首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ACT2 gene, encoding one of eight actin isovariants in Arabidopsis, is the most strongly expressed actin gene in vegetative tissues. A search was conducted for physical defects in act2-1 mutant plants to account for their reduced fitness compared with wild type in population studies. The act2-1 insertion fully disrupted expression of ACT2 RNA and significantly lowered the level of total actin protein in vegetative organs. The root hairs of the act2-1 mutants were 10% to 70% the length of wild-type root hairs, and they bulged severely at the base. The length of the mutant root hairs and degree of bulging at the base were affected by adjusting the osmolarity and gelling agent of the growth medium. The act2-1 mutant phenotypes were fully rescued by an ACT2 genomic transgene. When the act2-1 mutation was combined with another vegetative actin mutation, act7-1, the resulting double mutant exhibited extensive synergistic phenotypes ranging from developmental lethality to severe dwarfism. Transgenic overexpression of the ACT7 vegetative isovariant and ectopic expression of the ACT1 reproductive actin isovariant also rescued the root hair elongation defects of the act2-1 mutant. These results suggest normal ACT2 gene regulation is essential to proper root hair elongation and that even minor differences may cause root defects. However, differences in the actin protein isovariant are not significant to root hair elongation, in sharp contrast to recent reports on the functional nonequivalency of plant actin isovariants. Impairment of root hair functions such as nutrient mining, water uptake, and physical anchoring are the likely cause of the reduced fitness seen for act2-1 mutants in multigenerational studies.  相似文献   

2.
The relative significance of gene regulation and protein isovariant differences remains unexplored for most gene families, particularly those participating in multicellular development. Arabidopsis thaliana encodes three vegetative actins, ACT2, ACT7, and ACT8, in two ancient and highly divergent subclasses. Mutations in any of these differentially expressed actins revealed only mild phenotypes. However, double mutants were extremely dwarfed, with altered cell and organ morphology and an aberrant F-actin cytoskeleton (e.g., act2-1 act7-4 and act8-2 act7-4) or totally root-hairless (e.g., act2-1 act8-2). Our studies suggest that the three vegetative actin genes and protein isovariants play distinct subclass-specific roles during plant morphogenesis. For example, during root development, ACT7 was involved in root growth, epidermal cell specification, cell division, and root architecture, and ACT2 and ACT8 were essential for root hair tip growth. Also, genetic complementation revealed that the ACT2 and ACT8 isovariants, but not ACT7, fully rescued the root hair growth defects of single and double mutants. Moreover, we synthesized fully normal plants overexpressing the ACT8 isovariant from multiple actin regulatory sequences as the only vegetative actin in the act2-1 act7-4 background. In summary, it is evident that differences in vegetative actin gene regulation and the diversity in actin isovariant sequences are essential for normal plant development.  相似文献   

3.
Arabidopsis contains eight actin genes. Of these ACT7 is the most strongly expressed in young plant tissues and shows the greatest response to physiological cues. Adult plants homozygous for the act7 mutant alleles show no obvious above-ground phenotypes, which suggests a high degree of functional redundancy among plant actins. However, act7-1 mutant plants are at a strong selective disadvantage when grown in competition with wild-type plants and therefore must have undetected physical defects. The act7-1 and act7-4 alleles contain T-DNA insertions just after the stop codon and within the first intron, respectively. Homozygous mutant seedlings of both alleles showed less than 7% of normal ACT7 protein levels. Mutants displayed delayed and less efficient germination, increased root twisting and waving, and retarded root growth. The act7-4 mutant showed the most dramatic reduction in root growth. The act7-4 root apical cells were not in straight files and contained oblique junctions between cells suggesting a possible role for ACT7 in determining cell polarity. Wild-type root growth was fully restored to the act7-1 mutant by the addition of an exogenous copy of the ACT7 gene. T-DNA insertions just downstream of the major polyadenylation sites (act7-2, act7-3) appeared fully wild type. The act7 mutant phenotypes demonstrate a significant requirement for functional ACT7 protein during root development and explain the strong negative selection component seen for the act7-1 mutant.  相似文献   

4.
During plant growth and development, the phytohormone auxin induces a wide array of changes that include cell division, cell expansion, cell differentiation, and organ initiation. It has been suggested that the actin cytoskeleton plays an active role in the elaboration of these responses by directing specific changes in cell morphology and cytoarchitecture. Here we demonstrate that the promoter and the protein product of one of the Arabidopsis vegetative actin genes, ACT7, are rapidly and strongly induced in response to exogenous auxin in the cultured tissues of Arabidopsis. Homozygous act7-1 mutant plants were slow to produce callus tissue in response to hormones, and the mutant callus contained at least two to three times lower levels of ACT7 protein than did the wild-type callus. On the other hand, a null mutation in ACT2, another vegetative actin gene, did not significantly affect callus formation from leaf or root tissue. Complementation of the act7-1 mutants with the ACT7 genomic sequence restored their ability to produce callus at rates similar to those of wild-type plants, confirming that the ACT7 gene is required for callus formation. Immunolabeling of callus tissue with actin subclass-specific antibodies revealed that the predominant ACT7 is coexpressed with the other actin proteins. We suggest that the coexpression, and probably the copolymerization, of the abundant ACT7 with the other actin isovariants in cultured cells may facilitate isovariant dynamics well suited for cellular responses to external stimuli such as hormones.  相似文献   

5.
Root hairs develop as long extensions from root epidermal cells. After the formation of an initial bulge at the distal end of the epidermal cell, the root hair structure elongates by tip growth. Because root hairs are not surrounded by other cells, root hair formation provides an excellent system for studying the highly complex process of plant cell growth. Pharmacological experiments with actin filament-interfering drugs have provided evidence that the actin cytoskeleton is an important factor in the establishment of cell polarity and in the maintenance of the tip growth machinery at the apex of the growing root hair. However, there has been no genetic evidence to directly support this assumption. We have isolated an Arabidopsis mutant, deformed root hairs 1 (der1), that is impaired in root hair development. The DER1 locus was cloned by map-based cloning and encodes ACTIN2 (ACT2), a major actin of the vegetative tissue. The three der1 alleles develop the mutant phenotype to different degrees and are all missense mutations, thus providing the means to study the effect of partially functional ACT2. The detailed characterization of the der1 phenotypes revealed that ACT2 is not only involved in root hair tip growth, but is also required for correct selection of the bulge site on the epidermal cell. Thus, the der1 mutants are useful tools to better understand the function of the actin cytoskeleton in the process of root hair formation.  相似文献   

6.
The actin cytoskeleton is involved in the transport and positioning of Golgi bodies, but the actin-based processes that determine the positioning and motility behavior of Golgi bodies are not well understood. In this work, we have studied the relationship between Golgi body motility behavior and actin organization in intercalary growing root epidermal cells during different developmental stages. We show that in these cells two distinct actin configurations are present, depending on the developmental stage. In small cells of the early root elongation zone, fine filamentous actin (F-actin) occupies the whole cell, including the cortex. In larger cells in the late elongation zone that have almost completed cell elongation, actin filament bundles are interspersed with areas containing this fine F-actin and areas without F-actin. Golgi bodies in areas with the fine F-actin exhibit a non-directional, wiggling type of motility. Golgi bodies in areas containing actin filament bundles move up to 7 μm s?1. Since the motility of Golgi bodies changes when they enter an area with a different actin configuration, we conclude that the type of movement depends on the actin organization and not on the individual organelle. Our results show that the positioning of Golgi bodies depends on the local actin organization.  相似文献   

7.
The putative Arabidopsis arp2/3 complex controls leaf cell morphogenesis   总被引:8,自引:0,他引:8  
Li S  Blanchoin L  Yang Z  Lord EM 《Plant physiology》2003,132(4):2034-2044
The evolutionarily conserved Arp2/3 complex has been shown to activate actin nucleation and branching in several eukaryotes, but its biological functions are not well understood in multicellular organisms. The model plant Arabidopsis provides many advantages for genetic dissection of the function of this conserved actin-nucleating machinery, yet the existence of this complex in plants has not been determined. We have identified Arabidopsis genes encoding homologs of all of the seven Arp2/3 subunits. The function of the putative Arabidopsis Arp2/3 complex has been studied using four homozygous T-DNA insertion mutants for ARP2, ARP3, and ARPC5/p16. All four mutants display identical defects in the development of jigsaw-shaped epidermal pavement cells and branched trichomes in the leaf. These loss-of-function mutations cause mislocalization of diffuse cortical F-actin to the neck region and inhibit lobe extension in pavement cells. The mutant trichomes resemble those treated with the actin-depolymerizing drug cytochalasin D, exhibiting stunted branches but dramatically enlarged stalks due to depolarized growth suggesting defects in the formation of a fine actin network. Our data demonstrate that the putative Arabidopsis Arp2/3 complex controls cell morphogenesis through its roles in cell polarity establishment and polar cell expansion. Furthermore, our data suggest a novel function for the putative Arp2/3 complex in the modulation of the spatial distribution of cortical F-actin and provide evidence that the putative Arp2/3 complex may activate the polymerization of some types of actin filaments in specific cell types.  相似文献   

8.
Plants have diversified their leaf morphologies to adapt to diverse ecological niches. The molecular components responsible for regulating leaf morphology, however, have not been fully elucidated. By screening Arabidopsis activation-tagging lines, we identified a dominant mutant, which we designated longifolia1-1D (lng1-1D). lng1-1D plants were characterized by long petioles, narrow but extremely long leaf blades with serrated margins, elongated floral organs, and elongated siliques. The elongated leaves of the mutant were due to increased polar cell elongation rather than increased cell proliferation. Molecular characterization revealed that this phenotype was caused by overexpression of the novel gene LNG1, which was found to have a homolog, LNG2,in Arabidopsis. To further examine the role of the LNG genes, we characterized lng1 and lng2 loss-of-function mutant lines. In contrast to the elongated leaves of lng1-1D plants, the lng1 and lng2 mutants showed slightly decreased leaf length. Furthermore, the lng1-3 lng2-1 double mutant showed further decreased leaf length associated with less longitudinal polar cell elongation. The leaf widths in lng1-3 lng2-1 mutant plants were similar to those in wild type, implying that the role of LNG1 and LNG2 on polar cell elongation is similar to that of ROTUNDIFOLIA3 (ROT3). However, analysis of a lng1-3 lng2-1 rot3-1 triple mutant and of a lng1-1D rot3-1 double mutant indicated that LNG1 and LNG2 promote longitudinal cell elongation independently of ROT3. Taken together, these findings indicate that LNG1 and LNG2 are new components that regulate leaf morphology by positively promoting longitudinal polar cell elongation independently of ROT3 in Arabidopsis.  相似文献   

9.
In the yeast Saccharomyces cerevisiae, actin filaments function to direct cell growth to the emerging bud. Yeast has a single essential actin gene, ACT1. Diploid cells containing a single copy of ACT1 are osmosensitive (Osms), i.e., they fail to grow in high osmolarity media (D. Shortle, unpublished observations cited by Novick, P., and D. Botstein. 1985. Cell. 40:415-426). This phenotype suggests that an underlying physiological process involving actin is osmosensitive. Here, we demonstrate that this physiological process is a rapid and reversible change in actin filament organization in cells exposed to osmotic stress. Filamentous actin was stained using rhodamine phalloidin. Increasing external osmolarity caused a rapid loss of actin filament cables, followed by a slower redistribution of cortical actin filament patches. In the recovery phase, cables and patches were restored to their original levels and locations. Strains containing an act1-1 mutation are both Osms and temperature-sensitive (Ts) (Novick and Botstein, 1985). To identify genes whose products functionally interact with actin in cellular responses to osmotic stress, we have isolated extragenic suppressors which revert only the Osms but not the Ts phenotype of an act1-1 mutant. These suppressors identify three genes, RAH1-RAH3. Morphological and genetic properties of a dominant suppressor mutation suggest that the product of the wild-type allele, RAH3+, is an actin-binding protein that interacts with actin to allow reassembly of the cytoskeleton following osmotic stress.  相似文献   

10.
Q. -Y. Wang  P. Nick 《Protoplasma》1998,204(1-2):22-33
Summary The rice mutantYin-Yang has been selected during a screen for resistance to cytoskeletal drugs and is characterized by alterations in epidermal cell length and a precocious onset of gravitropism. The elongation response of coleoptile segments to auxin does not reveal changes of auxin sensitivity inYin-Yang. However, in contrast to the wild type, cell elongation inYin-Yang is highly sensitive to the actin-polymerisation blocker cytochalasin D. This increased sensitivity to cytochalasin D requires optimal concentrations of auxin to become manifest. The auxin response of actin microfilaments in epidermal cells differs between wild type and mutant. In the wild type, the longitudinal microfilament bundles become loosened in response to auxin. In the mutant, these bundles disintegrate partially and are replaced by a network of short filaments surrounding the nucleus. Several aspects of the mutant phenotype can be mimicked in the wild type by treatment with cytochalasin D. The mutant phenotype is discussed in terms of signal-dependent changes of actin dynamics and the putative role of actin during cell elongation.Abbreviations CD cytochalasin D - EPC ethyl-N-phenylcarbamate  相似文献   

11.
12.
Fu Y  Li H  Yang Z 《The Plant cell》2002,14(4):777-794
Polar cell expansion in differentiating tissues is critical for the development and morphogenesis of plant organs and is modulated by hormonal and developmental signals, yet little is known about signaling in this fundamental process in plants. In contrast to tip-growing cells, such as pollen tubes and root hairs, cells in developing tissues are thought to expand by diffuse growth. In this study, we provide evidence that these cells expand in two phases with distinct mechanisms. In the early phase, cell expansion can occur in both longitudinal and radial or lateral directions and is mediated by Rop GTPase signaling, a mechanism known to control tip growth. The expression of a dominant-negative mutant for ROP2 (DN-rop2) inhibited polar cell expansion, whereas the expression of a constitutively active mutant (CA-rop2) caused isotropic expansion in the early phase. In the late phase, expansion occurs only in the longitudinal direction and is not affected by DN-rop2 or CA-rop2 expression. The transition from the early to the late phase coincides with the reorientation of cortical microtubules from random to transverse arrangements. Thus, cell expansion in the late phase is consistent with polar diffuse growth, in which polarity probably is defined by transverse cortical microtubules. We show that the direction of cell expansion in the early phase is associated with the localization of diffuse fine cortical F-actin in leaf epidermal cells. DN-rop2 expression specifically inhibited the formation of this F-actin, but not actin cables, whereas CA-rop2 expression caused delocalized distribution of this fine F-actin throughout the cell cortex. Furthermore, green fluorescent protein-ROP2 was localized preferentially to the cortical region of the cell, where expansion apparently occurs. These observations suggest that ROP2 control of the polar expansion of cells within tissues is analogous to the Rop control of tip growth and of tip-localized F-actin in pollen tubes and root hairs and that the tip growth mechanism also may modulate polar cell expansion in differentiating tissues.  相似文献   

13.
In recent years, the actin cytoskeleton in Schizosaccharomyces pombe has become the subject of intense scrutiny. However, to date, only a single actin mutation has been identified. Described here is the isolation and characterization of four new cold-sensitive actin mutations. Sequence analysis of the mutant actin genes indicated that each of these mutations caused alterations in single amino acids that are conserved in all actin sequences. These mutants differ in their phenotypes. One of these mutations (act1-48) was identified as an extragenic suppressor of a mutation in the cdc4 gene, which is required for actin ring formation and cytokinesis. Interestingly, when act1-48 mutant cells were shifted to the restrictive temperature, actin patches were not detected but the actin ring formation and stability was unaffected. The three other mutations, act1-16, act1-32 and act1-67, primarily affected the actin ring formation or stability while F-actin patches did not seem to be substantially different in appearance. Given that the ultrastructural architectures of F-actin patches and the F-actin ring are presently unclear, these mutations, which affect one structure or the other, should be useful for future studies on the role of actin itself in the function of these F-actin-containing structures in S. pombe.  相似文献   

14.
N-ethylmaleimide sensitive factor (NSF) can dissociate the soluble NSF attachment receptor (SNARE) complex, but NSF also participates in other intracellular trafficking functions by virtue of SNARE-independent activity. Drosophila that express a neural transgene encoding a dominant-negative form of NSF2 show an 80% reduction in the size of releasable synaptic vesicle pool, but no change in the number of vesicles in nerve terminal boutons. Here we tested the hypothesis that vesicles in the NSF2 mutant terminal are less mobile. Using a combination of genetics, pharmacology, and imaging we find a substantial reduction in vesicle mobility within the nerve terminal boutons of Drosophila NSF2 mutant larvae. Subsequent analysis revealed a decrease of filamentous actin in both NSF2 dominant-negative and loss-of-function mutants. Lastly, actin-filament disrupting drugs also decrease vesicle movement. We conclude that a factor contributing to the NSF mutant phenotype is a reduction in vesicle mobility, which is associated with decreased presynaptic F-actin. Our data are consistent with a model in which actin filaments promote vesicle mobility and suggest that NSF participates in establishing or maintaining this population of actin.  相似文献   

15.
The maize mutant lilliputian is characterized by miniature seedling stature, reduced cell elongation, and aberrant root anatomy. Here, we document that root cells of this mutant show several defects in the organization of actin filaments (AFs). Specifically, cells within the meristem lack dense perinuclear AF baskets and fail to redistribute AFs during mitosis. In contrast, mitotic cells of wild-type roots accumulate AFs at plasma membrane-associated domains that face the mitotic spindle poles. Both mitotic and early postmitotic mutant cells fail to assemble transverse arrays of cortical AFs, which are characteristic for wild-type root cells. In addition, early postmitotic cells show aberrant distribution of endoplasmic AF bundles that are normally organized through anchorage sites at cross-walls and nuclear surfaces. In wild-type root apices, these latter AF bundles are organized in the form of symmetrically arranged conical arrays and appear to be essential for the onset of rapid cell elongation. Exposure of wild-type and cv. Alarik maize root apices to the F-actin drugs cytochalasin D and latrunculin B mimics the phenotype of lilliputian root apices. In contrast to AFs, microtubules are more or less normally organized in root cells of lilliputian mutant. Collectively, these data suggest that the LILLIPUTIAN protein, the nature of which is still unknown, impinges on plant development via its action on the actin cytoskeleton.  相似文献   

16.
The root epidermal bulger 1 ( reb1) mutant of Arabidopsis thaliana (L.) Heynh. is characterized by a reduced elongation rate of the primary root and by the bulging of many, but not all, root epidermal cells. In this study, we investigated cell wall structure of root epidermal cells in reb1-1 by using serial sectioning, and light and electron microscopy in combination with immuno-cytochemistry and polysaccharide staining. We found that: (i) Cell bulging in the mutant was initiated in the zone of elongation of the root, and occurred exclusively in trichoblasts. (ii) reb1-1 and wild-type root cells stained identically with anti-pectin antibodies, such as JIM5. In contrast, the anti-arabinogalactan-protein antibodies, JIM14 and LM2, stained all epidermal cells in the wild type and trichoblasts preferentially, but in reb1-1 they stained the atrichoblasts only. (iii) Compared to the wild type, mutant trichoblasts had a thinner outer epidermal cell wall, which presented abnormal periodic acid-thio carbohydrazide silver proteinate (PATAg) staining. In addition, we investigated the organization of cortical microtubules in a reb1-1 mutant line expressing a green-fluorescent protein fused to a microtubule-binding domain from human microtubule-associated protein 4. Microtubules in the swollen trichoblasts of reb1-1 were either disordered or absent entirely. Together our findings indicate that the reb1-1 mutation results in an abnormal trichoblast cell wall, and suggest that cell surface arabinogalactan-proteins are required for anisotropic expansion and for orienting cortical microtubules.  相似文献   

17.
AEM. Adams  D. Botstein 《Genetics》1989,121(4):675-683
A gene whose product is likely to interact with yeast actin was identified by the isolation of pseudorevertants carrying dominant suppressors of the temperature-sensitive (Ts) act1-1 mutation. Of 30 independent revertants analyzed, 29 were found to carry extragenic suppressor mutations and of these, 24/24 tested were found to be linked to each other. This linkage group identifies a new gene SAC6, whose product, by several genetic criteria, is likely to interact intimately with actin. First, although act1-1 sac6 strains are temperature-independent (Ts+), 4/17 sac6 mutant alleles tested are Ts in an ACT1+ background. Moreover, four Ts+ pseudorevertants of these ACT1+ sac6 mutants carry suppressor mutations in ACT1; significantly, three of these are again Ts in a SAC6+ background, and are most likely new act1 mutant alleles. Thus, mutations in ACT1 and SAC6 can suppress each other's defects. Second, sac6 mutations can suppress the Ts defects of the act1-1 and act1-2, but not act1-4, mutations. This allele specificity indicates the sac6 mutations do not suppress by simply bypassing the function of actin at high temperature. Third, act1-4 sac6 strains have a growth defect greater than that due to either of the single mutations alone, again suggesting an interaction between the two proteins. The mutant sac6 gene was cloned on the basis of dominant suppression from an act1-1 sac6 mutant library, and was then mapped to chromosome IV, less than 2 cM from ARO1.  相似文献   

18.
Root hairs are an excellent model system to study cell developmental processes as they are easily accessible, single-celled, long tubular extensions of root epidermal cells. In a genetic approach to identify loci important for root hair development, we have isolated eight der (deformed root hairs) mutants from an ethylmethanesulfonate (EMS)-mutagenized Arabidopsis population. The der lines represent five new loci involved in root hair development and show a variety of abnormalities in root hair morphology, indicating that different root hair developmental stages are affected. A double mutant analysis with the short root hair actin2 mutant der1-2 confirmed that the der mutants are disturbed at different time points of root hair formation. Auxin and ethylene are known to be important for trichoblast cell fate determination and root hair elongation. Here, we show that they are able to suppress the phenotype of two der mutants. As the auxin- and ethylene-responsive der mutants are affected at different stages of root hair formation, our results demonstrate that the function of auxin and ethylene is not limited to cell differentiation and root hair elongation but that the two hormones are effective throughout the whole root hair developmental process.  相似文献   

19.
A formin Bni1p nucleates actin to assemble actin cables, which guide the polarized transport of secretory vesicles in budding yeast. We identified mutations that suppressed both the lethality and the excessive actin cable formation caused by overexpression of a truncated Bni1p (BNI1DeltaN). Two recessive mutations, act1-301 in the actin gene and sla2-82 in a gene involved in cortical actin patch assembly, were identified. The isolation of sla2-82 was unexpected, because cortical actin patches are required for the internalization step of endocytosis. Both act1-301 and sla2-82 exhibited synthetic growth defects with bni1Delta. act1-301, which resulted in an E117K substitution, interacted genetically with mutations in profilin (PFY1) and BUD6, suggesting that Act1-301p was not fully functional in formin-mediated polymerization. sla2-82 also interacted genetically with genes involved in actin cable assembly. Some experiments, however, suggested that the effects of sla2-82 were caused by depletion of actin monomers, because the temperature-sensitive growth phenotype of the bni1Delta sla2-82 mutant was suppressed by increased expression of ACT1. The isolation of suppressors of the BNI1DeltaN phenotype may provide a useful system for identification of actin amino-acid residues that are important for formin-mediated actin polymerization and mutations that affect the availability of actin monomers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号