首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.  相似文献   

2.
Previously, we showed that sulforaphane (SFN), a naturally occurring cancer chemopreventive agent, effectively inhibits proliferation of PC-3 human prostate cancer cells by causing caspase-9- and caspase-8-mediated apoptosis. Here, we demonstrate that SFN treatment causes an irreversible arrest in the G(2)/M phase of the cell cycle. Cell cycle arrest induced by SFN was associated with a significant decrease in protein levels of cyclin B1, cell division cycle (Cdc) 25B, and Cdc25C, leading to accumulation of Tyr-15-phosphorylated (inactive) cyclin-dependent kinase 1. The SFN-induced decline in Cdc25C protein level was blocked in the presence of proteasome inhibitor lactacystin, but lactacystin did not confer protection against cell cycle arrest. Interestingly, SFN treatment also resulted in a rapid and sustained phosphorylation of Cdc25C at Ser-216, leading to its translocation from the nucleus to the cytoplasm because of increased binding with 14-3-3beta. Increased Ser-216 phosphorylation of Cdc25C upon treatment with SFN was the result of activation of checkpoint kinase 2 (Chk2), which was associated with Ser-1981 phosphorylation of ataxia telangiectasia-mutated, generation of reactive oxygen species, and Ser-139 phosphorylation of histone H2A.X, a sensitive marker for the presence of DNA double-strand breaks. Transient transfection of PC-3 cells with Chk2-specific small interfering RNA duplexes significantly attenuated SFN-induced G(2)/M arrest. HCT116 human colon cancer-derived Chk2(-/-) cells were significantly more resistant to G(2)/M arrest by SFN compared with the wild type HCT116 cells. These findings indicate that Chk2-mediated phosphorylation of Cdc25C plays a major role in irreversible G(2)/M arrest by SFN. Activation of Chk2 in response to DNA damage is well documented, but the present study is the first published report to link Chk2 activation to cell cycle arrest by an isothiocyanate.  相似文献   

3.
4.
Control of cell cycle progression by stress-activated protein kinases (SAPKs) is essential for cell adaptation to extracellular stimuli. The Schizosaccharomyces pombe SAPK Sty1/Spc1 orchestrates general changes in gene expression in response to diverse forms of cytotoxic stress. Here we show that Sty1/Spc1 is bound to its target, the Srk1 kinase, when the signaling pathway is inactive. In response to stress, Sty1/Spc1 phosphorylates Srk1 at threonine 463 of the regulatory domain, inducing both activation of Srk1 kinase, which negatively regulates cell cycle progression by inhibiting Cdc25, and dissociation of Srk1 from the SAPK, which leads to Srk1 degradation by the proteasome.  相似文献   

5.
In yeasts, the replication protein Cdc6/Cdc18 is required for the initiation of DNA replication and also for coupling S phase with the following mitosis. In metazoans a role for Cdc6 has only been shown in S phase entry. Here we provide evidence that human Cdc6 (HuCdc6) also regulates the onset of mitosis, as overexpression of HuCdc6 in G(2) phase cells prevents entry into mitosis. This block is abolished when HuCdc6 is expressed together with a constitutively active Cyclin B/CDK1 complex or with Cdc25B or Cdc25C. An inhibitor of Chk1 kinase activity, UCN-01, overcomes the HuCdc6 mediated G(2) arrest indicating that HuCdc6 blocks cells in G(2) phase via a checkpoint pathway involving Chk1. When HuCdc6 is overexpressed in G(2), we detected phosphorylation of Chk1. Thus, HuCdc6 can trigger a checkpoint response, which could ensure that all DNA is replicated before mitotic entry. We also present evidence that the ability of HuCdc6 to block mitosis may be regulated by its phosphorylation.  相似文献   

6.
Chk1, a nuclear DNA damage/replication G2 checkpoint kinase, phosphorylates Cdc25 and causes its nuclear exclusion in yeast and mammalian cells, thereby arresting the cell at the G2 phase until DNA repair/replication is completed. Chk1 is also involved, at least in part, in the natural G2 arrest of immature Xenopus oocytes, but it is unknown how Chk1 inhibits Cdc25 function and undergoes regulation during oocyte maturation. By using enucleated oocytes, we show here that Chk1 inhibits Cdc25 function in the cytoplasm of G2-arrested oocytes and that Cdc25 is activated exclusively in the cytoplasm of maturing oocytes. Moreover, we show that Chk1 activity is not appreciably altered during maturation, being maintained at basal levels, and that C-terminal truncation mutants of Chk1 have very high kinase activities, strong abilities to inhibit maturation, and altered subcellular localization in oocytes. These results, together with other results, suggest that the Chk1/Cdc25 pathway is involved cytoplasmically in G2 arrest of Xenopus oocytes, but moderately and independent of the G2 checkpoint, and that the C-terminal region of Chk1 negatively regulates its kinase activity and also determines its subcellular localization. Based on these results, we discuss the possibility that Chk1 (with the basal activity) may function as an ordinary regulator of Cdc25 in oocytes (and in other cell types) and that Chk1 might be hyperactivated in response to the G2 checkpoint via its dramatic conformational change.  相似文献   

7.
Checkpoints respond to DNA damage by arresting the cell cycle to provide time for facilitating repair. In mammalian cells, the G(2) checkpoint prevents the Cdc25C phosphatase from removing inhibitory phosphate groups from the mitosis-promoting kinase Cdc2. Both Chk1 and Chk2, the checkpoint kinases, can phosphorylate Cdc25C and inactivate its in vitro phosphatase activity. Therefore, both Chk1 and Chk2 are thought to regulate the activation of the G(2) checkpoint. Here we report that A1-5, a transformed rat embryo fibroblast cell line, shows much more radioresistance associated with a much stronger G(2) arrest response when compared with its counterpart, B4, although A1-5 and B4 cells have a similar capacity for nonhomologous end-joining DNA repair. These phenotypes of A1-5 cells are accompanied by a higher Chk1 expression and a higher phosphorylation of Cdc2. On the other hand, Chk2 expression increases slightly following radiation; however, it has no difference between A1-5 and B4 cells. Caffeine or UCN-01 abolishes the extreme radioresistance with the strong G(2) arrest and at the same time reduces the phosphorylation of Cdc2 in A1-5 cells. In addition, Chk1 but not Chk2 antisense oligonucleotide sensitizes A1-5 cells to radiation-induced killing and reduces the G(2) arrest of the cells. Taken together these results suggest that the Chk1/Cdc25C/Cdc2 pathway is the major player for the radioresistance with G(2) arrest in A1-5 cells.  相似文献   

8.
The protein kinase Chk1 enforces the DNA damage checkpoint. This checkpoint delays mitosis until damaged DNA is repaired. Chk1 regulates the activity and localization of Cdc25, the tyrosine phosphatase that activates the cdk Cdc2. Here we report that Mik1, a tyrosine kinase that inhibits Cdc2, is positively regulated by the DNA damage checkpoint. Mik1 is required for checkpoint response in strains that lack Cdc25. Long-term DNA damage checkpoint arrest fails in Δmik1 cells. DNA damage increases Mik1 abundance in a Chk1-dependent manner. Ubiquitinated Mik1 accumulates in a proteasome mutant, which indicates that Mik1 normally has a short half-life. Thus, the DNA damage checkpoint might regulate Mik1 degradation. Mik1 protein and mRNA oscillate during the unperturbed cell cycle, with peak amounts detected around S phase. These data indicate that regulation of Mik1 abundance helps to couple mitotic onset to the completion of DNA replication and repair. Coordinated negative regulation of Cdc25 and positive regulation of Mik1 ensure the effective operation of the DNA damage checkpoint.  相似文献   

9.
The extracellular signal-regulated kinase (ERK) pathway is generally mitogenic, but, upon strong activation, it causes cell cycle arrest by a not-yet fully understood mechanism. In response to genotoxic stress, Chk1 hyperphosphorylates Cdc25A, a positive cell cycle regulator, and targets it for Skp1/Cullin1/F-box protein (SCF)β-TrCP ubiquitin ligase-dependent degradation, thereby leading to cell cycle arrest. Here, we show that strong ERK activation can also phosphorylate and target Cdc25A for SCFβ-TrCP-dependent degradation. When strongly activated in Xenopus eggs, the ERK pathway induces prominent phosphorylation and SCFβ-TrCP-dependent degradation of Cdc25A. p90rsk, the kinase downstream of ERK, directly phosphorylates Cdc25A on multiple sites, which, interestingly, overlap with Chk1 phosphorylation sites. Furthermore, ERK itself phosphorylates Cdc25A on multiple sites, a major site of which apparently is phosphorylated by cyclin-dependent kinase (Cdk) in Chk1-induced degradation. p90rsk phosphorylation and ERK phosphorylation contribute, roughly equally and additively, to the degradation of Cdc25A, and such Cdc25A degradation occurs during oocyte maturation in which the endogenous ERK pathway is fully activated. Finally, and importantly, ERK-induced Cdc25A degradation can elicit cell cycle arrest in early embryos. These results suggest that strong ERK activation can target Cdc25A for degradation in a manner similar to, but independent of, Chk1 for cell cycle arrest.  相似文献   

10.
DNA damage causes cell cycle arrest in G(1), S, or G(2) to prevent replication on damaged DNA or to prevent aberrant mitosis. The G(1) arrest requires the p53 tumor suppressor, yet the topoisomerase I inhibitor SN38 induces p53 after the G(1) checkpoint such that the cells only arrest in S or G(2). Hence, SN38 facilitates comparison of p53 wild-type and mutant cells with regard to the efficacy of drugs such as 7-hydroxystaurosporine (UCN-01) that abrogate S and G(2) arrest. UCN-01 abrogated S and G(2) arrest in the p53 mutant breast tumor cell line MDA-MB-231 but not in the p53 wild-type breast line, MCF10a. This resistance to UCN-01 in the p53 wild-type cells correlated with suppression of cyclins A and B. In the p53 mutant cells, low concentrations of UCN-01 caused S phase cells to progress to G(2) before undergoing mitosis and death, whereas high concentrations caused rapid premature mitosis and death of S phase cells. UCN-01 inhibits Chk1/2, which should activate the mitosis-inducing phosphatase Cdc25C, yet this phosphatase remained inactive during S phase progression induced by low concentrations of UCN-01, probably because Cdc25C is also inhibited by the constitutive kinase, C-TAK1. High concentrations of UCN-01 caused rapid activation of Cdc25C, which is attributed to inhibition of C-TAK1, as well as Chk1/2. Hence, UCN-01 has multiple effects depending on concentration and cell phenotype that must be considered when investigating mechanisms of checkpoint regulation.  相似文献   

11.
Calonge TM  O'Connell MJ 《Genetics》2006,174(1):113-123
Activation of the Chk1 protein kinase by DNA damage enforces a checkpoint that maintains Cdc2 in its inactive, tyrosine-15 (Y15) phosphorylated state. Chk1 downregulates the Cdc25 phosphatases and concomitantly upregulates the Wee1 kinases that control the phosphorylation of Cdc2. Overproduction of Chk1 causes G(2) arrest/delay independently of DNA damage and upstream checkpoint genes. We utilized this to screen fission yeast for mutations that alter sensitivity to Chk1 signaling. We describe three dominant-negative alleles of cdr1, which render cells supersensitive to Chk1 levels, and suppress the checkpoint defects of chk1Delta cells. Cdr1 encodes a protein kinase previously identified as a negative regulator of Wee1 activity in response to limited nutrition, but Cdr1 has not previously been linked to checkpoint signaling. Overproduction of Cdr1 promotes checkpoint defects and exacerbates the defective response to DNA damage of cells lacking Chk1. We conclude that regulation of Wee1 by Cdr1 and possibly by related kinases is an important antagonist of Chk1 signaling and represents a novel negative regulation of cell cycle arrest promoted by this checkpoint.  相似文献   

12.
The DNA damage and stress response pathways interact to regulate cellular responses to genotoxins and environmental stresses. How these pathways interact in Schizosaccharomyces pombe is not well understood. We demonstrate that osmotic stress suppresses the DNA damage sensitivity of checkpoint mutants, and that this occurs through three distinct cell cycle delays. A delay in G2/M is dependent on Srk1. Progression through mitosis is halted by the Mad2‐dependent spindle checkpoint. Finally, cytokinesis is impaired by modulating Cdc25 expression. These three delays, imposed by osmotic stress, together compensate for the loss of checkpoint signalling.  相似文献   

13.
In response to DNA damage, cells activate a signaling pathway that promotes cell cycle arrest and degradation of the cell cycle regulator Cdc25A. Cdc25A degradation occurs via the SCFbeta-TRCP pathway and phosphorylation of Ser-76. Previous work indicates that the checkpoint kinase Checkpoint kinase 1 (Chk1) is capable of phosphorylating Ser-76 in Cdc25A, thereby promoting its degradation. In contrast, other experiments involving overexpression of dominant Chk2 mutant proteins point to a role for Chk2 in Cdc25A degradation. However, loss-of-function studies that implicate Chk2 in Cdc25A turnover are lacking, and there is no evidence that Chk2 is capable of phosphorylating Ser-76 in Cdc25A despite the finding that Chk1 and Chk2 sometimes share overlapping primary specificity. We find that although Chk2 can phosphorylate many of the same sites in Cdc25A that Chk1 phosphorylates, albeit with reduced efficiency, Chk2 is unable to efficiently phosphorylate Ser-76. Consistent with this, Chk2, unlike Chk1, is unable to support SCFbeta-TRCP-mediated ubiquitination of Cdc25A in vitro. In CHK2(-/-) HCT116 cells, the kinetics of Cdc25A degradation in response to ionizing radiation is comparable with that seen in HCT116 cells containing Chk2, indicating that Chk2 is not generally required for timely DNA damage-dependent Cdc25A turnover. In contrast, depletion of Chk1 by RNA interference in CHK2(-/-) cells leads to Cdc25A stabilization in response to ionizing radiation. These data support the idea that Chk1 is the primary signal transducer linking activation of the ATM/ATR kinases to Cdc25A destruction in response to ionizing radiation.  相似文献   

14.
The human Cdc25A phosphatase plays a pivotal role at the G1/S transition by activating cyclin E and A/Cdk2 complexes through dephosphorylation. In response to ionizing radiation, Cdc25A is phosphorylated by both Chk1 and Chk2 on Ser-123. This in turn leads to ubiquitylation and rapid degradation of Cdc25A by the proteasome resulting in cell cycle arrest. We found that in response to UV irradiation, Cdc25A is phosphorylated at a different serine residue, Ser-75. Significantly, Cdc25A mutants carrying alanine instead of either Ser-75 or Ser-123 demonstrate that only Ser-75 mediates protein stabilization in response to UV-induced DNA damage. As a consequence, cyclin E/Cdk2 kinase activity was high. Furthermore, we find that Cdc25A was phosphorylated by Chk1 on Ser-75 in vitro and that the same site was also phosphorylated in vivo. Taken together, these data strongly suggest that phosphorylation of Cdc25A on Ser-75 by Chk1 and its subsequent degradation is required to delay cell cycle progression in response to UV-induced DNA lesions.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) Vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) and mammalian cells, suggesting the cellular pathway(s) targeted by Vpr is conserved among eukaryotes. Our previous studies in fission yeast demonstrated that Vpr induces G2 arrest in part through inhibition of Cdc25, a Cdc2-specific phosphatase that promotes G2/M transition. The goal of this study was to further elucidate molecular mechanism underlying the inhibitory effect of Vpr on Cdc25. We show here that, similar to the DNA checkpoint controls, expression of vpr promotes subcellular relocalization of Cdc25 from nuclear to cytoplasm and thereby prevents activation of Cdc2 by Cdc25. Vpr-induced nuclear exclusion of Cdc25 appears to depend on the serine/threonine phosphorylation of Cdc25 and the presence of Rad24/14-3-3 protein, since amino acid substitutions of the nine possible phosphorylation sites of Cdc25 with Ala (9A) or deletion of the rad24 gene abolished nuclear exclusion induced by Vpr. Interestingly, Vpr is still able to promote Cdc25 nuclear export in mutants defective in the checkpoints (rad3 and chk1/cds1), the kinases that are normally required for Cdc25 phosphorylation and nuclear exclusion of Cdc25, suggesting that others kinase(s) might modulate phosphorylation of Cdc25 for the Vpr-induced G2 arrest. We report here that this kinase is Srk1. Deletion of the srk1 gene blocks the nuclear exclusion of Cdc25 caused by Vpr. Overexpression of srk1 induces cell elongation, an indication of cell cycle G2 delay, in a similar fashion to Vpr; however, no additive effect of cell elongation was observed when srk1 and vpr were coexpressed, indicating Srk1 and Vpr are likely affecting the cell cycle G2/M transition through the same cellular pathway. Immunoprecipitation further shows that Vpr and Srk1 are part of the same protein complex. Consistent with our findings in fission yeast, depletion of the MK2 gene, a human homologue of Srk1, either by small interfering RNA or an MK2 inhibitor suppresses Vpr-induced cell cycle G2 arrest in mammalian cells. Collectively, our data suggest that Vpr induces cell cycle G2 arrest at least in part through a Srk1/MK2-mediated mechanism.  相似文献   

16.
The cellular response to DNA damage is mediated by evolutionarily conserved Ser/Thr kinases, phosphorylation of Cdc25 protein phosphatases, binding to 14-3-3 proteins, and exit from the cell cycle. To investigate DNA damage responses mediated by the p38/stress-activated protein kinase (SAPK) axis of signaling, the optimal phosphorylation motifs of mammalian p38alpha SAPK and MAPKAP kinase-2 were determined. The optimal substrate motif for MAPKAP kinase-2, but not for p38 SAPK, closely matches the 14-3-3 binding site on Cdc25B/C. We show that MAPKAP kinase-2 is directly responsible for Cdc25B/C phosphorylation and 14-3-3 binding in vitro and in response to UV-induced DNA damage within mammalian cells. Downregulation of MAPKAP kinase-2 eliminates DNA damage-induced G2/M, G1, and intra S phase checkpoints. We propose that MAPKAP kinase-2 is a new member of the DNA damage checkpoint kinase family that functions in parallel with Chk1 and Chk2 to integrate DNA damage signaling responses and cell cycle arrest in mammalian cells.  相似文献   

17.
Chk1 kinase, a DNA damage/replication G2 checkpoint kinase, has recently been shown to phosphorylate and inhibit Cdc25C, a Cdc2 Tyr-15 phosphatase, thereby directly linking the G2 checkpoint to negative regulation of Cdc2. Immature Xenopus oocytes are arrested naturally at the first meiotic prophase (prophase I) or the late G2 phase, with sustained Cdc2 Tyr-15 phosphorylation. Here we have cloned a Xenopus homolog of Chk1, determined its developmental expression, and examined its possible role in prophase I arrest of oocytes. Xenopus Chk1 protein is expressed at approximately constant levels throughout oocyte maturation and early embryogenesis. Overexpression of wild-type Chk1 in oocytes prevents the release from prophase I arrest by progesterone. Conversely, specific inhibition of endogenous Chk1 either by overexpression of a dominant-negative Chk1 mutant or by injection of a neutralizing anti-Chk1 antibody facilitates prophase I release by progesterone. Moreover, when ectopically expressed in oocytes, a Chk1-nonphosphorylatable Cdc25C mutant alone can induce prophase I release much more efficiently than wild-type Cdc25C; if endogenous Chk1 function is inhibited, however, even wild-type Cdc25C can induce the release very efficiently. These results suggest strongly that Chk1 is involved in physiological prophase I arrest of Xenopus oocytes via the direct phosphorylation and inhibition of Cdc25C. We discuss the possibility that Chk1 might function either as a G2 checkpoint kinase or as an ordinary cell cycle regulator in prophase-I-arrested oocytes.  相似文献   

18.
The cycle inhibiting factor (Cif) belongs to a family of bacterial toxins and effector proteins, the cyclomodulins, that deregulate the host cell cycle. Upon injection into HeLa cells by the enteropathogenic Escherichia coli (EPEC) type III secretion system, Cif induces a cytopathic effect characterized by the recruitment of focal adhesion plates and the formation of stress fibres, an irreversible cell cycle arrest at the G(2)/M transition, and sustained inhibitory phosphorylation of mitosis inducer, CDK1. Here, we report that the reference typical EPEC strain B171 produces a functional Cif and that lipid-mediated delivery of purified Cif into HeLa cells induces cell cycle arrest and actin stress fibres, implying that Cif is necessary and sufficient for these effects. EPEC infection of intestinal epithelial cells (Caco-2, IEC-6) also induces cell cycle arrest and CDK1 inhibition. The effect of Cif is strikingly similar to that of cytolethal distending toxin (CDT), which inhibits the G(2)/M transition by activating the DNA-damage checkpoint pathway. However, in contrast to CDT, Cif does not cause phosphorylation of histone H2AX, which is associated with DNA double-stranded breaks. Following EPEC infection, the checkpoint effectors ATM/ATR, Chk1 and Chk2 are not activated, the levels of the CDK-activating phosphatases Cdc25B and Cdc25C are not affected, and Cdc25C is not sequestered in host cell cytoplasm. Hence, Cif activates a DNA damage-independent signalling pathway that leads to inhibition of the G(2)/M transition.  相似文献   

19.
A checkpoint operating in the G(2) phase of the cell cycle prevents entry into mitosis in the presence of DNA damage. UCN-01, a protein kinase inhibitor currently undergoing clinical trials for cancer treatment, abrogates G(2) checkpoint function and sensitizes p53-defective cancer cells to DNA-damaging agents. In most species, the G(2) checkpoint prevents the Cdc25 phosphatase from removing inhibitory phosphate groups from the mitosis-promoting kinase Cdc2. This is accomplished by maintaining Cdc25 in a phosphorylated form that binds 14-3-3 proteins. The checkpoint kinases, Chk1 and Cds1, are proposed to regulate the interactions between human Cdc25C and 14-3-3 proteins by phosphorylating Cdc25C on serine 216. 14-3-3 proteins, in turn, function to keep Cdc25C out of the nucleus. Here we report that UCN-01 caused loss of both serine 216 phosphorylation and 14-3-3 binding to Cdc25C in DNA-damaged cells. In addition, UCN-01 potently inhibited the ability of Chk1 to phosphorylate Cdc25C in vitro. In contrast, Cds1 was refractory to inhibition by UCN-01 in vitro, and Cds1 was still phosphorylated in irradiated cells treated with UCN-01. Thus, neither Cds1 nor kinases upstream of Cds1, such as ataxia telangiectasia-mutated, are targets of UCN-01 action in vivo. Taken together our results identify the Chk1 kinase and the Cdc25C pathway as potential targets of G(2) checkpoint abrogation by UCN-01.  相似文献   

20.
Although p38 MAPK is known to be activated in response to various environmental stresses and to have inhibitory roles in cell proliferation and tumor progression, its role in cell cycle progression in the absence of stress is unknown in most cell types. In the case of G(2)/M cell cycle control, p38 activation has been shown to trigger a rapid G(2)/M cell cycle checkpoint after DNA damage stress and a spindle checkpoint after microtubule disruption. In the course of our studies, we observed that p38 became actively phosphorylated, and its kinase activity increased transiently during G(2)/M cell cycle transition. Using an immunocytochemistry approach, the active form of p38 was found at the centrosome from late G(2) throughout mitosis, which suggests functional relevance for active p38 protein during mitotic entry. A closer examination reveals that p38 inhibition by pharmacologic inhibitors significantly accelerated the timing of mitotic entry. In addition, long term exposure of the inhibitor enhanced Cdc2 activity. These results indicate that p38 activity during G(2)/M may be involved in a mechanism for fine tuning the initiation of mitosis and perhaps transit of mitosis. Consistent with our previous findings, Cdc25B was phosphorylated on serine 309 at the centrosome during G(2)/M when p38 was active at this site; Cdc25B phosphorylation inhibits Cdc25B activity, and this phosphorylation was found to be p38-dependent. Taken together, our findings suggest that p38 regulates the timing of mitotic entry via modulation of Cdc25B activity under normal nonstress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号