首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
We investigated the hippocampal long-term potentiation (LTP), neurogenesis, and the activation of signaling molecules in the 20-month-old aged rats following chronic lithium treatment. Chronic lithium treatment produced a significant 79% increase in the numbers of BrdU(+) cells after treatment completion in the dentate gyrus (DG). Both LTP obtained from slices perfused with artificial cerebrospinal fluid (ACSF-LTP), and LTP recorded in the presence of bicuculline (bicuculline-LTP) were significantly greater in the lithium group than in the saline controls. Our results show that as with young rats, chronic lithium can substantially increase LTP and the number of BrdU(+) cells in the aged rats. However, neurogenesis, assessed by colocalization of NeuN and BrdU, was not detected in the aged rat DG subjected to chronic lithium treatment. Therefore, it is concluded that the increase in LTP and the number of BrdU(+) cells might not be associated with increases in neurogenesis in the granule cell layer of the DG. Lithium might has a beneficial effects through other signaling pathways in the aged brain.  相似文献   

2.
目的:检测胰岛素样生长因子-1(IGF-1)对青年和老年大鼠局灶脑缺血后神经发生及其后细胞生存的影响.方法:健康雄性SD青年鼠(3-4个月)和老年鼠(1年)随机分组,侧脑室注入IGF-1,1天后进行大鼠大脑中动脉阻塞(MCAO),对照组由生理盐水取代.采用BrdU标记方法鉴定MCAO后7d和28d的增殖细胞.BrdU于MCAO后第6d由腹腔注入.免疫组化法检测7天后BrdU、PSA-NCAM标记细胞和28天后BrdU、BrdU/MAP2双标细胞.结果:老年组中BrdU阳性细胞的数目7d后较对照组增加5.1倍;青年纽中BrdU阳性细胞的数目7d后较对照组增加5.5倍.28d后,BrdU阳性细胞的残留率在青年IGF-1处理组和老年IGF-1处理组中分别是79.2%和75.1%,分别相对于对照组的77.1%和52.3%.老年组中PSA-NCAM阳性细胞的数目7d后较对照组增加3.2倍;青年组中PSA-NCAM阳性细胞的数目7d后较对照组增加3.7倍.28d后,BrdU/MAP2阳性细胞在青年IGF-1处理组较对照组增加7.0倍,在老年IGF-1处理组较对照组增加4.9倍.结论:此结果提示局部应用IGF-1进行缺血前预处理,在青年鼠和老年鼠中均能诱导神经发生,且在老年鼠中能明显提高神经发生后的增殖细胞的生存率和向神经元分化的能力.这一研究结果将有助于研究IGF-1在中老年脑损伤病人中的治疗性应用.  相似文献   

3.
Enhancement of hippocampal neurogenesis by lithium   总被引:26,自引:0,他引:26  
Increasing evidence suggests that mood disorders are associated with a reduction in regional CNS volume and neuronal and glial cell atrophy or loss. Lithium, a mainstay in the treatment of mood disorders, has recently been demonstrated to robustly increase the levels of the cytoprotective B-cell lymphoma protein-2 (bcl-2) in areas of rodent brain and in cultured cells. In view of bcl-2's antiapoptotic and neurotrophic effects, the present study was undertaken to determine if lithium affects neurogenesis in the adult rodent hippocampus. Mice were chronically treated with lithium, and 5-bromo-2-deoxyuridine (BrdU) labeling of dividing cells was conducted over 12 days. Immunohistochemical analysis was undertaken 1 day after the last injection, and three-dimensional stereological cell counting revealed that lithium produced a significant 25% increase in the BrdU-labeled cells in the dentate gyrus. Double-labeling immunofluorescence studies were undertaken to co-localize BrdU-positive cells with neuron-specific nuclear protein and showed that approximately 65% of the cells were double-labeled. These results add to the growing body of evidence suggesting that mood stabilizers and antidepressants exert neurotrophic effects and may therefore be of use in the long-term treatment of other neuropsychiatric disorders.  相似文献   

4.
惊厥后大鼠海马神经再生与凋亡的动态变化   总被引:1,自引:0,他引:1  
探讨惊厥持续状态(status convulsion,SC)后大鼠海马神经再生与凋亡的动态变化。建立成年Wistar鼠30minSC模型,在SC后1天至56天的6个时间点上处死动物,处死前1天均腹腔注射5-溴2-脱氧尿嘧啶核苷(5-bromo-2-deoxyuridine,BrdU);采用免疫组织化学方法动态检测BrdU、nestin的表达,确定神经干细胞增殖水平;双重荧光染色标记nestin/TUNEL,确定新生神经干细胞存活时间。与对照组相比,BrdU阳性细胞数目于SC后第7天在CA1区达增殖高峰,28天降至正常水平;于SC后第28天在齿状回达增殖高峰,56天降至正常水平;在SC后第7天,CA3区有大量的BrdU阳性细胞;BrdU和nestin阳性细胞数目无统计学差异。在SC后的前3天,CA1区新增殖的神经细胞呈TUNEL阳性;齿状回新增殖细胞始终表现TUNEL阴性。上述结果提示:SC后能激活自体神经干细胞原位增殖,并且部分新生细胞向损伤区域迁移。  相似文献   

5.
Neurogenesis in the dentate gyrus occurs throughout life. We observed regional differences in neurogenesis in the dentate gyrus of adult rats following transient forebrain ischemia. Nine days after ischemic-reperfusion or sham manipulation, rats were given 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdU), a marker for dividing cells. They were killed 1 or 28 days later to distinguish between cell proliferation and survival. Neurogenesis was evaluated by BrdU incorporation as well by identifying neuronal and glial markers in six regions of the dentate gyrus: rostral, middle and caudal along the rostrocaudal axis, each further divided into suprapyramidal and infrapyramidal blade subregions. In control rats BrdU-positive cells in the rostral subregions were significantly lower in the suprapyramidal than in the infrapyramidal blades at both 1 and 28 days after BrdU injection. One day after injection, BrdU-positive cells had increased more in five of the subregions in the ischemic rats than in the controls, the exception being the suprapyramidal blade of the rostral subregion. At 28 days after BrdU injection, numbers of BrdU-positive cells were higher in four subregions in the ischemic group, the exceptions being the rostral suprapyramidal and middle infrapyramidal blades. At 28 days after BrdU injection, the percentages of BrdU positive cells that expressed a neuronal marker (NeuN) were the same in the dentate granule cell layers of ischemic and control rats. Our data thus demonstrate regional differences in enhanced neurogenesis in the dentate gyrus of adult rats after transient forebrain ischemia.  相似文献   

6.
Lithium has been demonstrated to increase neurogenesis in the dentate gyrus of rodent hippocampus. The present study was undertaken to investigate the effects of lithium on the proliferation and differentiation of rat neural progenitor cells in hippocampus both in vitro and in vivo. Lithium chloride (1-3 mM) produced a significant increase in the number of bromodeoxyuridine (BrdU)-positive cells in high-density cultures, but did not increase clonal size in low-density cultures. Lithium chloride at 1 mM (within the therapeutic range) also increased the number of cells double-labeled with BrdU antibody and TuJ1 (a class III beta-tubulin antibody) in high-density cultures and the number of TuJ1-positive cells in a clone of low-density cultures, whereas it decreased the number of glial fibrillary acidic protein-positive cells in both cultures. These results suggest that lithium selectively increased differentiation of neuronal progenitors. These actions of lithium appeared to enhance a neuronal subtype, calbindin(D28k)-positive cells, and involved a phosphorylated extracellular signal-regulated kinase and phosphorylated cyclic AMP response element-binding protein-dependent pathway both in vitro and in vivo. These findings suggest that lithium in therapeutic amounts may elicit its beneficial effects via facilitation of neural progenitor differentiation toward a calbindin(D28k)-positive neuronal cell type.  相似文献   

7.
While it is well known that production of new neurons from neural stem/progenitor cells (NSC) in the dentate gyrus (DG) diminishes greatly by middle age, the phases and mechanisms of major age-related decline in DG neurogenesis are largely unknown. To address these issues, we first assessed DG neurogenesis in multiple age groups of Fischer 344 rats via quantification of doublecortin-immunopositive (DCX+) neurons and then measured the production, neuronal differentiation and initial survival of new cells in the subgranular zone (SGZ) of 4-, 12- and 24-month-old rats using four injections (one every sixth hour) of 5'-bromodeoxyuridine (BrdU), and BrdU-DCX dual immunostaining. Furthermore, we quantified the numbers of proliferating cells in the SGZ of these rats using Ki67 immunostaining. Numbers of DCX+ neurons were stable at 4-7.5 months of age but decreased progressively at 7.5-9 months (41% decline), 9-10.5 months (39% decline), and 10.5-12 months (34% decline) of age. Analyses of BrdU(+) cells at 6 h after the last BrdU injection revealed a 71-78% decline in the production of new cells per day between 4-month-old rats and 12- or 24-month-old rats. Numbers of proliferating Ki67+ cells (putative NSCs) in the SGZ also exhibited similar (72-85%) decline during this period. However, the extent of both neuronal differentiation (75-81%) and initial 12-day survival (67-74%) of newly born cells was similar in all age groups. Additional analyses of dendritic growth of 12-day-old neurons revealed that newly born neurons in the aging DG exhibit diminished dendritic growth compared with their age-matched counterparts in the young DG. Thus, major decreases in DG neurogenesis occur at 7.5-12 months of age in Fischer 344 rats. Decreased production of new cells due to proliferation of far fewer NSCs in the SGZ mainly underlies this decline.  相似文献   

8.
Erythropoietin is a primary regulator of erythropoiesis in the hematopoietic system. More recently erythropoietin has been shown to play a role in neurogenesis and provide neurotrophic support to injured CNS tissue. Here the effects of large systemic doses of erythropoietin on basal levels of adult hippocampal neurogenesis in mice were examined. A 7-day period of recombinant human erythropoietin (rhEPO) administration increased the number of bromodeoxyuridine [BrdU(+)] cells in the sub-granular zone (SGZ) by 30%. Analysis of cell phenotype revealed an increase in mitotically active doublecortin(+) neuronal progenitor cells and glial fibrillary acidic protein(+) SGZ radial astrocytes/stem cells but not mature S100beta(+) astrocytes. These effects appeared to be mediated, in part, by mitogen-activated protein kinase signaling and potentially regulated by suppressor of cytokine signaling-3. Hippocampal levels of phosphorylated extracellular signal-related kinase 42/44 and suppressor of cytokine signaling-3 were increased 2-6 h after a single systemic rhEPO injection. However, rhEPO had no observed effect on the long-term survival of new born cells in the SGZ, with similar numbers of BrdU(+) cells and BrdU(+)/NeuN(+) co-labeled cells after 4 weeks. Therefore, systemically delivered rhEPO transiently increased adult hippocampal neurogenesis without any apparent long-term effects.  相似文献   

9.
Past research suggested that androgens may play a role in the regulation of adult neurogenesis within the dentate gyrus. We tested this hypothesis by manipulating androgen levels in male rats. Castrated or sham castrated male rats were injected with 5-Bromo-2'deoxyuridine (BrdU). BrdU-labeled cells in the dentate gryus were visualized and phenotyped (neural or glial) using immunohistochemistry. Castrated males showed a significant decrease in 30-day cell survival within the dentate gyrus but there was no significant change in cell proliferation relative to control males, indicating that androgens positively affect cell survival, but not cell proliferation. To examine the role of testosterone on hippocampal cell survival, males were injected with testosterone s.c. for 30 days starting the day after BrdU injection. Higher doses (0.5 and 1.0 mg/kg) but not a lower dose (0.25 mg/kg) of testosterone resulted in a significant increase in neurogenesis relative to controls. We next tested the role of testosterone's two major metabolites, dihydrotestosterone (DHT), and estradiol, upon neurogenesis. Thirty days of injections of DHT (0.25 and 0.50 mg/kg) but not estradiol (0.010 and 0.020 mg/kg) resulted in a significant increase in hippocampal neurogenesis. These results suggest that testosterone enhances hippocampal neurogenesis via increased cell survival in the dentate gyrus through an androgen-dependent mechanism.  相似文献   

10.
The influence of 5-bromo-2'-deoxyuridine (BrdU) on rat embryo development and neurogenesis was investigated using a rat conceptus culture system during organogenesis (pregnancy days 10-13). The embryos and visceral yolk sacs of conceptuses cultured with BrdU were examined for overall growth, morphological anomalies, incorporation of radiolabeled BrdU into DNA, and neurotransmitter enzyme activities in embryos. In addition, neural tubes from cultured whole embryos were isolated and mechanically dissociated into fragments and cultured again to assess neural cell differentiation into neuron-like cells. BrdU was found to incorporate differentially into embryonic and visceral yolk sac DNA with simultaneous stage-specific retardation and anomalous organogenesis in proportion to the increasing concentrations used. Neural tube differentiation of cultured embryos was markedly altered, and there were morphologically distinct neural anomalies. The neurite outgrowth from neuroblast cells (type 1) of explanted spinal neural tube fragments from BrdU-treated embryos was markedly reduced in length and number compared to those from similar areas of embryos grown without BrdU. In contrast, BrdU at the same doses did not affect differentiation of a number of neural tissue-related enzymes. These results indicate that BrdU incorporation into DNA of primordial embryonic cells significantly affects neurogenesis and differentiation of neurites from neuroblasts, which is a specific neural cytodifferentiation characteristic of neuronal cells.  相似文献   

11.
Acute Seizure (AS) activity in young adult age conspicuously modifies hippocampal neurogenesis. This is epitomized by both increased addition of new neurons to the granule cell layer (GCL) by neural stem/progenitor cells (NSCs) in the dentate subgranular zone (SGZ), and greatly enhanced numbers of newly born neurons located abnormally in the dentate hilus (DH). Interestingly, AS activity in old age does not induce such changes in hippocampal neurogenesis. However, the effect of AS activity on neurogenesis in the middle-aged hippocampus is yet to be elucidated. We examined hippocampal neurogenesis in middle-aged F344 rats after a continuous AS activity for >4 hrs, induced through graded intraperitoneal injections of the kainic acid. We labeled newly born cells via daily intraperitoneal injections of the 5'-bromodeoxyuridine (BrdU) for 12 days, commencing from the day of induction of AS activity. AS activity enhanced the addition of newly born BrdU+ cells by 5.6 fold and newly born neurons (expressing both BrdU and doublecortin [DCX]) by 2.2 fold to the SGZ-GCL. Measurement of the total number of DCX+ newly born neurons also revealed a similar trend. Furthermore, AS activity increased DCX+ newly born neurons located ectopically in the DH (2.7 fold increase and 17% of total newly born neurons). This rate of ectopic migration is however considerably less than what was observed earlier for the young adult hippocampus after similar AS activity. Thus, the plasticity of hippocampal neurogenesis to AS activity in middle age is closer to its response observed in the young adult age. However, the extent of abnormal migration of newly born neurons into the DH is less than that of the young adult hippocampus after similar AS activity. These results also point out a highly divergent response of neurogenesis to AS activity between middle age and old age.  相似文献   

12.
In the healthy adult brain, neurogenesis normally occurs in the subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Cerebral ischemia enhances neurogenesis in neurogenic and non-neurogenic regions of the ischemic brain of adult rodents. This study demonstrated that post-insult treatment with a histone deacetylase inhibitor, sodium butyrate (SB), stimulated the incorporation of bromo-2'-deoxyuridine (BrdU) in the SVZ, DG, striatum, and frontal cortex in the ischemic brain of rats subjected to permanent cerebral ischemia. SB treatment also increased the number of cells expressing polysialic acid–neural cell adhesion molecule, nestin, glial fibrillary acidic protein, phospho-cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) in various brain regions after cerebral ischemia. Furthermore, extensive co-localization of BrdU and polysialic acid–neural cell adhesion molecule was observed in multiple regions after ischemia, and SB treatment up-regulated protein levels of BDNF, phospho-CREB, and glial fibrillary acidic protein. Intraventricular injection of K252a, a tyrosine kinase B receptor antagonist, markedly reduced SB-induced cell proliferation detected by BrdU and Ki67 in the ipsilateral SVZ, DG, and other brain regions, blocked SB-induced nestin expression and CREB activation, and attenuated the long-lasting behavioral benefits of SB. Together, these results suggest that histone deacetylase inhibitor-induced cell proliferation, migration and differentiation require BDNF–tyrosine kinase B signaling and may contribute to long-term beneficial effects of SB after ischemic injury.  相似文献   

13.
The first sign of neurogenesis in the embryo of grasshopper, Chortophaga viridifasciata (Orthoptera: Acrididae), is signaled by a partition of the ectodermal cells into non-neural ectodermal cells and neural eetodermal cells. The neuroblasts are differentiated from neural ectodermal cells. In the present study, we examined the pattern of mitotic activity in the developing embryo by tracing the incorporation of BrdU in S phase nuclei. The results indicate that the ectodermal cells in 6-day old embryos do not show any signs of differentiation. In 7-day old embryos, in which ectodermal cells become partitioned into 2 types, almost no neural ectodermal cells are incorporated with BrdU, whereas a constant incorporation is revealed in non-neural ectodermal cells. Among the mitotically quiescent neural ectodermal cells, which are arrested at the GI stage of the cell cycle, in 8-day old embryos, the neuroblasts are the first to resume their mitotic activity, while the other cells are then released from the mitotic quiescence. It seems that the mitotic quiescence may be an essential process to acquire a neural fate.  相似文献   

14.
New neurons are continuously born in the hippocampus of several mammalian species throughout adulthood. Adult neurogenesis represents a natural model for understanding how to grow and incorporate new nerve cells into preexisting circuits in the brain. Finding molecules or biological pathways that increase neurogenesis has broad potential for regenerative medicine. One strategy is to identify mouse strains that display large vs. small increases in neurogenesis in response to wheel running so that the strains can be contrasted to find common genes or biological pathways associated with enhanced neuron formation. Therefore, mice from 12 different isogenic strains were housed with or without running wheels for 43 days to measure the genetic regulation of exercise-induced neurogenesis. During the first 10 days mice received daily injections of 5-bromo-2'-deoxyuridine (BrdU) to label dividing cells. Neurogenesis was measured as the total number of BrdU cells co-expressing NeuN mature neuronal marker in the hippocampal granule cell layer by immunohistochemistry. Exercise increased neurogenesis in all strains, but the magnitude significantly depended on genotype. Strain means for distance run on wheels, but not distance traveled in cages without wheels, were significantly correlated with strain mean level of neurogenesis. Furthermore, certain strains displayed greater neurogenesis than others for a fixed level of running. Strain means for neurogenesis under sedentary conditions were not correlated with neurogenesis under runner conditions suggesting that different genes influence baseline vs. exercise-induced neurogenesis. Genetic contributions to exercise-induced hippocampal neurogenesis suggest that it may be possible to identify genes and pathways associated with enhanced neuroplastic responses to exercise.  相似文献   

15.
Protein synthesis and secretion during in vitro pancreatic development and after treatment with the glucocorticoid dexamethasone and the thymidine analog 5-bromodeoxyuridine (BrdU) was monitored using two-dimensional gel electrophoresis. At 14 days gestation, the synthesis of more than 200 proteins and the secretion of a complex set of proteins was detected. The relative rate of synthesis and secretion of the majority of this set of proteins decreased dramatically during development; after 6 days of culture most were no longer detected. In contrast, the synthesis and secretion of pancreas-specific exocrine proteins amylase, a Sepharose binding protein (protein 2), and chymotrypsinogen first detected after one day in culture, increased throughout the 6-day culture period. Other pancreatic digestive (pro)enzymes normally found in the adult such as the basic form of chymotrypsinogen, lipase, ribonuclease, and trypsinogen were not detected during the culture period. Thus at least two distinct regulatory events are involved in the expression of the exocrine genes during development. Dexamethasone treatment during the 6-day culture period selectively increased the synthesis of amylase and several other minor secretory proteins. BrdU treatment caused major changes in the protein synthetic and secretory patterns of the pancreas as well as in morphogenesis. BrdU treated pancreases showed greatly reduced synthesis of amylase, protein 2, and chymotrypsinogen and prolonged synthesis of many proteins normally detected only at early stages of pancreatic development. BrdU treatment also stimulated the secretion of a set of proteins ostensibly associated with duct cells. Thus, BrdU specifically alters the developmental program of the pancreas.  相似文献   

16.
To characterize the axonal projections of 5'-bromodeoxyuridine (BrdU)-labeled neurons, we have combined retrograde tracer injection of Fluoro-Gold with the immunocytochemical detection of BrdU. Pregnant mice were labeled with pulses of BrdU at embryonic days E12, E13, E14, or E16. Young adult offspring were perfused with 4% paraformaldehyde 2 days after receiving a Fluoro-Gold injection into the cerebral cortex, thalamus, or hippocampus. Brain sections were processed for immunocytochemical visualization of BrdU using the peroxidase-anti-peroxidase method and a diaminobenzidine-nickel ammonium sulfate (DAB-Ni) reaction, and finally observed on a microscope equipped with brightfield and fluorescence optics. Both BrdU-immunoreactive nuclei and retrogradely labeled Fluoro-Gold-positive cells were detected. Double-labeled neurons were recognized by the presence of fluorescent particles in the cytoplasm and a black immunoreactive nucleus. Since both labelings occurred in different cell compartments, Fluoro-Gold granules were not obscured by the DAB-Ni precipitate. The method shown here permits a correlation of the neurogenesis of subsets of neurons identified by their BrdU content with the specific target into which such cells project.  相似文献   

17.

Background

Erythropoietin (EPO), a hematopoietic cytokine, enhances neurogenesis and angiogenesis during stroke recovery. In the present study, we examined the effect of EPO on oligodendrogenesis in a rat model of embolic focal cerebral ischemia.

Methodology and Principal Findings

Recombinant human EPO (rhEPO) at a dose of 5,000 U/kg (n = 18) or saline (n = 18) was intraperitoneally administered daily for 7 days starting 24 h after stroke onset. Treatment with rhEPO augmented actively proliferating oligodendrocyte progenitor cells (OPCs) measured by NG2 immunoreactive cells within the peri-infarct white matter and the subventricular zone (SVZ), but did not protect against loss of myelinating oligodendrocytes measured by cyclic nucleotide phosphodiesterase (CNPase) positive cells 7 days after stroke. However, 28 and 42 days after stroke, treatment with rhEPO significantly increased myelinating oligodendrocytes and myelinated axons within the peri-infarct white matter. Using lentivirus to label subventricular zone (SVZ) neural progenitor cells, we found that in addition to the OPCs generated in the peri-infarct white matter, SVZ neural progenitor cells contributed to rhEPO-increased OPCs in the peri-infarct area. Using bromodeoxyuridine (BrdU) for birth-dating cells, we demonstrated that myelinating oligodendrocytes observed 28 days after stroke were derived from OPCs. Furthermore, rhEPO significantly improved neurological outcome 6 weeks after stroke. In vitro, rhEPO increased differentiation of adult SVZ neural progenitor cells into oligodendrocytes and enhanced immature oligodendrocyte cell proliferation.

Conclusions

Our in vivo and in vitro data indicate that EPO amplifies stroke-induced oligodendrogenesis that could facilitate axonal re-myelination and lead to functional recovery after stroke.  相似文献   

18.
Folic acid (FA) stimulates neural stem cell (NSC) proliferation in vitro and enhances hippocampal neurogenesis in rats after middle cerebral artery occlusion (MCAO). The effect of FA supplementation on exogenous NSCs transplanted in MCAO rats was observed to determine if FA can stimulate NSC replacement after focal cerebral ischemia. Rats were randomly assigned to 3 groups: MCAO; MCAO and exogenous NSC transplantation (MCAO+NSCs); and MCAO, NSC transplantation and FA (MCAO+NSCs+FA). FA (0.8 mg/kg) or vehicle was administered by gavage daily for 28 days before MCAO and 23 days afterward. NSCs were labeled with superparamagnetic iron oxide (SPIO) and bromodeoxyuridine (BrdU) prior to transplantation into the striatum, contralateral to the ischemic zone, at 2 days post-MCAO. Magnetic resonance imaging tracking and fluorescent immunohistochemistry, as well as measurement of serum folate concentration, were performed at intervals up to 21 days after transplantation. FA supplementation caused sustained increases of 400–600% in serum folate concentration. Magnetic resonance images indicated that SPIO-labeled NSCs were more abundant at the transplantation and ischemic brain sites in MCAO+NSCs+FA rats than in MCAO+NSCs rats. Similarly, immunohistochemistry showed that the numbers of Sox-2/BrdU double positive cells at the transplantation and ischemic sites were higher in the rats that received FA. In conclusion, after focal cerebral ischemia, FA supplementation stimulates transplanted NSCs to proliferate and migrate to ischemic sites.  相似文献   

19.

Aim

We have previously shown that lithium treatment immediately after hypoxia-ischemia (HI) in neonatal rats affords both short- and long-term neuroprotection. The aim of this study was to evaluate possible therapeutic benefits when lithium treatment was delayed 5 days, a time point when most cell death is over.

Methods

Eight-day-old male rats were subjected to unilateral HI and 2 mmol/kg lithium chloride was injected intraperitoneally 5 days after the insult. Additional lithium injections of 1 mmol/kg were administered at 24 h intervals for the next 14 days. Brain injury was evaluated 12 weeks after HI. Serum cytokine measurements and behavioral analysis were performed before sacrificing the animals.

Results

Brain injury, as indicated by tissue loss, was reduced by 38.7%, from 276.5±27.4 mm3 in the vehicle-treated group to 169.3±25.9 mm3 in the lithium-treated group 12 weeks after HI (p<0.01). Motor hyperactivity and anxiety-like behavior after HI were normalized by lithium treatment. Lithium treatment increased neurogenesis in the dentate gyrus as indicated by doublecortin labeling. Serum cytokine levels, including IL-1α, IL-1β, and IL-6, were still elevated as late as 5 weeks after HI, but lithium treatment normalized these cytokine levels.

Conclusions

Delayed lithium treatment conferred long-term neuroprotection in neonatal rats after HI, and this opens a new avenue for future development of treatment strategies for neonatal brain injury that can be administered after the acute injury phase.  相似文献   

20.
Young, mitotically active neural retinas from 7-day chick embryos were cultured with 5-bromodeoxyuridine (BrdU) for 8 hr or more. After this treatment, they failed to differentiate beyond the stage at which they were explanted; there was no histogenesis or increase in glutamine synthetase (GS) inducibility in intact tissues or in aggregates of dissociated cells. Normally GS can be induced in the retina with hydrocortisone as the cells cease to be mitotically active and begin showing histological organization after day 7. This inhibition by BrdU was irreversible even in the presence of excess thymidine. Overall incorporation of 14C-amino acids into protein was only slightly inhibited, and the ability of cells from treated tissue to aggregate and sort out from nonneural cell types was unaffected. Control cultures without BrdU showed considerable histogenesis and a parallel increase in enzyme inducibility. Postmitotic 10-day retinas appeared to be unaffected by BrdU. The incorporation rates of both tritiated BrdU and thymidine (dT) into DNA were 14× higher in 7- than in 10-day retinas. Simultaneous addition of excess unlabeled dT with either of the labeled nucleosides reduced their incorporation and reduced the inhibitory action of BrdU on differentiation.It is concluded that BrdU irreversibly inhibits the differentiation of retina cell surface properties involved in histogenesis and dependent cytodifferentiation without affecting already differentiated properties of the cell surface. The results support the hypothesis that histogenesis is directed by genes affecting specific cell surface properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号