首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
【目的】研究阿特拉津降解菌株DNS32的菌种分类、降解特性及降解途径,丰富阿特拉津降解菌菌种资源。【方法】在长期施用阿特拉津的东北地区寒地黑土中筛选出一株以阿特拉津为唯一氮源生长的降解菌株DNS32,测定其基本降解特性,通过16S rRNA序列分析进行分类鉴定,并利用阿特拉津降解基因PCR扩增技术及降解产物生成量的测定,进一步揭示其降解途径。【结果】实验结果发现DNS32菌株具有较好的降解能力,且在相对较低温度下也具有一定的降解能力。16S rRNA序列分析结果表明DNS32与鲁氏不动杆菌(Acinetobacter lwoffii)16S rRNA序列同源性高达99%。成功地扩增降解基因trzN、atzB及atzC,实验结果表明DNS32遵循Arthrobacter aurescens TC1的降解模式,可将阿特拉津降解为氰尿酸,降解产物的生成量测定也证明了这一点。【结论】实验结果丰富了阿特拉津降解菌菌种资源,为不动杆菌属的阿特拉津降解菌研究提供了参考。  相似文献   

2.
【背景】玉豆轮作过程中,玉米田中长残留除草剂阿特拉津易对下茬大豆作物产生不良影响。【目的】从黑龙江省安达市的农田土筛选一株能适应该土壤环境生长的阿特拉津降解菌并研究其降解特性。【方法】利用富集培养法,分离、筛选一株阿特拉津高效降解菌并结合外观形态、生理生化及16SrRNA基因序列测定对其进行鉴定,通过单一变量法设置不同的碳源、pH、温度和阿特拉津浓度,研究降解菌株最佳发酵及降解条件。【结果】得到一株在BSM-G中能够以阿特拉津为唯一氮源生长的高效阿特拉津降解菌AD111,鉴定为马德普拉塔无色小杆菌(Achromobacter marplatensis)。菌株AD111降解阿特拉津的最适温度为35℃,最适pH为8.0,最佳碳源为蔗糖,24 h内对浓度为50 mg/L的阿特拉津降解率达到99.7%,对300 mg/L的阿特拉津降解率达到81.9%。【结论】降解菌AD111具有较好的环境适应及阿特拉津降解能力,为解决黑龙江偏碱土壤中阿特拉津残留提供了良好的候选菌株。  相似文献   

3.
阿特拉津降解菌ATR3的分离鉴定与土壤修复   总被引:1,自引:0,他引:1  
阿特拉津因效率高、价格低廉,是我国玉米田施用最广泛的除草剂之一,但其结构稳定,残留时间长,因此对生态环境和人类健康造成了一定的危害。从长期受阿特拉津污染的玉米田土壤中筛选并鉴定阿特拉津降解菌,明确其在不同类型土壤中的去除能力。对分离出的阿特拉津降解菌ATR3进行生理生化分析和16S rRNA序列鉴定,确定菌株ATR3为节杆菌属(Arthrobacter sp.)。该菌株以阿特拉津为唯一氮源,培养48 h后对1 000 mg/L阿特拉津的去除率达到97%以上。敏感作物盆栽试验结果表明,阿特拉津在棕壤上去除最快,褐土次之,黑土最慢,说明阿特拉津在土壤中的去除过程与土壤本身的理化性质呈相关关系。同时,该菌株处理14 d后,能明显恢复玉米的各项生物学指标,说明该菌株对阿特拉津污染土壤具有良好的修复能力。为阿特拉津降解菌剂的推广利用提供参考。  相似文献   

4.
阿特拉津降解菌株的分离、鉴定和工业废水生物处理试验   总被引:1,自引:0,他引:1  
用液体无机盐培养基富集培养法和无机盐平板直接分离法, 从生产阿特拉津的农药厂的废水和污泥混合物中分离到13个能以阿特拉津为唯一氮源生长的细菌菌株。通过16S rRNA基因序列分析, 11个菌株被鉴定为Arthrobacter spp., 2个菌株被鉴定为Pseudomonas spp.。对阿特拉津降解活力最高的Arthrobacter sp. AD30和Pseudomonas sp. AD39的降解基因组成和降解特性进行了详细研究。降解基因的PCR扩增表明, AD30和AD39都含有trzN-atzBC基因, 能将有毒的阿特拉津降解成无毒的氰尿酸。降解实验表明, 向阿特拉津浓度为200 mg/L的无机盐培养基中分别接种等量的AD30、AD39和这两个菌株的混合菌液, 30°C振荡培养48 h以后, 阿特拉津去除率分别为92.5%、97.9%和99.6%, 表明混合菌的降解效果好于单菌。用AD30和AD39的混合菌液接种阿特拉津浓度为176 mg/L的工业废水, 30°C振荡培养72 h以后, 99.1%的阿特拉津被去除, 表明混合菌株在阿特拉津工业废水的生物处理中有很好的应用潜力。  相似文献   

5.
【目的】通过遗传学和生理学实验,揭示分离自工业废水的阿特拉津降解细菌具有遗传和生理多样性,为阐明阿特拉津生物降解的分子机理和阿特拉津降解细菌在污染环境生物修复中的应用提供新见解。【方法】用普通PCR方法检测菌株的阿特拉津降解基因,分析其降解基因组成;用基因组重复序列PCR技术(rep-PCR)分析降解菌株的基因组类型;用Western blot方法检测菌株阿特拉津降解途径的第一个酶三嗪水解酶(TrzN);用不同氮源(阿特拉津、莠灭净、扑草净、西玛津、氰草净、阿特拉通和氰尿酸)和碳源(蔗糖、葡萄糖、麦芽糖、乳糖、柠檬酸钠、乙酸钠和琥珀酸钠)培养降解菌株,通过检测培养液的OD600值,证明菌株能够利用的氮源和碳源种类。【结果】对分离自工业废水的27个阿特拉津降解菌株所进行的阿特拉津降解基因PCR检测表明,其降解基因组成分别为trzN-atzBC、trzN-atzABC和atzADEF;通过rep-PCR实验将27个阿特拉津降解菌株分为7个群;Western blot结果表明,27个菌株中有24个含有三嗪水解酶TrzN;氮源利用实验表明,2个菌株能够利用所有7种氮源生长,其余25个菌株只能利用其中的2-6种;碳源利用实验表明,10个菌株能够利用所有7种碳源生长,其余17个菌株只能利用其中的3-6种。【结论】分离自某工业废水的27株阿特拉津降解功能菌存在相当广泛的遗传和生理学上的多样性,trzN-atzABC降解基因组成为首次发现。  相似文献   

6.
阿特拉津降解菌T_3 AB_1的分离鉴定及土壤修复   总被引:7,自引:0,他引:7  
【目的】从阿特拉津污染土壤分离高效降解菌株,进行分类学鉴定、降解特性及黑土修复能力初步研究,为阿特拉津污染土壤微生物修复提供新的菌株。【方法】通过形态特征、生理生化特征和16S rDNA序列分析方法进行菌株鉴定;通过培养时间、温度、pH值等环境因素的研究得出菌株的最佳降解条件;通过降解菌株接种于不同种类除草剂为唯一碳氮源培养基获得该菌株的降解谱;通过土壤接种和敏感作物盆栽生测试验验证菌株对阿特拉津污染土壤修复能力。【结果】本试验从黑龙江省讷河市长期施用阿特拉津的玉米田地中分离出一株能以阿特拉津为唯一碳氮源生长的细菌T3AB1,初步鉴定为节杆菌属(Arthrobacter sp.),该菌株在72 h内对500 mg/L阿特拉津(pH 8.0)的降解率高达99%,其降解能力较高的条件为pH7.0-8.0、25-30℃、摇培72-108 h,该菌株能够利用甲氧咪草烟、咪唑乙烟酸、氟磺胺草醚、氟乐灵、异噁草松为唯一碳氮源进行生长,处理168 h的降解率能够达到12.66%-40.54%,该菌株处理21 d能够显著恢复敏感作物水稻的各项生物量指标,且随着处理时间的延长,其对土壤的修复作用也会逐渐增强。【结论】从黑龙江省污染土壤中筛选得到的高效降解阿特拉津的节杆菌属近缘种T3AB1,土壤接种实验表明该菌株具有很好的土壤修复作用,可为阿特拉津生物修复的研究提供适宜菌种资源。  相似文献   

7.
阿特拉津降解菌SYSA的分离筛选和鉴定   总被引:2,自引:0,他引:2  
从长期施用阿特拉津的土壤中筛选到1株能够以阿特拉津为惟一碳源生长的菌株SYSA,经生理生化特性鉴定和16S rDNA序列分析,该菌为阴沟肠杆菌(Enterobacter cloacae).对SYSA菌的生物学特性研究表明,pH 7-8,30℃时,在以阿特拉津(20 mg/L)为惟一碳源的培养基上经146 h培养,降解率为87%.  相似文献   

8.
阿特拉津及其降解菌的使用对土壤微生物群落的影响   总被引:4,自引:0,他引:4  
比较了阿特拉津及降解菌株BTAH1的使用对土壤微生物的影响.结果表明,在实验周期内阿特拉津对土壤微生物的代谢作用有较明显的刺激作用,与空白土壤(未施用阿特拉津和降解菌)相比,对照土壤(施用50mg·kg-1土阿特拉津)呼吸强度显著增加,且土壤中的阿特拉津浓度对土壤NH4+-N和NO3--N浓度的影响显著.降解菌BTAH1可在1周内降解土壤中98%以上的阿特拉津,从而使土壤呼吸强度有所下降,土壤中NH4+-N和NO3--N的浓度基本与空白土壤持平,对微生物量C和微生物量N影响不显著;放线菌和真菌数量也基本与空白持平,细菌数量较高.对土壤细菌的16SrDNA文库的ARDRA分析发现,阿特拉津及其降解菌的使用对土壤细菌群落结构有一定程度的影响,阿特拉津的使用会降低细菌群落的多样性,而降解菌的使用会恢复土壤细菌的多样性.  相似文献   

9.
利用自动机器学习方法建立预测土壤中除草剂阿特拉津降解效率的最佳模型,可评估土壤中阿特拉津的残存风险。本研究收集了49篇已发表文献中的494对数据,选择土壤pH、有机质含量、饱和导水率、土壤湿度、阿特拉津初始浓度、培养时间和接菌量7个因素作为输入特征,以阿特拉津在土壤中的一级反应速率常数作为输出特征,建立了6种预测土壤中阿特拉津降解效率的模型。通过线性回归和相关评价指标对模型性能进行综合分析。结果表明:XGBoost模型在预测一级反应速率常数(k)方面性能表现最佳。基于预测模型获得各因素的特征重要性排名,依次为土壤湿度>培养时间>pH>有机质>阿特拉津初始浓度>饱和导水率>接菌量;应用SHAP解释各特征与土壤中阿特拉津降解能力间的潜在联系以及各特征贡献度发现,时间对k有负贡献,而饱和导水率则对k有正贡献。土壤湿度、阿特拉津初始浓度、pH、接菌量和有机质含量的高值普遍分布在SHAP=0两侧,说明它们对土壤中阿特拉津降解存在复杂贡献。XGBoost模型结合SHAP方法在预测k性能和可解释性方面具有较高的准确性。通过机器学习方法,充分挖掘历史试验数据的价值,...  相似文献   

10.
阿特拉津降解菌株的分离和鉴定   总被引:28,自引:0,他引:28  
从农药厂废水中分离到6株能以除草剂阿特拉津为唯一氮源生长的细菌,即假单胞菌(Pseudomonas spp,.)AD1,AD2和AD6,土壤杆菌(Agrobacterium sp.)AD4,黄单胞菌(Xanthomonas sp.)AD5,欧氏菌(Erwinia sp.)AD7,AD1菌株能使无机盐培养基中的0.3g/L阿特拉津在72h内降解99.9%,当以AD1,AD2,AD4,AD5,AD6和AD7菌株的总DNA为模板进行PCR扩增时,除AD2菌株以外,均得到了与献报道的假单胞菌ADP菌株的阿特拉津氯水解酶基因(atzA)同源的PCR产物。  相似文献   

11.
Strain D4 was isolated from the sludge of the wastewater treating system of a 4-Chloronitrobenzene (4-CNB) manufacturer. It was able to utilize 4-CNB as the sole carbon and nitrogen source for growth. Strain D4 was preliminarily identified as Cupriavidus sp. based on its physiological & biochemical characteristics and 16S rRNA gene sequence analysis. It could completely degrade 300 mg L−1 of 4-CNB within 25 h under the condition of 30 °C and pH 7.0. Strain D4 could also degrade 4-CNB in presence of heavy metals including Co2+, Cd2+, Pb2+, Zn2+, Mn2+and so on, therefore it was an excellent candidate for the bio-treatment of 4-CNB and heavy metals co-contaminated environments. The main 4-CNB degrading related genes (cnb A, B, Cab, D, G, Z) and arsenate resistance gene fragment of strain D4 were cloned, sequenced and analyzed, which showed high similarity with the corresponding genes of a reported 4-CNB-degrader, strain CNB-1. The cnb genes of strain D4 were located on two plasmids. This is the first report on the degradation of 4-CNB by the strain from the genus of Cupriavidus sp.  相似文献   

12.
一株高效广谱莠去津降解菌SB5的生长和降解特性   总被引:1,自引:0,他引:1  
本研究采用富集培养技术自莠去津污染的活性污泥中分离筛选到一株具有降解三嗪类除草剂功能的菌株SB5,经形态学和16S rRNA基因分析将其初步鉴定为类节杆菌属细菌.其具有已知莠去津降解相关基因trzN、atzB及atzC.在培养基中添加葡萄糖、蔗糖、柠檬酸钠、酵母浸粉和蛋白胨可显著提高菌株SB5的生物量和对莠去津的降解效...  相似文献   

13.
Summary Lysosomes of embryonic rat fibroblasts cultivated in vitro normally contain heavy metals, as shown with a modified sulfide-silver method (SSM). Cultures which received lead added to the cultivation medium showed an enhanced SSM-positivity. However, since the SSM demonstrates several different heavy metals the sulfides of which are weakly soluble in water, it was not possible to distinguish between naturally occurring heavy metals—largely iron—and added lead (supposed to have been taken up by the cells).By treating the cells with a 0.2 M TCA solution after an initial exposure to HS it was possible to dissolve FeS without affecting the PbS to any noticeable extent. When subsequently the development process of the SSM was applied to the cells, no metals could be demonstrated in the control cells whereas those exposed to lead showed presence of granules, most of which were identical with lysosomes as visualized with a Gomori type reaction. A lysosomal uptake of lead could thus be demonstrated with the modified SSM when combined with a simple dissolving process.Supported by the Swedish Medical Research Council grants nos. K70-12X-2037-05A and B71-12X-2037-06B.  相似文献   

14.
Atrazine is a widely used herbicide with great environmental concern due to its high potential to contaminate soil and waters. An atrazine-degrading bacterial strain HB-6 was isolated from industrial wastewater and the 16S rRNA gene sequencing identified HB-6 as a Bacillus subtilis. PCR assays indicated that HB-6 contained atrazine-degrading genes trzN, atzB and atzC. The strain HB-6 was capable of utilizing atrazine and cyanuric acid as a sole nitrogen source for growth and even cleaved the s-triazine ring and mineralized atrazine. The strain demonstrated a very high efficiency of atrazine biodegradation with a broad optimum pH and temperature ranges and could be enhanced by cooperating with other bacteria, suggesting its huge potential for remediation of atrazine-contaminated sites. To our knowledge, there are few Bacillus subtilis strains reported that can mineralize atrazine, therefore, the present work might provide some new insights on atrazine remediation.  相似文献   

15.
Aerobic bacteria degrading o-nitrobenzaldehyde (ONBA) were isolated from activated sludges. One of the isolates, ONBA-17, was identified as Pseudomonas sp. The isolate could grow on ONBA as its sole source of carbon and nitrogen. Further studies demonstrated that the strain was a moderately halophilic bacterium and capable of degrading benzoic acid, 2-nitrophenol, 2-aminophenol, 4-hydroxybenzoic acid, and 4-dimetylaminobenzaldehyde. It could completely degrade 100 mg L−1 ONBA at a range of pH 6–8 in 48 h at 30°C, and up to 400 mg L−1 after 288 h. The strain showed potential to be a good candidate for biotreatment of industrial wastewaters containing ONBA due to its salt-tolerance ability, multiresistance to some heavy metals and antibiotics, and the abilities of degradation of aromatic compounds. These findings may help in developing a process for ONBA-containing industrial wastewater treatment.  相似文献   

16.
Contribution of Acinetobacter genus in the degradation of atrazine and its analogs is reported here. An interesting bacterial isolate capable of degrading atrazine as high as 250 ppm was isolated from a soil heavily contaminated with atrazine. The permissible level of atrazine in drinking water is 3 ppb and hence use of a strain capable of atrazine degradation as high as 250 ppm would be of immense help for rapid environmental cleanup. This isolate was found to be capable of best growth at 37 degrees C and at pH inclined towards the alkaline side. It was found that atrazine was utilized as a carbon and not as a nitrogen source. Acinetobacter species was also active on other triazine pesticides, viz., simazine, terbutryn, cyanazine, and prometon. There are very few reports on the degradation of atrazine by any member of this genus and hence this could lead to new degradation pathways and new metabolites.  相似文献   

17.
The study was navigated to examine the metal biosorbing ability of bacterial strain OSM29 recovered from rhizosphere of cauliflower grown in soil irrigated consistently with industrial effluents. The metal tolerant bacterial strain OSM29 was identified as Bacillus thuringiensis following 16S rRNA gene sequence analysis. In the presence of the varying concentrations (25–150 mgl−1) of heavy metals, such as cadmium, chromium, copper, lead and nickel, the B. thuringiensis strain OSM29 showed an obvious metal removing potential. The effect of certain physico-chemical factors such as pH, initial metal concentration, and contact time on biosorption was also assessed. The optimum pH for nickel and chromium removal was 7, while for cadmium, copper and lead, it was 6. The optimal contact time was 30 min. for each metal at 32 ± 2 °C by strain OSM29. The biosorption capacity of the strain OSM29 for the metallic ions was highest for Ni (94%) which was followed by Cu (91.8%), while the lowest sorption by bacterial biomass was recorded for Cd (87%) at 25 mgl−1 initial metal ion concentration. The regression coefficients obtained for heavy metals from the Freundlich and Langmuir models were significant. The surface chemical functional groups of B. thuringiensis biomass identified by Fourier transform infrared (FTIR) were amino, carboxyl, hydroxyl, and carbonyl groups, which may be involved in the biosorption of heavy metals. The biosorption ability of B. thuringiensis OSM29 varied with metals and was pH and metal concentration dependent. The biosorption of each metal was fairly rapid which could be an advantage for large scale treatment of contaminated sites.  相似文献   

18.
With the specific selection pressures of four atrazine concentrations (10–33 mg l–1) and two pH values (5.5 and 7.5), eight atrazine-catabolizing microbial associations were enriched and isolated from pesticide-contaminated South African loamy soil. Community-level physiological profiling of Environmental Biolog analysis data identified species complement differences in response to both pH and atrazine concentration and these were confirmed by polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE). These differences were not detected by conventional plate cultures and light and scanning electron microscopy. To probe atrazine catabolism under a range of environmental conditions, the two (pH 5.5, KRA02; pH 7.5, KRA06) associations catabolizing 30 mg atrazine l–1 were combined (KRA30). The highest specific growth rate was recorded at pH 4, while at pH 8 little growth resulted. With pH 4-poised cultures, the specific growth rates at 15 and 20 °C were comparable but more than doubled for the next 10° increment. These differences reflected species complement changes. Direct comparison of KRA30 with a reference strain, Pseudomonassp. strain ADP, identified comparable specific growth and atrazine catabolic rates. To probe catabolism further, nitrogen-limited batch cultures were made in the presence of supplemental carbon (citrate) but the catabolic rate did not change. The results are discussed with reference to in situ bioaugmentation remediation programmes.  相似文献   

19.
Wastewater from atrazine manufacturing plants contains large amounts of residual atrazine and atrazine synthesis products, which must be removed before disposal. One of the obstacles to biological treatment of these wastewaters is their high salt content, eg, up to 4% NaCl (w/v). To enable biological treatment, bacteria capable of atrazine mineralization must be adapted to high-salinity conditions. A recently isolated atrazine-degrading bacterium, Pseudomonas sp strain ADP, originally isolated from contaminated soils was adapted to biodegradation of atrazine at salt concentrations relevant to atrazine manufacturing wastewater. The adaptation mechanism was based on the ability of the bacterium to produce trehalose as its main osmolyte. Trehalose accumulation was confirmed by natural-abundance 1H NMR spectral analysis. The bacterium synthesized trehalose de novo in the cells, but could not utilize trehalose added to the growth medium. Interestingly, the bacterium could not produce glycine betaine (a common compatible solute), but addition of 1 mM of glycine betaine to the medium induced salt tolerance. Osmoregulated Pseudomonas sp strain ADP, feeding on citrate decreased the concentration of atrazine in non-sterile authentic wastewater from 25 ppm to below 1 ppm in less than 2 days. The results of our study suggest that salt-adapted Pseudomonas sp strain ADP can be used for atrazine degradation in salt-containing wastewater. Received 26 August 1997/ Accepted in revised form 06 December 1997  相似文献   

20.
Atrazine sensitive leguminous plants were grown in a soil spiked with atrazine and augmented with an atrazine-degrading bacterium, Arthrobacter sp. strain MCM B-436, to ascertain its degradative efficiency. Germination and survival of plants was correlated with atrazine removal from soil. This experiment was carried out at laboratory as well as field level, showing consistent results. This bioindicator approach serves as an efficient measure for atrazine removal and could be easily adapted to determine atrazine degradation efficiency of other microbial strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号