首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Intracranial (i.c.) infection of mice with lymphocytic choriomeningitis virus (LCMV) results in anorexic weight loss, mediated by T cells and gamma interferon (IFN-γ). Here, we assessed the role of CD4+ T cells and IFN-γ on immune cell recruitment and proinflammatory cytokine/chemokine production in the central nervous system (CNS) after i.c. LCMV infection. We found that T-cell-depleted mice had decreased recruitment of hematopoietic cells to the CNS and diminished levels of IFN-γ, CCL2 (MCP-1), CCL3 (MIP-1α), and CCL5 (RANTES) in the cerebrospinal fluid (CSF). Mice deficient in IFN-γ had decreased CSF levels of CCL3, CCL5, and CXCL10 (IP-10), and decreased activation of both resident CNS and infiltrating antigen-presenting cells (APCs). The effects of IFN-γ signaling on macrophage lineage cells was assessed using transgenic mice, called “macrophages insensitive to interferon gamma” (MIIG) mice, that express a dominant-negative IFN-γ receptor under the control of the CD68 promoter. MIIG mice had decreased levels of CCL2, CCL3, CCL5, and CXCL10 compared to controls despite having normal numbers of LCMV-specific CD4+ T cells in the CNS. MIIG mice also had decreased recruitment of infiltrating macrophages and decreased activation of both resident CNS and infiltrating APCs. Finally, MIIG mice were significantly protected from LCMV-induced anorexia and weight loss. Thus, these data suggest that CD4+ T-cell production of IFN-γ promotes signaling in macrophage lineage cells, which control (i) the production of proinflammatory cytokines and chemokines, (ii) the recruitment of macrophages to the CNS, (iii) the activation of resident CNS and infiltrating APC populations, and (iv) anorexic weight loss.Immune cell recruitment to and infiltration of the central nervous system (CNS) is central to the pathology of a variety of inflammatory neurological diseases, including infectious meningoencephalitis, multiple sclerosis, and cerebral ischemia (59, 60). Chemokines have been shown to be highly upregulated in both human diseases and animal models of neuroinflammation and are thought to be important mediators of immune cell entry into the CNS (59, 60). For example, during experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS), the chemokines CCL2 (monocyte chemoattractant protein 1 [MCP-1α]), CCL3 (macrophage inflammatory protein 1α [MIP-1α]), CCL5 (regulated upon activation, T-cell expressed and secreted [RANTES]), and CXCL10 (gamma interferon [IFN-γ]-inducible protein 10 [IP-10]) are produced by either resident CNS cells or infiltrating cells (27) and serve to amplify the ongoing inflammatory response (25, 28). However, in some EAE studies, neither CCL3 nor CXCL10 were required for disease (72, 73). During CNS viral infection, CXCL10 and CCL5 are highly produced in several models (2, 41, 48, 82). In addition, mice deficient in CCR5, which binds (among others) CCL3 and CCL5, do not display impaired CNS inflammation after certain viral infections (13). Thus, the role of chemokines in CNS inflammation is likely complex and dissimilar between autoimmune and viral infection models.IFN-γ is present in the CNS during autoimmunity and infection (7, 54, 69). Several studies suggest that IFN-γ can be a potent inducer of CNS chemokine expression. Adenoviral expression of IFN-γ in the CNS strongly induced CCL5 and CXCL10 mRNA and protein, and this induction was dependent on the presence of the IFN-γ receptor (50). In EAE and Toxoplasma infection, mice deficient in IFN-γ or the IFN-γ receptor demonstrated reduced expression of several chemokines, including CCL2, CCL3, CCL5, and CXCL10 (26, 69). However, given the near-ubiquitous expression of the IFN-γ receptor (44), the mechanisms by which IFN-γ regulates CNS chemokine production remain to be elucidated.We studied neuroinflammation and immune-mediated disease using a well-studied mouse model of infection with lymphocytic choriomeningitis virus (LCMV). Intracranial (i.c.) injection of mice with LCMV results in seizures and death 6 to 8 days after inoculation. The onset of symptoms is associated with a massive influx of mononuclear cells into the cerebrospinal fluid (CSF), meninges, choroid plexus, and ependymal membranes (6, 8, 18), as well as the presence of proinflammatory cytokines (7, 38). The immune response is critical for disease, since infection of irradiated or T-cell-depleted mice leads to persistent infection with very high levels of virus in multiple tissues without the development of lethal meningitis (18, 34, 64). i.c. LCMV infection of β2-microglobulin-deficient mice (β2m−/− mice) also results in meningitis and production of proinflammatory cytokines and chemokines; however, meningitis occurs with a later onset and lower severity compared to wild-type mice (17, 24, 53, 57). Interestingly, i.c. LCMV infection of these mice also causes severe anorexia and weight loss (33, 38, 46, 52, 57) that is mediated by major histocompatibility complex (MHC) class II-restricted, CD4+ T cells (17, 46, 53, 57). Anorexia and weight loss are also observed in wild-type mice, but they succumb to lethal meningitis shortly thereafter (33), making study of this particular aspect of disease difficult. LCMV-induced weight loss, similar to what we have observed in β2m−/− mice also occurs in perforin-deficient mice, which possess CD8+ T cells (37). Although some reports have observed weight loss after peripheral LCMV infection (11, 45), we note that these studies used high doses of the clone 13 strain of LCMV, in contrast to our studies which have used the Armstrong strain of LCMV and orders of magnitude less virus (33, 38, 46, 52, 57). Although we cannot exclude a contribution of peripheral cells to weight loss in our i.c. Armstrong infection model, we previously showed that this weight loss does not occur with peripheral infection with LCMV Armstrong (33, 38), indicating that interactions between the CNS and the immune system are contribute substantially to disease.During LCMV infection, there is biphasic production of IFN-γ: a small, early peak of IFN-γ (most likely produced by NK or NKT cells), followed by T-cell-mediated production of IFN-γ (23, 75). Further, both CD4+ T cells and CD8+ T cells produce large amounts of IFN-γ after LCMV infection and T-cell production of IFN-γ is critical for LCMV-induced weight loss (35). Chemokines, especially CXCL10, CCL5, and CCL2, and their receptors, are upregulated in the brain after i.c. LCMV infection (2, 13). Brain chemokine mRNA expression after i.c. LCMV infection is reduced in IFN-γ-deficient mice and relatively absent in athymic mice (2). However, the mechanism(s) by which T cells and IFN-γ mediate the effects on CNS chemokine expression, cellular infiltration into the CNS, and LCMV-induced anorexic weight loss remain unclear.In the present study, we focused on two major questions. The first question concerned the role of IFN-γ on immune cell recruitment to and chemokine/cytokine production within the CNS? We found that macrophages and myeloid dendritic cells (DCs) require IFN-γ for their accumulation within the CNS. Second, since macrophages and myeloid DCs are the predominant cellular infiltrate, we sought to determine whether IFN-γ signaling on these cells was direct with regard to their recruitment and to chemokine/cytokine production. We found that IFN-γ signaling in macrophage lineage cells contributes significantly to their recruitment, to chemokine production in the CNS, and to anorexic weight loss. Together, these data suggest that much of the proinflammatory effects of IFN-γ in the CNS are mediated by the effects of IFN-γ on CD68-bearing cells.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
The function of plasmacytoid dendritic cells (PDC) in chronic human immunodeficiency virus type 1 (HIV-1) infection remains controversial with regard to its potential for sustained alpha interferon (IFN-α) production and induction of PDC-dependent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity of HIV-infected cells. We address these areas by a study of chronically HIV-1-infected subjects followed through antiretroviral therapy (ART) interruption and by testing PDC cytolytic function against autologous HIV-infected CD4+ T cells. Rebound in viremia induced by therapy interruption showed a positive association between TRAIL and viral load or T-cell activation, but comparable levels of plasma IFN-α/β were found in viremic ART-treated and control subjects. While PDC from HIV-infected subjects expressed less interferon regulator factor 7 (IRF-7) and produced significantly less IFN-α upon Toll-like receptor 7/9 (TLR7/9) engagement than controls, membrane TRAIL expression in PDC from HIV+ subjects was increased. Moreover, no significant increase in death receptor 5 (DR5) expression was seen in CD4+ T cells from viremic HIV+ subjects compared to controls or following in vitro infection/exposure to infectious and noninfectious virus or exogenous IFN-α, respectively. Although activated PDC killed the DR5-expressing HIV-infected Sup-T1 cell line, PDC did not lyse primary autologous HIV+ CD4+ T cells yet could provide accessory help for NK cells in killing HIV-infected autologous CD4+ T cells. Taken together, our data show a lack of sustained high levels of soluble IFN-α in chronic HIV-1 infection in vivo and document a lack of direct PDC cytolytic activity against autologous infected or uninfected CD4+ T cells.Human immunodeficiency virus (HIV) infection is associated with chronic immune activation, progressive immune suppression, and deletion of memory adaptive responses, resulting in increased susceptibility to opportunistic infections (23, 51, 52). Loss of CD4+ T cells is the hallmark of HIV infection, with multiple mechanisms proposed as contributing to this loss (activation-induced cell death, direct cytopathic effect, immune cells, and death receptor-mediated apoptosis induction) (reviewed in references 33 and 34). One of the most puzzling observations in AIDS pathogenesis has been the progressive depletion of bystander T cells, especially in lymphoid tissues (25, 33, 34, 55). While antiretroviral therapy (ART) initiated in the early stages of HIV infection, when CD4+ T-cell counts are high (>500 cells/μl), may prevent the destruction of lymph node (LN) tissue and the massive depletion of CD4+ T lymphocytes by decreasing the rate of virally induced apoptosis (20), a persistent, albeit decreased, level of apoptosis of peripheral blood CD4+ and CD8+ T cells is seen in ART-treated HIV+ subjects despite long-term viral suppression (36).A member of the tumor necrosis factor (TNF) family, TNF-related apoptosis-inducing ligand (TRAIL), has been shown to be involved in HIV-1-associated T-cell apoptosis (33, 34). TRAIL (soluble or membrane bound) induces apoptosis upon binding to death receptor 4 (DR4; also named TRAIL-R1) or DR5 (also named TRAIL-R2, TRICK2, or Killer/DR5).On the basis of the in vitro observation that alpha interferon (IFN-α) and interferon regulator factor 7 (IRF-7) are increased in plasmacytoid dendritic cells (PDC) exposed to HIV-1 (40), the hypothesis that PDC activation by HIV-1 is responsible for an increased level of IFN-α throughout chronic disease has been proposed. It has also been proposed that the activation of the PDC compartment by HIV-1 participates in the initial immune activation following acute infection and contributes to CD4+ T-cell depletion by inducing, through IFN-α, the production of TRAIL, which mediates apoptosis of DR5-expressing CD4+ T cells following HIV-1 infection (37, 38, 40). However, several lines of evidence question the direct involvement of PDC in the loss of T cells during HIV infection, as PDC numbers are depleted during chronic HIV infection and PDC remaining in circulation are functionally impaired (10). Recent data show that circulating PDC in HIV-infected subjects, although unable to secrete IFN-α after Toll-like receptor (TLR)-mediated activation, constitutively express an increased level of IFN-α mRNA, indicating that during HIV infection PDC are activated yet impaired (71). Rodriguez et al. demonstrated the prevention of spontaneous apoptosis of CD4+ and CD8+ T cells by IFN-α (63), a major product of PDC following HIV-1 stimulation (3, 28). In addition, Audige et al. (2) showed that blockade of IFN-α and IFN-α receptor during in vitro HIV infection of CD4+ T cells isolated from human tonsils did not prevent apoptosis or TRAIL production, suggesting a lack of a central link between IFN-α production and apoptosis of tonsillar CD4+ T cells in HIV-1 infection. These data are also consistent with the observation that, in the human peripheral blood lymphocyte-transplanted SCID mouse (hu-PBL-SCID) model, IFN-α efficiently increases the survival of CD4+ T cells (49). Thus, controversy remains on the role of IFN-α as an indirect or direct inducer of apoptosis of CD4+ T cells through PDC/TRAIL induction, whereas the possibility that IFN-α acts as an antiviral agent by controlling HIV-1 replication and thus reducing virally mediated T-cell loss appears to be supported by several studies (reviewed in references 26, 47, and 58). In this regard, endogenous IFN-α produced by PDC has been shown to play an important role in controlling HIV infection in the human thymus (35), upregulating host antiviral factors such as APOBEC (1, 32, 44, 70) and stimulating NK cell-mediated cytotoxic activity against autologous HIV-infected targets (72).In this report, we investigated the in vivo correlates of viremia in chronically infected subjects by studying the relationship between therapy interruption-associated viremia and plasma IFN-α and TRAIL levels. We also tested in vitro the functional outcome of HIV-1-activated PDC in terms of their ability to mediate lysis of primary autologous CD4 T cells (infected or not with HIV-1), compared to indirect PDC-mediated lysis effects on the NK-dependent antiviral cytotoxic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号