首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Bonamia ostreae is a protozoan parasite of the flat oyster, Ostrea edulis, which has caused significant loss of oysters in Europe over the last decade. B. ostreae was purified from infected flat oysters and DNA was extracted. The nearly complete small subunit rDNA gene of B. ostreae was amplified using universal oligonucleotides and the PCR product was cloned and sequenced. BLAST research with this sequence revealed similarities to Haplosporidium nelsoni, Haplosporidium costale, and Minchinia teredinis. These data suggest that B. ostreae may be included in the genus Haplosporidium. Specific B. ostreae primers were designed for labeling, by PCR, a probe. This probe was successfully used by in situ hybridization to detect B. ostreae in infected fiat oysters, thus confirming the accuracy of this SSU rDNA sequence. The probe lead also to the detection of Bonamia sp. in infected Tiostrea chilensis and H. nelsoni in infected Crassostrea virginica but not Mikrocytos mackini infected Crassostrea gigas. These primers were also used to detect B. ostreae from infected oyster tissues by PCR. This B. ostreae SSU rDNA gene sequence provides genetic information as a first step toward elucidation of the taxonomic boundaries among the microcell organisms. Moreover, the development of DNA detection assays will be valuable specific diagnostic tools.  相似文献   

2.
Two cases of haplosporidian infection occurred during 1993 in Pacific oysters Crassostrea gigas from the French Atlantic coast. The localization and ultrastructure of the plasmodia are described. In situ hybridization of infected tissue sections was conducted with DNA probes for oyster-infecting haplosporidians. The Haplosporidium nelsoni-specific DNA probe MSX1347 hybridized with the C. gigas parasite, and the H. costale-specific probe SSO1318 did not hybridize. Total genomic DNA was extracted from the infected tissue sections for polymerase chain reaction (PCR) amplification of the haplosporidian. PCR amplifications with H. nelsoni-specific primers and with 'universal' actin primers did not yield the expected products of 573 and 700 bp, respectively. A series of primers was designed to amplify short regions of small subunit ribosomal DNA (SSU rDNA) from most haplosporidians. The primers encompass a highly variable region of the SSU rDNA and did not amplify oyster DNA. PCR amplification of the infected C. gigas genomic DNA with these primers yielded the expected-sized product from the primer pair targeting the shortest region (94 bp). This PCR product was sequenced and it was identical to the corresponding SSU rDNA region of H. nelsoni.  相似文献   

3.
Populations of eastern oysters Crassostrea virginica along the east coast of North America have repeatedly experienced epizootic mass mortality due to infections by protozoan parasites, and molecular diagnostic methodologies are fast becoming more widely available for the diagnosis of protozoan diseases of oysters. In this study we applied a modified version of an existing multiplex polymerase chain reaction (PCR) for detection of the eastern oyster parasites Haplosporidium nelsoni, H. costale and Perkinsus marinus from field-collected samples. We incorporated primers for DNA quality control based on the large subunit ribosomal RNA (LSU rRNA) gene of C. virginica. The multiplex PCR (MPCR) simultaneously amplified genomic DNA of C. virginica, and cloned DNA of H. nelsoni, P. marinus and H. costale. In field trial applications, we compared the performance of the MPCR to that of the conventional diagnostic techniques of histopathological tissue examination and the Ray/Mackin fluid thioglycollate medium (RMFT) assay. A total of 530 oysters were sampled from 18 sites at 12 locations along the east coast of the United States from the Gulf of Mexico to southern New England. The modified MPCR detected 21% oysters with H. nelsoni, 2% oysters with H. costale, and 40% oysters with P. marinus infections. In comparison, histopathological examination detected H. nelsoni and H. costale infections in 6 and 0.8% oysters, respectively, and the RMFT assay detected P. marinus infection in 31% oysters. The MPCR is a more sensitive diagnostic assay for detection of H. nelsoni, H. costale, and P. marinus, and incorporation of an oyster quality control product limits false negative results.  相似文献   

4.
Apoptosis, or programmed cell death, has been reported as being pivotal in infectious diseases of different organisms. The effects of apoptosis on the progression and transmission of the protistan parasites Perkinsus marinus and Haplosporidium nelsoni in the eastern oyster Crassostrea virginica were studied. Oysters were diagnosed for their respective infections by standard methods, and apoptosis was detected using in situ hybridization to detect DNA fragments by end labeling on paraffin sections. A digoxigenin nucleotide probe was used to label the 200 bp fragment produced by apoptosis and detected immunohistochemically using an antidigoxigenin peroxidase conjugate. The probe/DNA fragment complex was stained with a peroxidase substrate and tissues were counterstained with methyl green. Uninfected oysters had large numbers of apoptotic hemocytes present in the connective tissue underlying the stomach, gill, and mantle epithelia, whereas oysters infected with P. marinus had a reduced number of apoptotic hemocytes. The parasite may prevent hemocyte apoptosis in order to yield a greater number of hemocytes in which to house itself. Large numbers of P. marinus cells in some infected oysters were eliminated via apoptosis in the stomach epithelia, disabling the spread of infectious particles through seawater. The oysters infected with H. nelsoni also had reduced numbers of apoptotic hemocytes, while part of the vesicular connective tissue cells were apoptotic. H. nelsoni plasmodia were eliminated via apoptosis in some oysters. Apoptosis may enhance progression and prevent transmission of infectious oyster diseases.  相似文献   

5.
Haplosporidian parasites infect various invertebrate hosts including some commercially important shellfish. Haplosporidium nelsoni (along with Perkinsus marinus) has severely affected Eastern oyster production on the eastern seaboard of the United States and flat oyster production in Europe has been severely impacted by Bonamia ostreae. These parasites are also often present at a very low prevalence and there are a variety of morphologically similar species that can be difficult to differentiate during cytological or histological diagnosis hence the need to develop specific tests. Recently, a Minchinia sp. was described affecting rock oysters (Saccostrea cuccullata) in north Western Australia. In this study, two in situ hybridisation (ISH) assays and a PCR assay have been developed and optimised for use in investigating these parasites. The first ISH assay used a 166bp polynucleotide probe while the second used a 30bp oligonucleotide probe. The specificity of each ISH assay was assessed by applying each probe to a variety of haplosporidian (5), a paramyxian (1) or ciliophora (1) parasites. The polynucleotide probe produced strong hybridisation signals against all of the haplosporidian parasites tested (Minchinia sp., Minchinia teredinis, Bonamia roughleyi, H. nelsoni and Haplosporidium costale) while the oligonucleotide probe recognised only the Minchinia sp. Both probes failed to detect the paramyxian (Marteilia sp.) or the Rhynchodid-like ciliate. The PCR assay amplifies a 220bp region and detected Minchinia sp. DNA from 50ng of genomic DNA extracted from the tissues of infected oysters and 10fg of amplified Minchinia sp. DNA. The assay did not react to oysters infected with H. nelsoni or H. costale. The ability of the PCR and oligonucleotide ISH assay to diagnose Minchinia sp. infected oysters was compared to histological examination from a sample of 56 oysters. The PCR assay revealed 26 infections while histological examination detected 14 infections. The oligonucleotide ISH assay detected 29 infections. The oligonucleotide ISH and PCR assays were found to be significantly more sensitive than histology for detecting the parasite.  相似文献   

6.
目的:建立基于环介导等温扩增(LAMP)技术的单孢子虫可视化检测方法。方法:根据尼氏单孢子虫的小亚基核糖体RNA保守序列,设计一套特异性LAMP引物,对反应条件如温度和试剂浓度进行优化,建立检测牡蛎单孢子虫的LAMP方法。结果:所建立的方法的敏感性可达1 fg,是常规PCR方法的100倍;全部反应可在1 h内完成;可通过肉眼观察颜色,直接判定结果;对其他牡蛎常见病原体的检测结果均为阴性。结论:建立的LAMP方法简便、快速、灵敏、特异,可用于牡蛎单孢子虫感染的快速检测。  相似文献   

7.
Spores of a haplosporidan infecting Teredo navalis Linnaeus have been described as morphologically indistinguishable from spores of Haplosporidium nelsoni . To test the hypothesis that these organisms are conspecific, a colloidal gold immunoassay was used to compare antigenic characteristics of the spores from both hosts. Rabbit antibody to formalin-fixed spores from T. navalis was tested against paraffin sections of Crassostrea virginica infected with spores of H. nelsoni and against paraffin sections of infected 7". navalis . Application of primary antibody was followed by addition of affinity purified goat anti-rabbit IgG coaled on 5-nm colloidal gold particles. The reaction was enhanced by precipitation of metallic silver; a positive reaction appeared as a dark brown to black signal at the site of each antigen-antibody complex. Haplosporidium nelsoni spores did not react when assayed with the antibody made to spores from T. navalis . Spores from infected T. navalis tissue reacted positively with rabbit antibody. This result indicates that the spores from the 2 hosts are antigenicaliy distinct and suggests that they are different species.  相似文献   

8.
This study was undertaken to develop a quantitative polymerase chain reaction assay that would improve the utility of PCR for detecting Haplosporidium nelsoni (MSX), a serious parasite of the eastern oyster Crassostrea virginica. A competitive PCR sequence was generated from the H. nelsoni small subunit ribosomal DNA fragment, originally described by Stokes and colleagues, that was amplified by the same PCR primers and had similar amplification performance. Assays performed using competitor dilutions ranging from 0.05 to 500 pg/μl DNA were used to test oyster samples designated using histological techniques as having ``light' or ``heavy' MSX infections. Visual diagnoses were confirmed equally well with three methods: densitometry of ethidium-bromide-stained agarose, densitometry of SYBRGreen-stained polyacrylamide gels, and analysis by GeneScan 3.0 of fluorescent products detected in ultrathin gels. Oysters diagnosed as negative for MSX tested as negative or light by PCR. Oysters with light MSX infections generally had less than 5 pg/μl infectious DNA. Oysters with heavy infections generally corresponded to 5 pg/μl or greater competitor dilutions. Received September 3, 1999; accepted March 3, 2000.  相似文献   

9.
A rapid method, utilizing both polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), was developed for detection of oyster MSX disease. The technique included using Haplosporidium nelsoni pathogen-specific PCR primers (based on ribosomal RNA genes), a Chelex resin (for rapid DNA extraction from oyster mantle tissues), and cloned H. nelsoni rRNA plasmid DNA (for use as a capture probe). Digoxigenin was incorporated into the pathogen-specific PCR products, which were captured by the coated probe in a fast hybridization reaction and then detected by ELISA. The sensitivity of PCR amplification on cloned plasmid DNA was 10 fg for detection by stained agarose gel, and increased to 0.01 fg for ELISA. Positive signals were observed in infected oysters using the PCR-ELISA technique. This method may be applicable to early detection of infection. Received April 14, 1998; accepted September 30, 1998.  相似文献   

10.
Restoration of oyster reef habitat in the Inland Bays of Delaware was accompanied by an effort to detect and determine relative abundance of the bivalve pathogens Perkinsus marinus, Haplosporidium nelsoni, and QPX. Both the oyster Crassostrea virginica and the clam Mercenaria mercenaria were sampled from the bays. In addition, oysters were deployed at eight sites around the bays as sentinels for the three parasites. Perkinsus marinus prevalence was measured with a real-time, quantitative polymerase chain reaction (PCR) methodology that enabled high-throughput detection of as few as 31 copies of the ribosomal non-transcribed spacer region in 500 ng oyster DNA. The other pathogens were assayed using PCR with species-specific primers. Perkinsus marinus was identified in Indian River Bay at moderate prevalence ( approximately 40%) in both an artificial reef and a wild oyster population whereas sentinel oysters were PCR-negative after 3-months exposure during summer and early fall. Haplosporidium nelsoni was restricted to one oyster deployed in Little Assawoman Bay. QPX and P. marinus were not detected among wild clams. While oysters in these bays have historically been under the greatest threat by MSX, it is apparent that P. marinus currently poses a greater threat to recovery of oyster aquaculture in Delaware's Inland Bays.  相似文献   

11.
Haplosporidan parasites were observed in 10/100 spat and 1/171 adult Pacific oysters, Crassostrea gigas, reared in Matsushima Bay, Japan. Eight of the infected spat contained mild to severe plasmodial infections. The multinucleated plasmodia were 6-12 microm x 7-15 microm and were associated with an infiltration of hemocytes that occurred throughout the vesicular connective tissues of all infected oysters. Two oysters, one adult and one spat, contained advanced sporogonic infections. These were characterized by the presence of sporocysts and immature and mature operculated spores that measured 5.6-6.0 microm x 6.0-8.0 microm and were found exclusively within the digestive tubule epithelium. Electron microscopic examination revealed that mature spores contained a hinge operculum, striated and layered wall, spherule, single nucleus, and haplosporosome formative regions. Parasite morphology and infection pattern closely resemble that of Haplosporidium nelsoni, a pathogen of American oysters (C. virginica).  相似文献   

12.
A Minchinia sp. (Haplosporidia: Haplosporidiidae) parasite was identified infecting rock oysters and morphologically described by Hine and Thorne (2002) using light microscopy and transmission electron microscopy (TEM). The parasite was associated with up to 80% mortality in the host species and it is suspected that the parasite would be a major impediment to the development of a tropical rock oyster aquaculture industry in northern Western Australia. However, attempts to identify the parasite following the development of a specific probe for Haplosporidium nelsoni were unsuccessful. The SSU region of the parasite's rRNA gene was later characterized in our laboratory and an in situ hybridization assay for the parasite was developed. This study names the parasite as Minchinia occulta n sp. and morphologically describes the parasite using histology, scanning electron microscopy and transmission electron microscopy. The non-spore stages were unusual in that they consisted primarily of uninucleate stages reminiscent of Bonamia spp. The parasite's spores were ovoid to circular shaped and measured 4.5 microm-5.0 microm x 3.5-4.1 microm in size. The nucleus of the sporoplasm measured 1.5-2.3 microm and was centrally located. The spores were covered in a branching network of microtubule-like structures that may degrade as the spore matures.  相似文献   

13.
The advent of molecular detection assays has provided a set of very sensitive tools for the detection of pathogens in marine organisms, but it has also raised problems of how to interpret positive signals that are not accompanied by visual confirmation. PCR-positive results have recently been reported for Haplosporidium nelsoni (MSX), a pathogen of the oyster Crassostrea virginica in 31 of 40 oysters from 6 sites in the Gulf of Mexico and the Caribbean Sea. Histological confirmation of the PCR results was not undertaken, and no haplosporidian has been reported from the numerous histological studies and surveys of oysters in the region. To further investigate the possibility that H. nelsoni is present in this region, we sampled 210 oysters from 40 sites around the Gulf of Mexico and Puerto Rico using PCR and 180 of these using tissue-section histology also. None of the oysters showed evidence of H. nelsoni by PCR or of any haplosporidian by histology. We cannot, therefore, confirm that H. nelsoni is present and widespread in the Gulf of Mexico and the Caribbean Sea. Our results do not prove that H. nelsoni is absent from the region, but taken together with results from previous histological surveys, they suggest that for the purposes of controlling oyster importation, the region should continue to be considered free of the parasite.  相似文献   

14.
目前,我国形成规模养殖的经济贝类有近20种,贝类增养殖已经成为沿海海水养殖业的支柱产业。资料显示,2004年全国海水贝类产量为1024万吨,占海水养殖总产量的77.82%。但是目前,由于气候变化、海洋环境污染、外来生物入侵等因素导致我国海产贝类病害越来越重,寄生虫就是主要病原之一,其中尼氏单孢子虫就是其中的一种原生动物寄生虫,寄生于很多种海产贝类体内。这种病害在很多地区都有暴发,国外对其研究较多,国内梁玉波等时这一病害进行了研究。因此,系统阐述国外贝类尼氏单孢子虫病害的研究现状与进展,对我国海产贝类病害的研究具有现实意义。本文时尼氏单孢子虫的分类、病害的流行情况、尼氏单孢子虫的形态学,病害的主要症状。尼氏单孢子虫的检测方法,尼氏单孢子虫与寄主之间的交互作用,环境因素时病害流行的影响等方面进行了论述,为我国贝类病害的研究和防治提供参考。  相似文献   

15.
Flow cytometry as a tool to quantify oyster defence mechanisms   总被引:9,自引:0,他引:9  
The fast growing oyster aquaculture industry is greatly hindered by Perkinsus marinus and Haplosporidium nelsoni which can kill up to 80% of the production. The relationship between parasites and oyster defence mechanisms is unclear. Two defence mechanisms of the Eastern Oyster (Crassostrea virginica) were quantified at the single cell level utilising flow cytometry. Phagocytosis was measured using fluorescent beads. Respiratory burst activity was quantified as the H2O2-specific increase in dichlorofluorescein-associated fluorescence upon stimulation. These two assays distinguished three populations of haemocytes (granulocytes, hyalinocytes and intermediate cells) with unique functional characteristics. Granulocytes were most active at phagocytosis and H2O2 production while hyalinocytes were relatively inactive. The intermediate cells had moderate phagocytic and respiratory burst activity. Flow cytometry can rapidly, accurately and directly quantify the morphology and function of a large number of individual cells, and will lead to a better understanding of the bivalve immune system.  相似文献   

16.
方斑东风螺单孢子虫病的研究   总被引:2,自引:0,他引:2  
文章对方斑东风螺(Babylonia areolata Link, 1807)单孢子虫病进行了首次报道, 对其病理学特征、流行季节和诊断方法进行了研究。结果认为方斑东风螺被单孢子虫侵袭后, 吻管、足肌、肠、消化腺、鳃、胃和肝等器官引起一系列病变。病理组织切片观察到肠上皮黏膜组织细胞布满该虫营养体和各发育期的多核质体, 造成肠结缔组织呈现炎症反应。寄生部位病灶肿胀、混浊、坏死、崩解。    相似文献   

17.
The spore stage of Haplosporidium nelsoni , the ascetosporan parasite causing multinucleated sphere unknown (MSX) disease in oysters, Crassostrea virginica , has been reported so rarely (≥0.01% of infected oysters) that a second host has been postulated. However, recent intensive sampling of young (≥1 year) oysters in Delaware Bay, U.S. suggests that spore formation occurs regularly in this group and that spores are produced in at least 75–85% of all infections reaching the advanced stage. Sporulation was seasonal, occurring over two to three weeks in late June/early July and again in late summer/early fall. Our data indicate that sporulation by H. nelsoni in oysters is more common than previously suspected, occurring in a segment of the host population that may not have been sufficiently sampled in the past, and that a direct life cycle should be reconsidered.  相似文献   

18.
Bonamia ostreae is an economically significant protistan parasite of the flat oyster Ostrea edulis in Europe and North America. Management of this parasite depends partly upon its reliable identification in wild and aquacultured oyster populations, but B. ostreae is small and difficult to detect by traditional microscopic methods. We designed a fluorescent in situ hybridization (FISH) assay to sensitively detect B. ostreae in standard histopathological sections of B. ostreae-infected oysters using fluorescently labeled DNA oligonucleotide probes. Hybridization using a cocktail of 3 presumptively B. ostreae-specific, fluorescein iso(thio)cyanate (FITC)-labeled oligonucleotides produced an unambiguous staining pattern of small green rings inside infected oyster hemocytes that was easily distinguished from host tissue background. This pattern is diagnostic for B. ostreae. A negative control cocktail of oligonucleotides containing 2 mismatches relative to target sequences, on the other hand, failed to hybridize at all. B. ostreae-specific probes did not cross-react with a related protist, Haplosporidium nelsoni.  相似文献   

19.
Spore ornamentation of Haplosporidium nelsoni and Haplosporidium costale was determined by scanning electron microscopy. For H. nelsoni, the spore surface was covered with individual ribbons that were tightly bound together and occurred as a single sheet. In some spores, this layer was overlaid with a network of branching fibers, about 0.05 microm in diameter, which often was dislodged from the spore at the aboral pole. For H. costale, ornamentation consisted of a sparse network of branching fibers on the spore surface. Molecular phylogenetic analysis of the phylum Haplosporidia revealed that Urosporidium, Bonamia, and Minchinia were monophyletic but that Haplosporidium was paraphyletic. All species of Minchinia have ornamentation composed of epispore cytoplasm, supporting the monophyly of this genus. The presence of spores with a hinged operculum and spore wall-derived ornamentation in Bonamia perspora confounds the distinction between Bonamia and Haplosporidium. Species with ornamentation composed of outer spore wall material and attached to the spore wall do not form a monophyletic group in the molecular phylogenetic analysis. These results suggest that the widely accepted practice of assigning all species with spore wall-derived ornamentation to Haplospordium cannot be supported and that additional genera are needed in which to place some species presently assigned to Haplosporidium.  相似文献   

20.
The haplosporidian oyster parasite MSX (Multinucleated Sphere X) Haplosporidium nelsoni was transmitted to eastern oysters Crassostrea virginica. Hatchery-raised, MSX-free juvenile oysters were placed in upweller tanks. Water to the tanks was filtered through a screen with 1 mm2 openings and originated from the water column overlaying naturally infected oysters beds (MSX prevalence 17 to 57%). MSX was diagnosed by histopathological analysis. MSX-disease (57% prevalence) with increased mortality (19%) was observed 11 wk after the beginning of the exposure and mortality of 80% after 16 wk. The study demonstrates transmission of MSX via water-borne infectious agents capable of passing through a 1 mm filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号