首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioenergy is expected to have a prominent role in limiting global greenhouse emissions to meet the climate change target of the Paris Agreement. Many studies identify negative emissions from bioenergy generation with carbon capture and storage (BECCS) as its key contribution, but assume that no other CO2 removal technologies are available. We use a global integrated assessment model, TIAM‐UCL, to investigate the role of bioenergy within the global energy system when direct air capture and afforestation are available as cost‐competitive alternatives to BECCS. We find that the presence of other CO2 removal technologies does not reduce the pressure on biomass resources but changes the use of bioenergy for climate mitigation. While we confirm that when available BECCS offers cheaper decarbonization pathways, we also find that its use delays the phase‐out of unabated fossil fuels in industry and transport. Furthermore, it displaces renewable electricity generation, potentially increasing the likelihood of missing the Paris Agreement target. We found that the most cost‐effective solution is to invest in a basket of CO2 removal technologies. However, if these technologies rely on CCS, then urgent action is required to ramp up the necessary infrastructure. We conclude that a sustainable biomass supply is critical for decarbonizing the global energy system. Since only a few world regions carry the burden of producing the biomass resource and store CO2 in geological storage, adequate international collaboration, policies and standards will be needed to realize this resource while avoiding undesired land‐use change.  相似文献   

2.
Bioenergy with carbon capture and storage (BECCS) has been proposed as a potential climate mitigation strategy raising concerns over trade‐offs with existing ecosystem services. We evaluate the feasibility of BECCS in the Upper Missouri River Basin (UMRB), a landscape with diverse land use, ownership, and bioenergy potential. We develop land‐use change scenarios and a switchgrass (Panicum virgatum L.) crop functional type to use in a land‐surface model to simulate second‐generation bioenergy production. By the end of this century, average annual switchgrass production over the UMRB ranges from 60 to 210 Tg dry mass/year and is dependent on the Representative Concentration Pathway for greenhouse gas emissions and on land‐use change assumptions. Under our simple phase‐in assumptions this results in a cumulative total production of 2,000–6,000 Tg C over the study period with the upper estimates only possible in the absence of climate change. Switchgrass yields decreased as average CO2 concentrations and temperatures increased, suggesting the effect of elevated atmospheric CO2 was small because of its C4 photosynthetic pathway. By the end of the 21st century, the potential energy stored annually in harvested switchgrass averaged between 1 and 4 EJ/year assuming perfect conversion efficiency, or an annual electrical generation capacity of 7,000–28,000 MW assuming current bioenergy efficiency rates. Trade‐offs between bioenergy and ecosystem services were identified, including cumulative direct losses of 1,000–2,600 Tg C stored in natural ecosystems from land‐use change by 2090. Total cumulative losses of ecosystem carbon stocks were higher than the potential ~300 Tg C in fossil fuel emissions from the single largest power plant in the region over the same time period, and equivalent to potential carbon removal from the atmosphere from using biofuels grown in the same region. Numerous trade‐offs from BECCS expansion in the UMRB must be balanced against the potential benefits of a carbon‐negative energy system.  相似文献   

3.
To reach the reduced carbon emission targets proposed by the Paris agreement, one of the widely proposed decarbonizing strategies, referred to as negative emissions technologies (NETs), is the production and combustion of bioenergy crops in conjunction with carbon capture and storage (BECCS). However, concerns have been increasingly raised that relying on the potential of BECCS to achieve negative emissions could result in delayed reductions in gross CO2 emissions, with consequent high risk of overshooting global temperature targets. We focus on two particular issues: the carbon efficiency and payback time of bioenergy use in BECCS and the potential constraints on the supply of bioenergy. The simplistic vision of BECCS is that 1 tonne of CO2 captured in the growth of biomass equates to 1 tonne of CO2 sequestered geologically, but this cannot be the case as CO2 is emitted by variable amounts during the lifecycle from crop establishment to sequestration below ground in geological formations. The deployment of BECCS is ultimately reliant on the availability of sufficient, sustainably sourced, biomass. The two most important factors determining this supply are land availability and land productivity. The upper bounds of the area estimates required correspond to more than the world's harvested land for cereal production. To achieve these estimates of biomass availability requires the rapid evolution of a multitude of technological, social, political and economic factors. Here, we question whether, because of the limited sustainable supply of biomass, BECCS should continue to be considered the dominant NET in IPCC and other scenarios achieving the Paris targets, or should it be deemed no longer fit for purpose?  相似文献   

4.
New contingency policy plans are expected to be published by the United Kingdom government to set out urgent actions, such as carbon capture and storage, greenhouse gas removal and the use of sustainable bioenergy to meet the greenhouse gas reduction targets of the 4th and 5th Carbon Budgets. In this study, we identify two plausible bioenergy production pathways for bioenergy with carbon capture and storage (BECCS) based on centralized and distributed energy systems to show what BECCS could look like if deployed by 2050 in Great Britain. The extent of agricultural land available to sustainably produce biomass feedstock in the centralized and distributed energy systems is about 0.39 and 0.5 Mha, providing approximately 5.7 and 7.3 MtDM/year of biomass respectively. If this land‐use change occurred, bioenergy crops would contribute to reduced agricultural soil GHG emission by 9 and 11 /year in the centralized and distributed energy systems respectively. In addition, bioenergy crops can contribute to reduce agricultural soil ammonia emissions and water pollution from soil nitrate leaching, and to increase soil organic carbon stocks. The technical mitigation potentials from BECCS lead to projected CO2 reductions of approximately 18 and 23 /year from the centralized and distributed energy systems respectively. This suggests that the domestic supply of sustainable biomass would not allow the emission reduction target of 50 /year from BECCS to be met. To meet that target, it would be necessary to produce solid biomass from forest systems on 0.59 or 0.49 Mha, or alternatively to import 8 or 6.6 MtDM/year of biomass for the centralized and distributed energy system respectively. The spatially explicit results of this study can serve to identify the regional differences in the potential capture of CO2 from BECCS, providing the basis for the development of onshore CO2 transport infrastructures.  相似文献   

5.
Bioenergy with Carbon Capture and Storage (BECCS) features heavily in the energy scenarios designed to meet the Paris Agreement targets, but the models used to generate these scenarios do not address environmental and social implications of BECCS at the regional scale. We integrate ecosystem service values into a land‐use optimization tool to determine the favourability of six potential UK locations for a 500 MW BECCS power plant operating on local biomass resources. Annually, each BECCS plant requires 2.33 Mt of biomass and generates 2.99 Mt CO2 of negative emissions and 3.72 TWh of electricity. We make three important discoveries: (a) the impacts of BECCS on ecosystem services are spatially discrete, with the most favourable locations for UK BECCS identified at Drax and Easington, where net annual welfare values (from the basket of ecosystems services quantified) of £39 and £25 million were generated, respectively, with notably lower annual welfare values at Barrow (?£6 million) and Thames (£2 million); (b) larger BECCS deployment beyond 500 MW reduces net social welfare values, with a 1 GW BECCS plant at Drax generating a net annual welfare value of £19 million (a 50% decline compared with the 500 MW deployment), and a welfare loss at all other sites; (c) BECCS can be deployed to generate net welfare gains, but trade‐offs and co‐benefits between ecosystem services are highly site and context specific, and these landscape‐scale, site‐specific impacts should be central to future BECCS policy developments. For the United Kingdom, meeting the Paris Agreement targets through reliance on BECCS requires over 1 GW at each of the six locations considered here and is likely, therefore, to result in a significant welfare loss. This implies that an increased number of smaller BECCS deployments will be needed to ensure a win–win for energy, negative emissions and ecosystem services.  相似文献   

6.
Biomass is considered a low carbon source for various energy or chemical options. This paper assesses it's different possible uses, the competition between these uses, and the implications for long‐term global energy demand and energy system emissions. A scenario analysis is performed using the TIMER energy system model. Under baseline conditions, 170 EJ yr?1 of secondary bioenergy is consumed in 2100 (approximately 18% of total secondary energy demand), used primarily in the transport, buildings and nonenergy (chemical production) sectors. This leads to a reduction of 9% of CO2 emissions compared to a counterfactual scenario where no bioenergy is used. Bioenergy can contribute up to 40% reduction in emissions at carbon taxes greater than 500/tC. As higher CO2 taxes are applied, bioenergy is increasingly diverted towards electricity generation. Results are more sensitive to assumptions about resource availability than technological parameters. To estimate the effectiveness of bioenergy in specific sectors, experiments are performed in which bioenergy is only allowed in one sector at a time. The results show that cross‐sectoral leakage and emissions from biomass conversion limit the total emission reduction possible in each sector. In terms of reducing emissions per unit of bioenergy use, we show that the use of bioelectricity is the most effective, especially when used with carbon capture and storage. However, this technology only penetrates at a high carbon price (>100/tC) and competition with transport fuels may limit its adoption.  相似文献   

7.
To calculate the global warming potential of biogenic carbon dioxide emissions (GWPbCO2) associated with diverting residual biomass to bioenergy use, the decay of annual biogenic carbon pulses into the atmosphere over 100 years was compared between biomass use for energy and its business-as-usual decomposition in agricultural, forestry, or landfill sites. Bioenergy use increased atmospheric CO2 load in all cases, resulting in a 100GWPbCO2 (units of g CO2e/g biomass CO2 released) of 0.003 for the fast-decomposing agricultural residues to 0.029 for the slow, 0.084–0.625 for forest residues, and 0.368–0.975 for landfill lignocellulosic biomass. In comparison, carbon emissions from fossil fuels have a 100GWP of 1.0 g (CO2e/g fossil CO2). The fast decomposition rate and the corresponding low 100GWPbCO2 values of agricultural residues make them a more climate-friendly feedstock for bioenergy production relative to forest residues and landfill lignocellulosic biomass. This study shows that CO2 released from the combustion of bioenergy or biofuels made from residual biomass has a greenhouse gas footprint that should be considered in assessing climate impacts.  相似文献   

8.
Carbon dioxide capture technologies have the potential to become an important climate change mitigation option through sequestration of gaseous CO2. A new concept for CO2 capture involves use of immobilized carbonic anhydrase (CA) that catalyzes the reversible hydration of CO2 to HCO3? and H+. Cost‐efficient production of the enzyme and an inexpensive immobilization system are critical for development of economically feasible CA‐based CO2 capture processes. An artificial, bifunctional enzyme containing CA from Neisseria gonorrhoeae and a cellulose binding domain (CBD) from Clostridium thermocellum was constructed with a His6 tag. The chimeric enzyme exhibited both CA activity and CBD binding affinity. This fusion enzyme is of particular interest due to its binding affinity for cellulose and retained CA activity, which could serve as the basis for improved technology to capture CO2 from flue gasses. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

9.
A procedure is described for the isolation from the phototrophic procaryole Anacystis nidulans of [U-14C]-labelled glycogen, with high specific radioactivity,formed when NaH14CO3 was added to non-dividing cells that continued to photoassimilate CO2. [U-14C]-Labelled glycogen was then treated with isoamylase (EC 3.2.1.68), isoamylase plus beta-amylase (EC 3.2.1.2), or glucoamylase (EC 3.2.1.3) to give [U-14C]-labelled maltosaccharides, maltose-U-14C, or d-glucose-U-14C, respectively.  相似文献   

10.
Natural gas is the cleanest fossil fuel source. However, natural gas wells typically contain considerable amounts of CO2, with on‐site CO2 capture necessary. Solid sorbents are advantageous over traditional amine scrubbing due to their relatively low regeneration energies and non‐corrosive nature. However, it remains a challenge to improve the sorbent's CO2 capacity at elevated pressures relevant to natural gas purification. Here, the synthesis of porous carbons derived from a 3D hierarchical nanostructured polymer hydrogel, with simple and effective tunability over the pore size distribution is reported. The optimized surface area reaches 4196 m2 g?1, which is among the highest of carbon‐based materials, with abundant micro‐ and narrow mesopores (2.03 cm3 g?1 with d < 4 nm). This carbon exhibits a record‐high CO2 capacity among reported carbons at elevated pressure (i.e., 28.3 mmol g?1 total adsorption at 25 °C and 30 bar). This carbon also shows good CO2/CH4 selectivity and excellent cyclability. Molecular simulations suggest increased CO2 density in micro‐ and narrow mesopores at high pressures. This is consistent with the observation that these pores are mainly responsible for the material's high‐pressure CO2 capacity. This work provides insights into material design and further development for CO2 capture from natural gas.  相似文献   

11.
Partitioning of CO2 incorporation into oxygenic phototrophic, anoxygenic phototrophic, and chemolithoautotrophic guilds was determined in a freshwater lake (Lake Cisó, Banyoles, Spain). CO2 incorporation into the different types of microorganisms was studied at different depths, during diel cycles, and throughout the year. During winter holomixis, the whole lake became anoxic and both the anoxygenic and chemolithoautotrophic guilds were more active at the surface of the lake, whereas the activity of the oxygenic guild was negligible. During stratification, the latter guild was more active in the upper metalimnion, whereas the anoxygenic guild was more active in the lower metalimnion. Specific growth rates and doubling times were estimated for the most conspicuous phototrophic microorganisms. Doubling times for Cryptomonas phaseolus ranged between 0.5 and 192 days, whereas purple sulfur bacteria (Chromatiaceae-like) ranged between 1.5 and 238 days. These growth rates were similar to those calculated with a different approach in previous papers and indicate slow-growing populations with very large biomass. Overall, the annual total CO2 incorporation in Lake Cisó was 220 g C m−2. Most of the CO2 incorporation, however, was due to the chemolithoautotrophic guild (61% during holomixis and 56% during stratification), followed by the anoxygenic phototrophic guild (35 and 19%, respectively) and the oxygenic phototrophs (4 and 25%, respectively), making dark carbon fixation the key process in the autotrophic metabolism of the lake.  相似文献   

12.
The anoxygenic green sulfur bacteria (GSBs) assimilate CO2 autotrophically through the reductive (reverse) tricarboxylic acid (RTCA) cycle. Some organic carbon sources, such as acetate and pyruvate, can be assimilated during the phototrophic growth of the GSBs, in the presence of CO2 or HCO3. It has not been established why the inorganic carbonis required for incorporating organic carbon for growth and how the organic carbons are assimilated. In this report, we probed carbon flux during autotrophic and mixotrophic growth of the GSB Chlorobaculum tepidum. Our data indicate the following: (a) the RTCA cycle is active during autotrophic and mixotrophic growth; (b) the flux from pyruvate to acetyl-CoA is very low and acetyl-CoA is synthesized through the RTCA cycle and acetate assimilation; (c) pyruvate is largely assimilated through the RTCA cycle; and (d) acetate can be assimilated via both of the RTCA as well as the oxidative (forward) TCA (OTCA) cycle. The OTCA cycle revealed herein may explain better cell growth during mixotrophic growth with acetate, as energy is generated through the OTCA cycle. Furthermore, the genes specific for the OTCA cycle are either absent or down-regulated during phototrophic growth, implying that the OTCA cycle is not complete, and CO2 is required for the RTCA cycle to produce metabolites in the TCA cycle. Moreover, CO2 is essential for assimilating acetate and pyruvate through the CO2-anaplerotic pathway and pyruvate synthesis from acetyl-CoA.  相似文献   

13.
This study reports an improved method for activating asphalt to produce ultra‐high surface area porous carbons. Pretreatment of asphalt (untreated Gilsonite, uGil ) at 400 °C for 3 h removes the more volatile organic compounds to form pretreated asphalt ( uGil‐P ) material with a larger fraction of higher molecular weight π‐conjugated asphaltenes. Subsequent activation of uGil‐P at 900 °C gives an ultra‐high surface area (4200 m2 g?1) porous carbon material ( uGil‐900 ) with a mixed micro and mesoporous structure. uGil‐900 shows enhanced room temperature CO2 uptake capacity at 54 bar of 154 wt% (35 mmol g?1). The CH4 uptake capacity is 37.5 wt% (24 mmol g?1) at 300 bar. These are relevant pressures in natural gas production. The room temperature working CO2 uptake capacity for uGil‐900 is 19.1 mmol g?1 (84 wt%) at 20 bar and 32.6 mmol g?1 (143 wt%) at 50 bar. In order to further assess the reliability of uGil‐900 for CO2 capture at elevated pressures, the authors study competitive sorption of CO2 and CH4 on uGil‐900 at pressures from 1 to 20 bar at 25 °C. CO2/CH4 displacement constants are measured at 2 to 40 bar, and found to increase significantly with pressure and surface area.  相似文献   

14.
Cost-effective technologies are needed to reach the international greenhouse gas (GHG) reduction targets in many fields, including waste and biomass treatment. This work reports the effects of CO2 capture from a combustion flue gas and its use in a newly-patented, two-phase anaerobic digestion (TPAD) process, to improve energy recovery and to reduce CO2 emissions. A TPAD process, fed with urban wastewater sludge, was successfully established and maintained for several months at pilot scale. The TPAD process with injection of CO2 exhibits efficient biomass degradation (58% VSS reduction), increased VFA production during the acidogenic phase (leading to VFA concentration of 8.4 g/L) and high biomethane production (0.350 Sm3/kgSSV; 0.363 Sm3/m3react·d). Moreover, CO2 intake in the acid phase has a positive impact on the overall GHG balance associated to biomethane production, and suggests an improved solution for both emission reduction and biomass conversion into biomethane.  相似文献   

15.
Flue gas from power plants can promote algal cultivation and reduce greenhouse gas emissions1. Microalgae not only capture solar energy more efficiently than plants3, but also synthesize advanced biofuels2-4. Generally, atmospheric CO2 is not a sufficient source for supporting maximal algal growth5. On the other hand, the high concentrations of CO2 in industrial exhaust gases have adverse effects on algal physiology. Consequently, both cultivation conditions (such as nutrients and light) and the control of the flue gas flow into the photo-bioreactors are important to develop an efficient “flue gas to algae” system. Researchers have proposed different photobioreactor configurations4,6 and cultivation strategies7,8 with flue gas. Here, we present a protocol that demonstrates how to use models to predict the microalgal growth in response to flue gas settings. We perform both experimental illustration and model simulations to determine the favorable conditions for algal growth with flue gas. We develop a Monod-based model coupled with mass transfer and light intensity equations to simulate the microalgal growth in a homogenous photo-bioreactor. The model simulation compares algal growth and flue gas consumptions under different flue-gas settings. The model illustrates: 1) how algal growth is influenced by different volumetric mass transfer coefficients of CO2; 2) how we can find optimal CO2 concentration for algal growth via the dynamic optimization approach (DOA); 3) how we can design a rectangular on-off flue gas pulse to promote algal biomass growth and to reduce the usage of flue gas. On the experimental side, we present a protocol for growing Chlorella under the flue gas (generated by natural gas combustion). The experimental results qualitatively validate the model predictions that the high frequency flue gas pulses can significantly improve algal cultivation.  相似文献   

16.
春玉米-晚稻与早稻-晚稻种植模式碳足迹比较   总被引:2,自引:0,他引:2  
量化作物生产的碳足迹有助于为农业生态系统温室气体减排提供理论依据。利用生命周期法研究了我国南方地区稻田春玉米-晚稻水旱轮作种植模式和早稻-晚稻连作种植模式下粮食生产的碳足迹,并定量分析粮食生产过程中各种碳排放源的相对贡献。结果表明,与早稻-晚稻的连作模式相比,春玉米-晚稻轮作模式的单位面积碳排放降低了6724 kg CO2-eq/hm2,单位产量的碳足迹降低了0.56 kg CO2-eq/kg。春玉米比早稻少排放6228 kg CO2-eq/hm2;与早稻-晚稻模式中晚稻碳排放相比,春玉米-晚稻轮作模式晚稻碳排放降低了497 kg CO2-eq/hm2。早稻-晚稻种植模式的碳足迹主要来源于甲烷(CH4),其碳排放为9776 kg CO2-eq/hm2(54.8%),氮肥生产和施用的碳排放为2871 kg CO2-eq/hm2(16.1%),灌溉电力消耗的碳排放2849 kg CO2-eq/hm2(16.0%)。春玉米-晚稻轮作模式的碳足迹主要来源于CH4的碳排放4442 kg CO2-eq/hm2(39.9%),氮肥生产和施用的碳排放2871 kg CO2-eq/hm2(25.8%),灌溉电力消耗的碳排放1508 kg CO2-eq/hm2(13.6%)。该模式中晚稻的碳足迹组成情况与春玉米-晚稻模式的碳足迹相似。但是,对于春玉米而言,其碳足迹主要来源氮肥生产和施用的碳排放1436 CO2-eq/hm2(50.1%),氧化亚氮(N2O)的碳排放为579 kg CO2-eq/hm2(20.2%),CH4的碳排放为378 CO2-eq/hm2(13.2%)。同时,相比于早稻-晚稻中晚稻的产量(6333 kg/hm2),春玉米-晚稻轮作模式下的晚稻产量(7270 kg/hm2)提高了14.8%。因此,引入春玉米-晚稻轮作模式有利于提升稻田生产力,降低稻田连作系统碳排放和碳足迹。  相似文献   

17.
Electrochemical reduction of carbon dioxide (CO2) typically suffers from low selectivity and poor reaction rates that necessitate high overpotentials, which impede its possible application for CO2 capture, sequestration, or carbon‐based fuel production. New strategies to address these issues include the utilization of photoexcited charge carriers to overcome activation barriers for reactions that produce desirable products. This study demonstrates surface‐plasmon‐enhanced photoelectrochemical reduction of CO2 and nitrate (NO3?) on silver nanostructured electrodes. The observed photocurrent likely originates from a resonant charge transfer between the photogenerated plasmonic hot electrons and the lowest unoccupied molecular orbital (MO) acceptor energy levels of adsorbed CO2, NO3?, or their reductive intermediates. The observed differences in the resonant effects at the Ag electrode with respect to electrode potential and photon energy for CO2 versus NO3? reduction suggest that plasmonic hot‐carriers interact selectively with specific MO acceptor energy levels of adsorbed surface species such as CO2, NO3?, or their reductive intermediates. This unique plasmon‐assisted charge generation and transfer mechanism can be used to increase yield, efficiency, and selectivity of various photoelectrochemical processes.  相似文献   

18.
Bioenergy crop cultivation on former peat extraction areas is a potential after‐use option that provides a source of renewable energy while mitigating climate change through enhanced carbon (C) sequestration. This study investigated the full C and greenhouse gas (GHG) balances of fertilized (RCG‐F) and nonfertilized (RCG‐C) reed canary grass (RCG; Phalaris arundinacea) cultivation compared to bare peat (BP) soil within an abandoned peat extraction area in western Estonia during a dry year. Vegetation sampling, static chamber and lysimeter measurements were carried out to estimate above‐ and belowground biomass production and allocation, fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in cultivated strips and drainage ditches as well as the dissolved organic carbon (DOC) export, respectively. Heterotrophic respiration was determined from vegetation‐free trenched plots. Fertilization increased the above‐ to belowground biomass production ratio and the autotrophic to heterotrophic respiration ratio. The full C balance (incl. CO2, CH4 and DOC fluxes from strips and ditches) was 96, 215 and 180 g C m?2 yr?1 in RCG‐F, RCG‐C and BP, respectively, suggesting that all treatments acted as C sources during the dry year. The C balance was driven by variations in the net CO2 exchange, whereas the combined contribution of CH4 and DOC fluxes was <5%. The GHG balances were 3.6, 7.9 and 6.6 t CO2 eq ha?1 yr?1 in RCG‐F, RCG‐C and BP, respectively. The CO2 exchange was also the dominant component of the GHG balance, while the contributions of CH4 and N2O were <1% and 1–6%, respectively. Overall, this study suggests that maximizing plant growth and the associated CO2 uptake through adequate water and nutrient supply is a key prerequisite for ensuring sustainable high yields and climate benefits in RCG cultivations established on organic soils following drainage and peat extraction.  相似文献   

19.
Searching for materials and technologies of efficient CO2 capture is of the utmost importance to reduce the CO2 impact on the environment. Therefore, the (AlN)n clusters (n = 3–5) are researched using density functional theoretical calculations. The results of the optimization show that the most stable structures of (AlN)n clusters all display planar configurations at B3LYP and G3B3 methods, which are consistent with the reported results. For these planar clusters, we further systematically studied their interactions with carbon dioxide molecules to understand their adsorption behavior at the B3LYP/6–311+G(d,p) level, including geometric optimization, binding energy, bond index, and electrostatic. We found that the planar structures of (AlN)n (n = 3–5) can capture 3–5 CO2 molecules. The result indicates that (AlN)n (n = 3–5) clusters binding with CO2 is an exothermic process (the capture of every CO2 molecule on (AlN)n clusters releases at least 30 kcal mol-1 in relative free energy values). These analysis results are expected to further motivate the applications of clusters to be efficient CO2 capture materials.  相似文献   

20.
Sugarcane leaves respired in full light and the CO2 evolved could be detected in sorghum or miaze photosynthesizing in the same closed system. A combination of radiometric and infra-red gas analysis techniques allowed the estimation of photorespiration (total CO2 evolution in light) and photosynthesis at increasing light intensities and of dark respiration. Rates of CO2 evolution approaching those of temperate zone plants occurred at lower light intensities but rapidly decreased with higher light. Smaller but significant quantities of 14CO2 were released even at intensities approximating full sunlight in leaves of maize, sorghum and sugarcane. Highly efficient CO2 capture may explain the low rates of photorespiration at high light intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号