首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Retinal ganglion cell (RGC) survival and neurite outgrowth were investigated in retinal explants from adult rats. Neutrotrophin-4/5 (NT-4/5) caused dose-dependent increases in neurite outgrowth with one-half maximal effects at approximately 0.5 ng/ml and maximal effects at 5 ng/ml. In explants treated for 7 days, the actions of NT-4/5 were similar to those of brain-derived neurotrophic factor (BDNF); with either neurotrophin, nearly twice as many RGCs survived and there was a two- to threefold increase in the number of neurites formed by RGCs. Combinations of saturating concentrations of NT-4/5 and BDNF did not enhance these in vitro effects, implying that both neurotrophins share a common signaling pathway. In contrast, nerve growth factor (NGF), neurotrophin-3 (NT-3), or ciliary nuerotrophic factor (CNTF) appeared to exert minimal influences on RGC survival or neurite outgrowth. 1994 John Wiley & Sons, Inc.  相似文献   

2.
BDNF and NT-4 (but not NT-3 or CNTF) significantly enhanced the outgrowth of early embryonic and adult regenerating RGC axons when provided with a supportive substrate in vitro. BDNF and NT-4 treatment transiently increased RGC axon outgrowth from E15 rat retinas but not from retinas at older embryonic ages. The transient effect of BDNF and NT-4 and the inability of the neurotrophins to promote outgrowth from older embryonic retinal explants suggests a time frame of neurotrophin action and that other chemical factors (target-derived or otherwise) may be necessary for the continued maintenance of developing RGC axons. BDNF and NT-4 also enhanced the outgrowth of regenerating axons from adult retinal explants, but appeared to have a more subtle effect on axon outgrowth, in that the growth-promoting effects of BDNF and NT-4 appeared continuous throughout the incubation period. The suppression of RGC axon outgrowth from embryonic and adult retinae cultured in trkB-IgG-containing medium suggests that the response of developing and regenerating axons, to BDNF and NT-4 are likely to occur through trkB signalling.  相似文献   

3.
Neurotrophins support neuronal survival and axonal regeneration after injury. To test whether local expression of Neurotrophin-3 (NT-3) would elicit axonal regeneration we lesioned the corticospinal tract (CST) at the level of the hindbrain and measured the number of axons that would grow from the unlesioned CST to the contralateral side where NT-3 was over expressed at the lumbar level of the spinal cord. An adenoviral vector that carried the rat NT-3 gene and the NGF signal peptide driven by the EF1α promoter (Adv.EF-NT-3) was used. This model enabled us to test the effects of NT-3 on axonal regeneration without confounding injury processes. Biotinylated dextran amine (BDA) was injected into the rat cortex on unlesioned side to mark CST axons 10 days postlesion. Adenoviral vectors (1 × 109 pfu, Adv.EF-NT-3 or Adv.EF-LacZ) were delivered to lumbar spinal cord by retrograde transport from the sciatic nerve 4 days later. Histological examination 3 weeks later revealed that more BDA-labelled axons had grown from the unlesioned CST to the denervated side at the lumbar level. Morphometric measurements showed that a significantly larger number of BDA-labelled CST axons ( p  < 0.001) were present in the animals that were treated with Adv.EF-NT-3 than those treated with Adv.EF-LacZ. These data demonstrate that local expression of NT-3 will support axonal regeneration in the injured spinal cord without adverse effects and suggest that gene delivery of neurotrophins may be an effective strategy for nervous system repair after injury.
Acknowledgements:   Funded by NIH Grant NS35280 and by Mission Connect of the TIRR Foundation.  相似文献   

4.
We used compartmented cultures to study the regulation of adult sensory neurite growth by neurotrophins. We examined the effects of the neurotrophins nerve growth factor (NGF), neurotrophin-3 (NT3), and BDNF on distal neurite elongation from adult rat dorsal root ganglion (DRG) neurons. Neurons were plated in the center compartments of three-chambered dishes in the absence of neurotrophin, and neurite extension into the distal (side) compartments containing NGF, BDNF, or NT3 was quantitated. Initial proximal neurite growth did not require any of the neurotrophins, while subsequent elongation into distal compartments required NGF. After neurites had extended into NGF-containing distal compartments, removal of NGF by treatment with anti-NGF resulted in the cessation of growth with minimal neurite retraction. In contrast to the effects of NGF, no distal neurite elongation was observed into compartments with BDNF or NT3. To examine possible additive influences, neurite extension into compartments containing BDNF plus NGF or NT3 plus NGF was quantitated. There was no increased neurite extension into NGF plus NT3 compartments, while the combination of BDNF plus NGF resulted in an inhibition of neurite extension compared with NGF alone. We then investigated whether the regrowth of neurites that had originally grown into NGF subsequent to in vitro axotomy still required NGF. The results demonstrated that unlike adult sensory nerve regeneration in vivo, the in vitro regrowth did require NGF, and neither BDNF nor NT3 was able to substitute for NGF. Since the initial growth from neurons after dissociation (which is also a regenerative response) did not require NGF, it would appear that neuritic growth and regrowth of adult DRG neurons in vitro includes both NGF-independent and NGF-dependent components. The compartmented culture system provides a unique model to further study aspects of this differential regulation of neurite growth. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 395–410, 1997  相似文献   

5.
Geniculate ganglion axons arrive in the lingual mesenchyme on embryonic day 13 (E13), 3–4 days before penetrating fungiform papilla epithelium (E17). This latency may result from chemorepulsion by epithelial Sema3A (Dillon et al. (2004) Journal of Comparative Neurology470, 13–24), or Sema3F, which we report is also expressed in this epithelium. Sema3A and Sema3F repelled or suppressed geniculate neurite outgrowth, respectively, and these effects were stage and neurotrophic factor dependent. BDNF-stimulated outgrowth is repelled by Sema3A until E17, but insensitive to Sema3F from E16. NT-4-stimulated neurite outgrowth is sensitive to Sema3A and Sema3F through E18, but NT-4 has not been detected in E15–18 tongue. E15–18 tongue explants did not exhibit net chemorepulsion of geniculate neurites, but the ability of tongue explants to support geniculate neurite outgrowth fluctuates: E12–13 (Rochlin et al. (2000), Journal of Comparative Neurology, 422, 579–593) and E17–18 explants promote and may attract geniculate neurites, but stages corresponding to intralingual arborization do not. The E18 trophic and tropic effects were evident even in the presence of BDNF or NT-4, suggesting that some other factor is responsible. Intrinsic neurite outgrowth capability (without exogenous neurotrophic factors) fluctuated similarly: ganglia deteriorated at E15, but exhibited moderate outgrowth at E18.The chemorepulsion studies are consistent with a role for Sema3A, not Sema3F, in restricting geniculate axons from the epithelium until E17, when axons penetrate the epithelium. The transient inability of tongue explants to promote geniculate neurite outgrowth may signify an alternative mechanism for restricting geniculate axons from the epithelium: limiting trophic factor access.  相似文献   

6.
Our previous finding that skin-derived and muscle-derived molecules can be used to sort regenerating rat sciatic nerve axons evoked questions concerning neuron-target interactions at the level of single cells, which prompted the present study. The results show that dorsal root ganglion (DRG) neurons co-cultured with fibroblast-like skin-derived cells emit many neurites. These have a proximal linear segment and a distal network of beaded branches in direct relation to skin-derived cells. Electron microscopic examination of such co-cultures showed bundles of neurites at some distance from the target cells and single profiles closely apposed to subjacent cells. RNase protection assay revealed that cultivated skin-derived cells express nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4). In co-cultures of DRG neurons and 3T3 fibroblasts overexpressing either of the neurotrophins produced by skin-derived cells the picture varied. NT-3 transfected 3T3 fibroblasts gave a growth pattern similar to that seen with skin-derived cells. Neurons co-cultured with mock-transfected 3T3 fibroblasts were small and showed weak neurite growth. In co-cultures with a membrane insert between skin-derived cells or 3T3 fibroblasts and DRG neurons few neurons survived and neurite growth was very sparse. We conclude that skin-derived cells stimulate neurite growth from sensory neurons in vitro, that these cells produce NGF, BDNF, NT-3 and NT-4 and that 3T3 fibroblasts producing NT-3 mimic the effect of skin-derived cells on sensory neurons in co-culture. Finally the results suggest that cell surface molecules are important for neuritogenesis.  相似文献   

7.
Islet-neogenesis-associated protein, INGAP, is a 175-amino-acid pancreatic acinar protein that stimulates pancreatic duct cell proliferation in vitro and islet neogenesis in vivo. To date, the mitogenic activity of INGAP has been identified only in nonneural tissues. The aim of this study was to examine the effects of a pentadecapeptide of INGAP (INGAP peptide), the biologically active portion of the native protein, in cultured dorsal root ganglia (DRG) explants from C57BL/6 mice. The present study provides evidence that INGAP peptide acts as a mitogen in the peripheral nervous system (PNS), and that it enhances neurite outgrowth from DRGs in vitro in a time- and dose-dependent manner. The neuritogenic action of INGAP peptide correlates with an increase in [(3)H]thymidine incorporation (P < 0.0001) and mitochondrial activity (P < 0.001). Results from these studies suggest that INGAP peptide promotes Schwann cell proliferation in the DRG which releases trophic factors that promote neurite outgrowth.  相似文献   

8.
The sensory organs of the chicken inner ear are innervated by the peripheral processes of statoacoustic ganglion (SAG) neurons. Sensory organ innervation depends on a combination of axon guidance cues1 and survival factors2 located along the trajectory of growing axons and/or within their sensory organ targets. For example, functional interference with a classic axon guidance signaling pathway, semaphorin-neuropilin, generated misrouting of otic axons3. Also, several growth factors expressed in the sensory targets of the inner ear, including Neurotrophin-3 (NT-3) and Brain Derived Neurotrophic Factor (BDNF), have been manipulated in transgenic animals, again leading to misrouting of SAG axons4. These same molecules promote both survival and neurite outgrowth of chick SAG neurons in vitro5,6.Here, we describe and demonstrate the in vitro method we are currently using to test the responsiveness of chick SAG neurites to soluble proteins, including known morphogens such as the Wnts, as well as growth factors that are important for promoting SAG neurite outgrowth and neuron survival. Using this model system, we hope to draw conclusions about the effects that secreted ligands can exert on SAG neuron survival and neurite outgrowth. SAG explants are dissected on embryonic day 4 (E4) and cultured in three-dimensional collagen gels under serum-free conditions for 24 hours. First, neurite responsiveness is tested by culturing explants with protein-supplemented medium. Then, to ask whether point sources of secreted ligands can have directional effects on neurite outgrowth, explants are co-cultured with protein-coated beads and assayed for the ability of the bead to locally promote or inhibit outgrowth. We also include a demonstration of the dissection (modified protocol7) and culture of E6 spinal cord explants. We routinely use spinal cord explants to confirm bioactivity of the proteins and protein-soaked beads, and to verify species cross-reactivity with chick tissue, under the same culture conditions as SAG explants. These in vitro assays are convenient for quickly screening for molecules that exert trophic (survival) or tropic (directional) effects on SAG neurons, especially before performing studies in vivo. Moreover, this method permits the testing of individual molecules under serum-free conditions, with high neuron survival8.  相似文献   

9.
The members of the family of neurotrophic factors known as neurotrophins, NGF, BDNF, NT-3 and NT4/5 are known to be cleaved intracellularly from immature precursors, the proneurotrophins. NGF and the other neurotrophins regulate neurite outgrowth and neuronal survival during development via binding to Trk receptor tyrosine kinases and the p75 neurotrophin receptor. Surprisingly, the proneurotrophins were shown to be also biologically active ligands. ProNGF and proBDNF induce neuronal apoptosis via binding to a complex of p75 and sortilin. Therefore, life and death seems to be a delicate interplay between 'cleavage' or 'not cleavage' of the proneurotrophins. However, there is a third aspect to this story. In general, peptide-hormone precursors are known to give rise to several biologically active peptides from one precursor molecule. The paradox with the proneurotrophins is that although they have several additional potential cleavage sites that would necessarily give rise to other peptides besides the neurotrophins and thus new members in the neurotrophin family, this aspect has been largely neglected. This article aims to review evidence for biologically active peptides other than the NGF and NT-3 that can be generated from the proNGF and proNT-3.  相似文献   

10.
The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.  相似文献   

11.
大熊猫神经营养素-4基因在大肠杆菌中的表达   总被引:9,自引:4,他引:5  
本通过PCR技术,直接从大熊猫基因组DNA上克隆得到其神经营养素—4的成熟肽编码序列,通过序列分析发现,该基因在进化上具有较高的保守性。将神经营养素—4成熟肽完整编码序列克隆至pGEX—4T—3表达载体,并经IPTG诱导在大肠杆菌中进行原核生物表达,获得了大熊猫重组蛋白神经营养素—4。重组表达蛋白经纯化后,进行大鼠肾上腺嗜铬瘤细胞神经营养因子的活性鉴定,发现其能够诱导神经细胞分化产生突触,具有预期的生物学活性。对大熊猫神经营养素—4的基因工程研究,为大熊猫癫痫的基因治疗奠定了基础。  相似文献   

12.
The goldfish retina has been used extensively for the study of nerve regeneration. A role for phosphatidylinositol 3-kinase (PI3K) in neurite outgrowth from goldfish retinal explants has been examined by means of wortmannin (WT), a selective inhibitor of the enzyme. The presence of PI3K in retinal extracts was determined by means of immunoprecipitation as well as by an in vitro assay system for catalytic activity. The relative amount of the p85 subunit of PI3K detected by western blot in the retina following optic nerve crush was unchanged. WT inhibited goldfish brain PI3K activity at concentrations as low as 10–9 M, approximating that reported for inhibition of mammalian PI3K's. Daily addition of 10–8 M WT to retinal explants, activated by prior crush of the optic nerve, significantly inhibited neurite outgrowth during a 7 day in vitro culture period, while a single addition of WT to freshly explanted retina had no effect on neurite outgrowth. These results suggest that a PI3K-mediated process may be critical for nerve regrowth.  相似文献   

13.
Myelin inhibitors activate a p75(NTR)-dependent signaling cascade in neurons that not only inhibits axonal growth but also prevents neurotrophins (NT) from stimulating growth. Most intriguingly, in addition to Trk receptors, neurotrophins also bind to p75(NTR). We have designed a "mini-neurotrophin" called B(AG) to activate TrkB in the absence of p75(NTR) binding. We find that B(AG) is as effective as the natural TrkB ligands (brain-derived neurotrophic factor (BDNF) and NT-4) at promoting neurite outgrowth from cerebellar neurons. Furthermore, the neurite outgrowth responses stimulated by BDNF and B(AG) are inhibited by a common set of reagents, including the Trk receptor inhibitor K252a, as well as protein kinase A and phosphoinositide 3-kinase inhibitors. However, in contrast to BDNF, B(AG) promotes growth in the presence of a myelin inhibitor or when antibodies directly activate the p75(NTR) inhibitory pathway. On the basis of this observation, we postulated that the binding of BDNF to the p75(NTR) might compromise the ability of BDNF to stimulate neurite outgrowth in an inhibitory environment. To test this, we used NGF, and an NGF-derived peptide, to compete for the BDNF/p75(NTR) interaction; remarkably, in the presence of either agent, BDNF acquired the ability to promote neurite outgrowth in the presence of a myelin inhibitor. The data suggest that in an inhibitory environment, the BDNF/p75(NTR) interaction compromises regeneration. Agents that activate Trk receptors in the absence of p75(NTR) binding, or agents that inhibit neurotrophin/p75(NTR) binding, might therefore be better therapeutic candidates than neurotrophins.  相似文献   

14.
Rapid and persistent activation of c-JUN is necessary for axonal regeneration after nerve injury, although upstream molecular events leading to c-JUN activation remain largely unknown. ZPK/DLK/MAP3K12 activates the c-Jun N-terminal kinase pathway at an apical level. We investigated axonal regeneration of the dorsal root ganglion (DRG) neurons of homozygous ZPK/DLK gene-trap mice. In vitro neurite extension assays using DRG explants from 14 day-old mice revealed that neurite growth rates of the ZPK/DLK gene-trap DRG explants were reduced compared to those of the wild-type DRG explants. Three ZPK/DLK gene-trap mice which survived into adulthood were subjected to sciatic nerve axotomy. At 24 h after axotomy, phosphorylated c-JUN-positive DRG neurons were significantly less frequent in ZPK/DLK gene-trap mice than in wild-type mice. These results indicate that ZPK/DLK is involved in regenerative responses of mammalian DRG neurons to axonal injury through activation of c-JUN.  相似文献   

15.
The rat collapsin response mediator protein-2 (CRMP-2) is a member of CRMP family (CRMP-1-5). The functional consequence of CRMP-2 during embryonic development, particularly in neurite elongation, is relatively understood; however, the role in nerve regeneration is unclear. Here we examined the role of CRMP-2 during nerve regeneration using rat hypoglossal nerve injury model. Among the members, CRMP-1, CRMP-2, CRMP-5 mRNA expressions increased after nerve injury, whereas CRMP-3 and CRMP-4 mRNA did not show any significant change. In the N1E-115 cells, CRMP-2 has the most potent neurite elongation activity among the CRMP family members. In dorsal root ganglion (DRG) organ culture, CRMP-2 overexpression by adenoviral vector demonstrated substantial neurite elongation. On the other hand, CRMP-2 (DeltaC381), which acts as a dominant negative form of CRMP-2, inhibited neurite formation. Collectively, it would be plausible that CRMP-2 has potent nerve regeneration activity after nerve injury. We therefore examined whether CRMP-2 overexpression in the injured hypoglossal motor neurons accelerates nerve regeneration. A retrograde-tracer, Fluoro-Gold (FG), was used to evaluate the number of reprojecting motor neurons after nerve injury. CRMP-2-overexpressing motor neurons demonstrated the accelerated reprojection. The present study suggests that CRMP-2 has potent neurite elongation activity in nerve regeneration in vivo.  相似文献   

16.
Adrenal chromaffin cells have been characterized by the ability to change the phenotype in response to neurotrophic factor stimulation. The adrenal gland expresses numerous trophic factors endogenously, but there is still a lack of knowledge as to how the adrenal medullary cells respond to these factors. Accordingly, we evaluated nerve fiber outgrowth and cell morphology, and measured catecholamine content in adult rat adrenal medullary tissue transplanted to the anterior chamber of the eye after exposure to neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4/5), basic fibroblast growth factor (bFGF), ciliary neurotrophic factor (CNTF), or glial cell line-derived neurotrophic factor (GDNF) compared with the effects after exposure to recombinant human nerve growth factor (rhNGF). The results show that rhNGF was the most potent factor in inducing neurite outgrowth from the grafted chromaffin cells. CNTF was also a powerful inducer of nerve fiber formation, while NT-4/5, GDNF, and bFGF were less potent. NT-3 did not produce neurite outgrowth above that seen in vehicle-treated eyes. Combining two neurotrophins, rhNGF and NT-3, reduced nerve fiber formation. Tyrosine hydroxylase (TH) immunohistochemistry revealed good cell survival in all grafts, and no morphological differences were detected with the different treatments. The adrenaline: noradrenaline: dopamine ratio was approximately 49%: 49%: 2%, independent of treatment, and the catecholamine content was equal irrespective of treatment. In conclusion, all neurotrophic factors used, except for NT-3, promoted neurite outgrowth from adult rat chromaffin transplants. Differences in outgrowth induced by the various trophic factors did not, however, change the catecholamine content in grafts when analyzed together with the graft-derived nerve plexus.  相似文献   

17.
Targets in limb regions of the chick embryo are further removed from the dorsal root ganglia that innervate them compared with thoracic ganglion-to-target distances. It has been inferred that axons grow into the limb regions two to three times faster than into nonlimb regions. We tested whether the differences were due to intrinsic properties of the neurons located at different segmental levels. Dorsal root ganglia (DRG) were isolated from the forelimb, trunk, and hind limb regions of stage 25–30 embryos. Neurite outgrowth was measured in dissociated cell culture and in cultures of DRG explants. Although there was considerable variability in the amount of neurite outgrowth, there were no substantive differences in the amount or the rate of outgrowth comparing brachial, thoracic, or lumbosacral neurons. The amount of neurite outgrowth in dissociated cell cultures increased with the stage of development. Overall, our data suggest that DRG neurons express a basal amount of outgrowth, which is initially independent of target-derived neurotrophic influences; the magnitude of this intrinsic growth potential increases with stage of development; and the neurons of the DRG are not intrinsically specified to grow neurites at rates that are matched to the distance they are required to grow to make contact with their peripheral targets in vivo. We present a speculative model based on Poisson statistics, which attempts to account for the variability in the amount of neurite outgrowth from dissociated neurons. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
19.
20.
The gene of human neurotrophin-3 (hNT3), a 380 bp fragment corresponding to a 14 kDa protein, was amplified by PCR with genome DNA of human whole blood as the template and cloned into a vector pTXB1. The recombinant including the hNT3 gene was expressed in E. coli and the target product was in the form of inclusion bodies. After denaturation and renaturation, the hNT3 was purified on an affinity column by a self-cleaving intein. The bioactivity assay showed that the purified hNT3 induced profuse neurite outgrowth from the dorsal root ganglia (DRG) explants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号