonellosis in the chicken.  相似文献   

2.
Clear genetic differences in the susceptibility of chickens to visceral infection by Salmonella have been observed and it has been possible to identify resistant and susceptible lines of inbred chickens. We report here the results of experiments to map directly the gene(s) controlling this trait in chickens by examining crosses between highly susceptible and highly resistant lines. In the mapping panel, a region on chicken Chromosome (Chr) 5 was found to have a large effect on resistance, and this effect was observed in three separate resource populations. Mapping of additional marker loci in the region of the resistance gene further localized it to a region of approximately 2 cM, close to the genes for creatine kinase (CKB) and dynein (DNCH1). This region shows conserved synteny with telomeric regions of human Chr 14 and mouse Chr 12. On the basis of this conserved synteny, this resistance gene seems unlikely to correspond to the previously identified salmonellosis resistance genes Lps (located on mouse Chr 4) or Nos(2) (located on mouse Chr 11). There was no association between Nramp1 and resistance in these crosses, although this gene was shown to contribute to resistance in other crosses. The homologous human and mouse regions at present contain no likely candidate genes for this trait. Thus this appears to be a novel resistance gene, which we designate SAL1.  相似文献   

3.
Gou Z  Liu R  Zhao G  Zheng M  Li P  Wang H  Zhu Y  Chen J  Wen J 《PloS one》2012,7(3):e33627
Toll-like receptors (TLRs) signaling pathways are the first lines in defense against Salmonella enteritidis (S. enteritidis) infection but the molecular mechanism underlying susceptibility to S. enteritidis infection in chicken remains unclear. SPF chickens injected with S. enteritidis were partitioned into two groups, one consisted of those from Salmonella-susceptible chickens (died within 5 d after injection, n = 6), the other consisted of six Salmonella-resistant chickens that survived for 15 d after injection. The present study shows that the bacterial load in susceptible chickens was significantly higher than that in resistant chickens and TLR4, TLR2-1 and TLR21 expression was strongly diminished in the leukocytes of susceptible chickens compared with those of resistant chickens. The induction of expression of pro-inflammatory cytokine genes, IL-6 and IFN-β, was greatly enhanced in the resistant but not in susceptible chickens. Contrasting with the reduced expression of TLR genes, those of the zinc finger protein 493 (ZNF493) gene and Toll-interacting protein (TOLLIP) gene were enhanced in the susceptible chickens. Finally, the expression of TLR4 in peripheral blood mononuclear cells (PBMCs) infected in vitro with S. enteritidis increased significantly as a result of treatment with 5-Aza-2-deoxycytidine (5-Aza-dc) while either 5-Aza-dc or trichostatin A was effective in up-regulating the expression of TLR21 and TLR2-1. DNA methylation, in the predicted promoter region of TLR4 and TLR21 genes, and an exonic CpG island of the TLR2-1 gene was significantly higher in the susceptible chickens than in resistant chickens. Taken together, the results demonstrate that ZNF493-related epigenetic modification in leukocytes probably accounts for increased susceptibility to S. enteritidis in chickens by diminishing the expression and response of TLR4, TLR21 and TLR2-1.  相似文献   

4.
Campylobacter jejuni (C. jejuni) is a leading cause of human bacterial enteritis worldwide with poultry products being a major source of C. jejuni contamination. The chicken is the natural reservoir of C. jejuni where bacteria colonize the digestive tract of poultry, but rarely cause symptoms of disease. To understand the systemic molecular response mechanisms to C. jejuni infection in chickens, total splenic RNA was isolated and applied to a whole genome chicken microarray for comparison between infected (I) and non-infected (N) chickens within and between genetic lines A and B. There were more total splenic host genes responding to the infection in resistant line A than in susceptible line B. Specifically, genes for lymphocyte activation, differentiation and humoral response, and Ig light and heavy chain were upregulated in the resistant line. In the susceptible line, genes for regulation of erythrocyte differentiation, hemopoiesis, and RNA biosynthetic process were all downregulated. An interaction analysis between genetic lines and treatment demonstrated distinct defense mechanisms between lines: the resistant line promoted apoptosis and cytochrome c release from mitochondria, whereas the susceptible line responded with a downregulation of both functions. This was the first time that such systemic defensive mechanisms against C. jejuni infection have been reported. The results of this study revealed novel molecular mechanisms of the systemic host responses to C. jejuni infection in chickens that warrant further investigation.  相似文献   

5.
Heterophils mediate acute protection against Salmonella in young poultry. We evaluated susceptibility of genetically distinct lines of broilers to systemic Salmonella enteritidis (SE) infections. SE was administered into the abdomen of day-old chickens (parental lines [A and B]; F1 reciprocal crosses [C and D]) to assess modulation of leukocytes and survivability of chickens. Line A was more resistant to SE than line B; likewise cross D was more resistant than cross C. Significantly more heterophils migrated to the abdominal cavity post-infection in the resistant lines. These data indicate that increased heterophil influx to the infection site contributes to increased resistance against systemic SE infections in neonatal chickens.  相似文献   

6.
7.
8.
Host responses during the later stages of Salmonella-macrophage interactions are critical to controlling infection but have not been well characterized. After 24 h of infection, nearly half of interferon-gamma-primed murine RAW 264.7 macrophage-like cells infected by Salmonella enterica serovar Typhimurium contained filamentous bacteria. Bacterial filamentation indicates a defect in completing replication and has been previously observed in bacteria responding to a variety of stresses. To understand whether macrophage gene expression was responsible for this effect on Salmonella Typhimurium replication, we used gene arrays to profile interferon-gamma-primed RAW 264.7 cell gene expression following infection. We observed an increase in MEK1 kinase mRNA at 8 h, an increase in MEK protein at 24 h, and measured phosphorylation of MEK's downstream target kinase, ERK1/2, throughout the 24-h infection period. Treatment of cells with MEK kinase inhibitors significantly reduced numbers of filamentous bacteria observed within macrophages after 24 h and increased the number of intracellular colony-forming units. Phagocyte NADPH oxidase inhibitors and antioxidants also significantly reduced bacterial filamentation. Either MEK kinase or phagocyte oxidase inhibitors could be added 4-8 h after infection and still significantly decrease bacterial filamentation. Oxidase activity appears to mediate bacterial filamentation in parallel to MEK kinase signaling, while inducible nitric-oxide synthase inhibitors had no significant effect on bacterial morphology. In summary, Salmonella Typhimurium infection of interferon-gamma-primed macrophages triggers a MEK kinase cascade at later infection times, and both MEK kinase and phagocyte NADPH oxidase activity impair bacterial replication. These two signaling pathways mediate a host bacteriostatic pathway and may play an important role in innate host defense against intracellular pathogens.  相似文献   

9.
Heterophils, the avian polymorphonuclear leukocyte and the counterpart of mammalian neutrophils, generate the primary innate response to pathogens in chickens. Heterophil performance against pathogens is associated with host disease resistance, and heterophil gene expression and function are under genetic control. To characterize the genomic basis of heterophil function, heterophils from F13 advanced intercross chicken lines (broiler × Leghorn and broiler × Fayoumi) were assayed for phagocytosis and killing of Salmonella enteritidis, oxidative burst, and extracellular trap production. A whole-genome association analysis of single nucleotide polymorphisms at 57,636 loci identified genomic locations controlling these functional phenotypes. Genomic analysis revealed a significant association of extracellular trap production with the SAL1 locus and the SLC11A1 gene, which have both been previously associated with resistance to S. enteritidis. Fine mapping supports SIVA1 as a candidate gene controlling SAL1-mediated resistance and indicates that the proposed cell-death mechanism associated with extracellular trap production, ETosis, likely functions through the CD27/Siva-1-mediated apoptotic pathway. The SLC11A1 gene was also associated with phagocytosis of S. enteritidis, suggesting that the Slc11a1 protein may play an additional role in immune response beyond depleting metal ions to inhibit intracellular bacterial growth. A region of chromosome 6 with no characterized genes was also associated with extracellular trap production. Further characterization of these novel genes in chickens and other species is needed to understand their role in polymorphonuclear leukocyte function and host resistance to disease.  相似文献   

10.
Retail organic (n = 198) and conventional (n = 61) chickens were analyzed. Most organic (76%) and conventional (74%) chickens were contaminated with campylobacters. Salmonellae were recovered from 61% of organic and 44% of conventional chickens. All Salmonella enterica serovar Typhimurium isolates from conventional chickens were resistant to five or more antimicrobials, whereas most S. enterica serovar Typhimurium isolates (79%) from organic chickens were susceptible to 17 antimicrobials tested.  相似文献   

11.
Salmonella enterica serovar Typhimurium (S. typhimurium) infects a wide variety of mammalian hosts and in rodents causes a typhoid-like systemic disease involving replication of bacteria inside macrophages within reticuloendothelial tissues. Previous studies demonstrated that the mig-14 and virK genes of Salmonella enterica are important in bacterial resistance to anti-microbial peptides and are necessary for continued replication of S. typhimurium in the liver and spleen of susceptible mice after orogastric inoculation. In this work we report that inflammatory signalling via interferon-gamma (IFN-gamma) is crucial to controlling replication of mig-14 mutant bacteria within the liver and spleen of mice after oral infection. Using a Salmonella persistence model recently developed in our laboratory, we further demonstrate that mig-14 contributes to long-term persistence of Salmonella in the spleen and mesenteric lymph nodes of chronically infected mice. Both mig-14 and virK contribute to the survival of Salmonella in macrophages treated with IFN-gamma and are necessary for resistance to cathelin-related anti-microbial peptide (CRAMP), an anti-microbial peptide expressed at high levels in activated mouse macrophages. We also show that both Mig-14 and VirK inhibit the binding of CRAMP to Salmonella, and demonstrate that Mig-14 is an inner membrane-associated protein. We further demonstrate by transmission electron microscopy that the primary locus of CRAMP activity appears to be intracytoplasmic, rather than at the outer membrane, suggesting that Mig-14 may prevent the penetration of the inner membrane by CRAMP. Together, these data indicate an important role for mig-14 in anti-microbial peptide resistance in vivo, and show that this resistance is important to the survival of Salmonella in systemic sites during both acute and persistent infection.  相似文献   

12.
The viaB locus enables Salmonella enterica serotype Typhi to reduce Toll-like receptor (TLR) dependent cytokine production in tissue culture models. This DNA region contains genes involved in the regulation ( tviA ), biosynthesis ( tviBCDE ) and export ( vexABCDE ) of the Vi capsule. Expression of the Vi capsule in S.  Typhimurium, but not expression of the TviA regulatory protein, reduced tumour necrosis factor-alpha (TNF-α) and IL-6 production by murine bone-marrow derived macrophages. Production of TNF-α and IL-6 was dependent on expression of TLR4 as stimulation of macrophages from TLR4−/− mice with S.  Typhimurium did not result in expression of these cytokines. Intraperitoneal infection of mice with S.  Typhimurium induced expression of TNF-α and inducible nitric oxide synthase (iNOS) in the liver. Introduction of the cloned viaB region into S.  Typhimurium reduced TNF-α and iNOS expression to levels observed after infection with a S.  Typhimurium msbB mutant. In contrast, no differences in TNF-α expression between the S.  Typhimurium wild type and strains expressing the Vi-capsule or carrying a mutation in msbB were observed after infection of TLR4−/− mice. We conclude that the Vi capsule prevents both in vitro and in vivo recognition of S.  Typhimurium lipopolysaccharide by TLR4.  相似文献   

13.
14.
Retail organic (n = 198) and conventional (n = 61) chickens were analyzed. Most organic (76%) and conventional (74%) chickens were contaminated with campylobacters. Salmonellae were recovered from 61% of organic and 44% of conventional chickens. All Salmonella enterica serovar Typhimurium isolates from conventional chickens were resistant to five or more antimicrobials, whereas most S. enterica serovar Typhimurium isolates (79%) from organic chickens were susceptible to 17 antimicrobials tested.  相似文献   

15.
Pattern recognition receptors (PRRs) are essential for recognition of conserved molecular constituents found on infectious microbes. Toll-like receptors (TLRs) are a critical component of the PRR repertoire and are coupled to downstream production of cytokines, chemokines, and antimicrobial peptides by TLR adaptor proteins. Our laboratory previously demonstrated a role for TLR function in the differential innate response of two lines of chickens to bacterial infections. The aim of the present study was to elucidate the role of TLRs in the differential innate responsiveness by measuring differences between lines A (resistant) and B (susceptible) in heterophil mRNA expression of selected TLRs (TLRs 4, 5, and 15) and TLR adaptor proteins (MyD88, TRIF, and TIRAP) in response to stimulation with Salmonella enterica serovar Enteritidis (SE). Although heterophils from both lines had significantly increased expression of TLR 15 mRNA in response to stimulation with SE, heterophils from chickens resistant to infection with SE had significantly greater levels of TLR 15 mRNA expression prior to and following stimulation with SE than heterophils from chickens susceptible to infection with SE. No significant differences were noted between lines in nonstimulated levels of TIRAP, but upon SE stimulation, line A birds had higher levels of expression than B birds. No significant differences were found in heterophils between lines for mRNA expression of TLRs 4 and 5 nor MyD88 and TRIF. These data indicate that differences in the gene expression of TLR 15 by heterophils likely accounts for some of the observed differences between the lines in their susceptibility to infection.  相似文献   

16.
17.
18.
Asymptomatic Salmonella enterica serovar Enteritidis carrier state in poultry has serious consequences on food safety and public health due to the risks of food poisoning following consumption of contaminated products. An understanding the mechanisms of persistence of Salmonella in the digestive tract of chicken can be achieved by a better knowledge of the defects in the control of infection in susceptible versus resistant animals. The gene expression of innate immune response factors including anti-microbial molecules, inflammatory and anti-infectious cytokines was studied in the caecal lymphoid tissue associated with the carrier state. Expression levels of these genes were assessed by real-time PCR and were compared in two inbred lines of chickens differing in resistance to the carrier state following oral inoculation of S. enterica serovar Enteritidis at 1 week of age. No correlation was observed between resistance/susceptibility to caecal carrier state and level of interleukin (IL)-1beta, IL-8, IL-18, inducible NO synthase (iNOS) and natural resistance associated macrophage protein 1 (NRAMP1). A high baseline level of defensin gene expression was recorded in young animals from the susceptible line. In contrast, a significantly low expression of interferon-gamma (IFN-gamma) gene was observed in these susceptible infected animals in comparison to resistant ones and healthy counterparts. IFN-gamma expression level represents a valuable indication of immunodeficiency associated with persistence of Salmonella in the chicken digestive tract, and IFN-gamma thus represents a factor to consider in the development of prophylactic measures for the reduction of Salmonella carrier state.  相似文献   

19.
A recently developed model for enterocolitis in mice involves pre-treatment with the antibiotic streptomycin prior to infection with Salmonella enterica serovar Typhimurium ( S.  Typhimurium). The contribution of Nramp1/Slc11a1 protein, a critical host defence mechanism against S.  Typhimurium, to the development of inflammation in this model has not been studied. Here, we analysed the impact of Nramp1 expression on the early development of colitis using isogenic Nramp1+/+ and Nramp1−/− mice. We hypothesized that Nramp1 acts by rapidly inducing an inflammatory response in the gut mucosa creating an antibacterial environment and limiting spread of S.  Typhimurium to systemic sites. We observed that Nramp1+/+ mice showed lower numbers of S.  Typhimurium in the caecum compared with Nramp1−/− mice at all times analysed. Acute inflammation was much more pronounced in Nramp1+/+ mice 1 day after infection. The effect of Nramp1 on development of colitis was characterized by higher secretion of the pro-inflammatory cytokines IFN-γ, TNF-α and MIP-1α and a massive infiltration of neutrophils and macrophages, compared with Nramp1−/− animals. These data show that an early and rapid inflammatory response results in protection against pathological effects of S.  Typhimurium infection in Nramp1+/+ mice.  相似文献   

20.
Salmonella remains the major cause of food-borne diseases worldwide, with chickens known to be the main reservoir for this zoonotic pathogen. Among the many approaches to reducing Salmonella colonization of broilers, bacteriophage offers several advantages. In this study, three bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) obtained from our collection that exhibited a broad host range against Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium were characterized with respect to morphology, genome size, and restriction patterns. A cocktail composed of the three bacteriophages was more effective in promoting the lysis of S. Enteritidis and S. Typhimurium cultures than any of the three bacteriophages alone. In addition, the cocktail was able to lyse the Salmonella enterica serovars Virchow, Hadar, and Infantis. The effectiveness of the bacteriophage cocktail in reducing the concentration of S. Typhimurium was tested in two animal models using different treatment schedules. In the mouse model, 50% survival was obtained when the cocktail was administered simultaneously with bacterial infection and again at 6, 24, and 30 h postinfection. Likewise, in the White Leghorn chicken specific-pathogen-free (SPF) model, the best results, defined as a reduction of Salmonella concentration in the chicken cecum, were obtained when the bacteriophage cocktail was administered 1 day before or just after bacterial infection and then again on different days postinfection. Our results show that frequent treatment of the chickens with bacteriophage, and especially prior to colonization of the intestinal tract by Salmonella, is required to achieve effective bacterial reduction over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号