首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Voltage-gated Na+ channels in the brain are composed of a single pore-forming α subunit, one non-covalently linked β subunit (β1 or β3), and one disulfide-linked β subunit (β2 or β4). The final step in Na+ channel biosynthesis in central neurons is concomitant α-β2 disulfide linkage and insertion into the plasma membrane. Consistent with this, Scn2b (encoding β2) null mice have reduced Na+ channel cell surface expression in neurons, and action potential conduction is compromised. Here we generated a series of mutant β2 cDNA constructs to investigate the cysteine residue(s) responsible for α-β2 subunit covalent linkage. We demonstrate that a single cysteine-to-alanine substitution at extracellular residue Cys-26, located within the immunoglobulin (Ig) domain, abolishes the covalent linkage between α and β2 subunits. Loss of α-β2 covalent complex formation disrupts the targeting of β2 to nodes of Ranvier in a myelinating co-culture system and to the axon initial segment in primary hippocampal neurons, suggesting that linkage with α is required for normal β2 subcellular localization in vivo. WT β2 subunits are resistant to live cell Triton X-100 detergent extraction from the hippocampal axon initial segment, whereas mutant β2 subunits, which cannot form disulfide bonds with α, are removed by detergent. Taken together, our results demonstrate that α-β2 covalent association via a single, extracellular disulfide bond is required for β2 targeting to specialized neuronal subcellular domains and for β2 association with the neuronal cytoskeleton within those domains.  相似文献   

2.
1. Artiodactyla haptoglobins (Hps), goat, sheep and cattle (family Bovidae), and pig (family Suidae) were structurally characterized. 2. The polymeric Hp systems of goat, sheep and cattle were similar to the polymeric human Hp system, while the monomeric system of pig was more comparable to the monomeric human form. 3. All members of the Artiodactyla (family Bovidae) examined exhibited a large polypeptide subunit, comparable to that of the beta subunit of human Hp. 4. In addition, a small subunit, similar in molecular weight to the human alpha 2 subunit, was demonstrated. Pig Hp was shown to have two subunits, one slightly larger than the human beta subunit and the other intermediate in size to the human alpha 1 and alpha 2 subunits. 5. Immunoelectrophoretic and immunodiffusion studies indicated complete cross reactivity among the polymeric Artiodactyla Hps. 6. The polymeric Hps do not, however, cross react with the monomeric pig Hp.  相似文献   

3.
大熊猫等五种食肉动物血清蛋白和LDH同工酶盘电泳比较   总被引:1,自引:1,他引:0  
大熊猫(Ailuropoda melanoleuca)是世界珍稀动物之一,近年来,兽类科学工作者对它进行了多方面的研究,也包括生化方面的工作(潘文石等,1982;Sarich,1973),但与其他食肉哺乳动物相比研究较少,而此又为探讨其分类地位所需。本文应用聚丙烯酰胺凝胶盘电泳,对大熊猫、小熊猫(AilurSs fulgens)、黑熊(Selenarctos thibetanus)、家猫及犬等5种食肉动物的血清蛋白和LDH同工酶进行比较分析,目的在于了解这5种动物的血清蛋白图象和LDH同工酶酶谱以及它们之间的谱型、相对活力、迁移率的异同,进而讨论大熊猫的分类地位。  相似文献   

4.
FOF1 ATP synthases are rotary nanomotors that couple proton translocation across biological membranes to the synthesis/hydrolysis of ATP. During catalysis, the peripheral stalk, composed of two b subunits and subunit δ in Escherichia coli, counteracts the torque generated by the rotation of the central stalk. Here we characterize individual interactions of the b subunits within the stator by use of monoclonal antibodies and nearest neighbor analyses via intersubunit disulfide bond formation. Antibody binding studies revealed that the C-terminal region of one of the two b subunits is principally involved in the binding of subunit δ, whereas the other one is accessible to antibody binding without impact on the function of FOF1. Individually substituted cysteine pairs suitable for disulfide cross-linking between the b subunits and the other stator subunits (b-α, b-β, b-δ, and b-a) were screened and combined with each other to discriminate between the two b subunits (i.e. bI and bII). The results show the b dimer to be located at a non-catalytic α/β cleft, with bI close to subunit α, whereas bII is proximal to subunit β. Furthermore, bI can be linked to subunit δ as well as to subunit a. Among the subcomplexes formed were a-bI-α, bII-β, α-bI-bII-β, and a-bI-δ. Taken together, the data obtained define the different positions of the two b subunits at a non-catalytic interface and imply that each b subunit has a different role in generating stability within the stator. We suggest that bI is functionally related to the single b subunit present in mitochondrial ATP synthase.  相似文献   

5.
The integrins are a family of membrane receptors that attach a cell to its surrounding and play a crucial function in cell signaling. The combination of internal and external stimuli alters a folded non-active state of these proteins to an extended active configuration. The β3 subunit of the platelet αIIbβ3 integrin is made of well-structured domains rich in disulfide bonds. During the activation process some of the disulfides are re-shuffled by a mechanism requiring partial reduction of some of these bonds; any disruption in this mechanism can lead to inherent blood clotting diseases. In the present study we employed Molecular Dynamics simulations for tracing the sequence of structural fluctuations initiated by a single cysteine mutation in the β3 subunit of the receptor. These simulations showed that in-silico protein mutants exhibit major conformational deformations leading to possible disulfide exchange reactions. We suggest that any mutation that prevents Cys560 from reacting with one of the Cys567–Cys581 bonded pair, thus disrupting its ability to participate in a disulfide exchange reaction, will damage the activation mechanism of the integrin. This suggestion is in full agreement with previously published experiments. Furthermore, we suggest that rearrangement of disulfide bonds could be a part of a natural cascade of thiol/disulfide exchange reactions in the αIIbβ3 integrin, which are essential for the native activation process.  相似文献   

6.
Human hemoglobin (Hb) and haptoglobin (Hp) exhibit an extremely high affinity for each other, and the dissociation of Hb tetramers into dimers is generally believed to be a prerequisite for complex formation. We have investigated Hp interactions with native Hb, αα, and ββ cross-linked Hb (ααXLHb and ββXLHb, respectively), and rapid kinetics of Hb ligand binding as well as the redox reactivity in the presence of and absence of Hp. The quaternary conformation of ββ subunit cross-linking results in a higher binding affinity than that of αα subunit cross-linked Hb. However, ββ cross-linked Hb exhibits a four fold slower association rate constant than the reaction rate of unmodified Hb with Hp. The Hp contact regions in the Hb dimer interfaces appear to be more readily exposed in ββXLHb than ααXLHb. In addition, apart from the functional changes caused by chemical modifications, Hp binding does not induce appreciable effects on the ligand binding and redox reactions of ββXLHb. Our findings may therefore be relevant to the design of safer Hb-based oxygen therapeutics by utilizing this preferential binding of ββXLHb to Hp. This may ultimately provide a safe oxidative inactivation and clearance pathway for chemically modified Hbs in circulation.  相似文献   

7.
The immunologic cross-reactivity of the α and α+ forms of the large subunit and the β subunit of the (Na+ + K+)-ATPase from brain and kidney preparations was examined using rabbit antiserum prepared against the purified holo lamb kidney enzyme. As previously reported by Sweadner ((1979) J. Biol. Chem. 254, 6060–6067) phosphorylation of the large subunit of the (Na+ + K+)-ATPase in the presence of Na+, Mg2+, and [γ-32P]ATP revealed that dog and, very likely, rat brain contain two forms of the large subunit (designated α and α+) while dog, rat, and lamb kidney contain only one form (α). The cross-reactivity of the α and α+ forms in these preparations was investigated by resolving the subunits by SDS-polyacrylamide gel electrophoresis. The separated polypeptides were transferred to unmodified nitrocellulose paper, and reacted with rabbit anti-lamb kidney serum, followed by detection of the antigen-antibody complex with 125I-labeled protein A and autoradiography. By this method, the α and α+ forms of rat and dog brain, as well as the α form found in kidney, were shown to cross-react. In addition, membranes from human cerebral cortex were shown to contain two immunoreactive bands corresponding to the α and α+ forms of dog brain. In contrast, the brain of the insect Manduca sexta contains only one immunoreactive polypeptide with a molecular weight intermediate to the α and α+ forms of dog brain. The β subunit from lamb, dog and rat kidney and from dog and rat brain cross-reacts with anti-lamb kidney (Na+ + K+)-ATPase serum. The mobility of the β subunit from dog and rat brain on SDS-polyacrylamide electrophoresis gels is greater than the mobility of the β subunit from lamb, rat or dog kidney.  相似文献   

8.
The mechanism of chain selection and trimerization of fibril-associated collagens with interrupted triple helices (FACITs) differs from that of fibrillar collagens that have special C-propeptides. We recently showed that the second carboxyl-terminal non-collagenous domain (NC2) of homotrimeric collagen XIX forms a stable trimer and substantially stabilizes a collagen triple helix attached to either end. We then hypothesized a general trimerizing role for the NC2 domain in other FACITs. Here we analyzed the NC2 domain of human heterotrimeric collagen IX, the only member of FACITs with all three chains encoded by distinct genes. Upon oxidative folding of equimolar amounts of the α1, α2, and α3 chains of NC2, a stable heterotrimer with a disulfide bridge between α1 and α3 chains is formed. Our experiments show that this heterotrimerization domain can stabilize a short triple helix attached at the carboxyl-terminal end and allows for the proper oxidation of the cystine knot of type III collagen after the short triple helix.  相似文献   

9.
Three homologues of TGF-β exist in mammals as follows: TGF-β1, TGF-β2, and TGF-β3. All three proteins share high homology in their amino acid sequence, yet each TGF-β isoform has unique heterologous motifs that are highly conserved during evolution. Although these TGF-β proteins share similar properties in vitro, isoform-specific properties have been suggested through in vivo studies and by the unique phenotypes for each TGF-β knock-out mouse. To test our hypothesis that each of these homologues has nonredundant functions, and to identify such isoform-specific roles, we genetically exchanged the coding sequence of the mature TGF-β1 ligand with a sequence from TGF-β3 using targeted recombination to create chimeric TGF-β1/3 knock-in mice (TGF1Lβ3/Lβ3). In the TGF1Lβ3/Lβ3 mouse, localization and activation still occur through the TGF-β1 latent associated peptide, but cell signaling is triggered through the TGF-β3 ligand that binds to TGF-β receptors. Unlike TGF1−/− mice, the TGF1Lβ3/Lβ3 mice show neither embryonic lethality nor signs of multifocal inflammation, demonstrating that knock-in of the TGF-β3 ligand can prevent the vasculogenesis defects and autoimmunity associated with TGF-β1 deficiency. However, the TGF1Lβ3/Lβ3 mice have a shortened life span and display tooth and bone defects, indicating that the TGF-β homologues are not completely interchangeable. Remarkably, the TGF1Lβ3/Lβ3 mice display an improved metabolic phenotype with reduced body weight gain and enhanced glucose tolerance by induction of beneficial changes to the white adipose tissue compartment. These findings reveal both redundant and unique nonoverlapping functional diversity in TGF-β isoform signaling that has relevance to the design of therapeutics aimed at targeting the TGF-β pathway in human disease.  相似文献   

10.
GABA type A receptors (GABAAR), the brain''s major inhibitory neurotransmitter receptors, are the targets for many general anesthetics, including volatile anesthetics, etomidate, propofol, and barbiturates. How such structurally diverse agents can act similarly as positive allosteric modulators of GABAARs remains unclear. Previously, photoreactive etomidate analogs identified two equivalent anesthetic-binding sites in the transmembrane domain at the β+ subunit interfaces, which also contain the GABA-binding sites in the extracellular domain. Here, we used R-[3H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (R-mTFD-MPAB), a potent stereospecific barbiturate anesthetic, to photolabel expressed human α1β3γ2 GABAARs. Protein microsequencing revealed that R-[3H]mTFD-MPAB did not photolabel the etomidate sites at the β+ subunit interfaces. Instead, it photolabeled sites at the α+ and γ+ subunit interfaces in the transmembrane domain. On the (+)-side, α1M3 was labeled at Ala-291 and Tyr-294 and γ2M3 at Ser-301, and on the (−)-side, β3M1 was labeled at Met-227. These residues, like those in the etomidate site, are located at subunit interfaces near the synaptic side of the transmembrane domain. The selectivity of R-etomidate for the β+ interface relative to the α++ interfaces was >100-fold, whereas that of R-mTFD-MPAB for its sites was >50-fold. Each ligand could enhance photoincorporation of the other, demonstrating allosteric interactions between the sites. The structural heterogeneity of barbiturate, etomidate, and propofol derivatives is accommodated by varying selectivities for these two classes of sites. We hypothesize that binding at any of these homologous intersubunit sites is sufficient for anesthetic action and that this explains to some degree the puzzling structural heterogeneity of anesthetics.  相似文献   

11.
The L-type Ca2+ channel (dihydropyridine receptor (DHPR) in skeletal muscle acts as the voltage sensor for excitation-contraction coupling. To better resolve the spatial organization of the DHPR subunits (α1s or CaV1.1, α2, β1a, δ1, and γ), we created transgenic mice expressing a recombinant β1a subunit with YFP and a biotin acceptor domain attached to its N- and C- termini, respectively. DHPR complexes were purified from skeletal muscle, negatively stained, imaged by electron microscopy, and subjected to single-particle image analysis. The resulting 19.1-Å resolution, three-dimensional reconstruction shows a main body of 17 × 11 × 8 nm with five corners along its perimeter. Two protrusions emerge from either face of the main body: the larger one attributed to the α2-δ1 subunit that forms a flexible hook-shaped feature and a smaller protrusion on the opposite side that corresponds to the II-III loop of CaV1.1 as revealed by antibody labeling. Novel features discernible in the electron density accommodate the atomic coordinates of a voltage-gated sodium channel and of the β subunit in a single docking possibility that defines the α1-β interaction. The β subunit appears more closely associated to the membrane than expected, which may better account for both its role in localizing the α1s subunit to the membrane and its suggested role in excitation-contraction coupling.  相似文献   

12.
β-Fructosidases are a widespread group of enzymes that catalyze the hydrolysis of terminal fructosyl units from various substrates. These enzymes also exhibit transglycosylation activity when they function with high concentrations of sucrose, which is used to synthesize fructooligosaccharides (FOS) in the food industry. A β-fructosidase (BfrA) with high transglycosylation activity was purified from Aspergillus oryzae FS4 as a monomeric glycoprotein. Compared with the most extensively studied Aspergillus spp. fructosidases that synthesize inulin-type β-(2-1)-linked FOS, BfrA has unique transfructosylating property of synthesizing levan- and neolevan-type β-(2-6)-linked FOS. The coding sequence (bfrAFS4, 1.86 kb) of BfrA was amplified and expressed in Escherichia coli and Pichia pastoris. Both native and recombinant proteins showed transfructosylation and hydrolyzation activities with broad substrate specificity. These proteins could hydrolyze the following linkages: Glc α-1, 2-β Fru; Glc α-1, 3-α Fru; and Glc α-1, 5-β Fru. Compared with the unglycosylated E. coli-expressed BfrA (E.BfrA), the N-glycosylated native (N.BfrA) and the P. pastoris-expressed BfrA (P.BfrA) were highly stable at a wide pH range (pH 4 to 11), and significantly more thermostable at temperatures up to 50°C with a maximum activity at 55°C. Using sucrose as substrate, the Km and kcat values for total activity were 37.19±5.28 mM and 1.0016±0.039×104 s−1 for N.BfrA. Moreover, 10 of 13 putative N-glycosylation sites were glycosylated on N.BfrA, and N-glycosylation was essential for enzyme thermal stability and optima activity. Thus, BfrA has demonstrated as a well-characterized A. oryzae fructosidase with unique transfructosylating capability of synthesizing levan- and neolevan-type FOS.  相似文献   

13.
Laminins assemble into trimers composed of α, β, and γ chains which posttranslationally are glycosylated and sometimes proteolytically cleaved. In the current paper we set out to characterize posttranslational modifications and the laminin isoforms formed by laminin α1 and α5 chains. Comparative pulse–chase experiments and deglycosylation studies in JAR cells established that the Mr 360,000 laminin α1 chain is glycosylated into a mature Mr 400,000 band while the Mr 370,000 laminin α5 chain is glycosylated into a Mr 390,000 form that upon secretion is further processed into a Mr 380,000 form. Hence, despite the shorter peptide length of α1 chain in comparison with the α5 chain, secreted α1 assumes a larger size in SDS–PAGE due to a higher degree of N-linked glycosylation and due to the lack of proteolytic processing. Immunoprecipitations and Western blotting of JAR laminins identified laminin α1 and laminin α5 chains in laminin-1 and laminin-10. In placenta laminin α1 chain (Mr 400,000) and laminin α5 chain (Mr 380,000/370,000 doublet) were found in laminin-1/-3 and laminin-10/-11. Immunohistochemically we could establish that the laminin α1 chain in placenta is deposited in the developing villous and trophoblast basement membrane, also found to contain laminin β2 chains. Surprisingly, a fraction of the laminin α1 chain from JAR cells and placenta could not be precipitated by antibodies to laminin β1–β3 chains, possibly pointing to an unexpected complexity in the chain composition of α1-containing laminin isoforms.  相似文献   

14.
The fugu SN4TDR protein belongs to an evolutionarily conserved family, consisting of four repeat staphylococcal nuclease-like domains (SN1-SN4) at the N-terminus followed by Tudor and SN-like domains (TSN). Sequence analysis showed that the C-terminal TSN domain is composed of a complete SN-like domain interdigitated with a Tudor domain. In despite of low level of sequence identities, five SN-like domains have a few conserved amino acids that may play essential roles in the function of the protein. Computer modeling and secondary structural prediction of the SN-like domains revealed the presence of similar structural features of β1-β2-β3-α1-β4-β5-α2-α3, which provides a structural basis for oligonucleotides binding. The loop region L for binding sites between β3 and α1 of SN-like domains are different from human p100, implying the divergence in the structures of binding sites. These results indicate that fugu SN4TDR may bind methylated ligands and/or oligonucleotides through its distant domains.  相似文献   

15.
Cardiac inotropic effects of β adrenergic agonists occur mainly through an increase in L-type (class C) calcium channel activity. This response has been attributed to phosphorylation of the L-type Ca channel, or a closely associated protein, by the cAMP-dependent protein kinase A (PKA). Among the three subunits forming the cardiac L-type Ca channel (α1, β and α2-δ), biochemical studies have revealed that two subunits, α1 and β, are phosphorylated in vitro by protein kinase A, the α1 subunit being the primary target. However, attempts to reconstitute the cAMP-dependent regulation of the expressed class C Ca channel, either in Xenopus oocytes or in cell lines, have provided contradictory results. We were unable to detect cAMP-dependent modulation of class C α1 subunit Ca channels expressed in Xenopus oocytes, even when coinjected with auxiliary subunits β and α2-δ. Nevertheless, activity of Ca channels recorded from cardiac-mRNA injected oocytes was potentiated by injection of cAMP or PKA, even when expression of the β subunit was suppressed using antisense oligonucleotide. Taken together, these results indicate that cAMP-dependent regulation does not exclusively involve the α1 and the β subunits of the Ca channel and suggest that unidentified protein(s), expressed in cardiac tissue, are most likely necessary.  相似文献   

16.
GABAA receptors are composed predominantly of αβγ receptors, which mediate primarily synaptic inhibition, and αβδ receptors, which mediate primarily extrasynaptic inhibition. At saturating GABA concentrations, the barbiturate pentobarbital substantially increased the amplitude and desensitization of the α1β3δ receptor but not the α1β3γ2L receptor currents. To explore the structural domains of the δ subunit that are involved in pentobarbital potentiation and increased desensitization of α1β3δ currents, chimeric cDNAs were constructed by progressive replacement of γ2L subunit sequence with a δ subunit sequence or a δ subunit sequence with a γ2L subunit sequence, and HEK293T cells were co-transfected with α1 and β3 subunits or α1 and β3 subunits and a γ2L, δ, or chimeric subunit. Currents evoked by a saturating concentration of GABA or by co-application of GABA and pentobarbital were recorded using the patch clamp technique. By comparing the extent of enhancement and changes in kinetic properties produced by pentobarbital among chimeric and wild type receptors, we concluded that although potentiation of α1β3δ currents by pentobarbital required the δ subunit sequence from the N terminus to proline 241 in the first transmembrane domain (M1), increasing desensitization of α1β3δ currents required a δ subunit sequence from the N terminus to isoleucine 235 in M1. These findings suggest that the δ subunit N terminus and N-terminal portion of the M1 domain are, at least in part, involved in transduction of the allosteric effect of pentobarbital to enhance α1β3δ currents and that this effect involves a distinct but overlapping structural domain from that involved in altering desensitization.  相似文献   

17.
The flagellin of Pseudomonas syringae pv. tabaci is a glycoprotein that contains O-linked oligosaccharides composed of rhamnosyl and 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methylglucosyl residues. These O-linked glycans are released by hydrazinolysis and then labeled at their reducing ends with 2-aminopyridine (PA). A PA-labeled trisaccharide and a PA-labeled tetrasaccharide are isolated by normal-phase high-performance liquid chromatography. These oligosaccharides are structurally characterized using mass spectrometry and NMR spectroscopy. Our data show that P. syringae pv. tabaci flagellin is glycosylated with a tetrasaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rhap-(1→2)-α-l-Rha-(1→, as well a trisaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rha-(1→, which was identified in a previous study.  相似文献   

18.
The 3-α-hydroxysteroid dehydrogenase and the 3-β-hydroxysteroid dehydrogenase of Pseudomonas testosteroni were purified to homogeneity by polyacrylamide gel electrophoresis using the following stages: DEAE cellulose chromatography, affinity chromatography on oestrone-aminocaproate sepharose and Sephadex gel filtration.The pure 3-α-hydroxysteroid dehydrogenase was completely devoid of 3-β-hydroxysteroid dehydrogenase activity but could oxidize estradiol 17-β at an appreciable rate. This activity accounts for about 40 per cent of the total 17-β-estradiol dehydrogenase of the crude bacterial extract.Affinity labelling of pure 3-α-hydroxysteroid dehydrogenase was carried out using 5-β-pregnane 3,20-dione-12-α-iodoacetate and 5-α-androstane 3-one-17-β-bromoacetate. With both reagents, inactivation was obtained only in the presence of coenzyme, the substrate protected against inactivation and the enzyme was fully inhibited with covalent binding of 1 mole of reagent per mole of subunit suggesting an active site directed inhibition. Histidine and methionine were identified as the labelled aminoacid residues.  相似文献   

19.
An acidic heteropolysaccharide has been isolated from the tropical angiosperm Feronia limonia syn. F. elephantum (family: Rutaceae). A partially carboxymethylated α-(1–4) polygalacturonan backbone structure with 2- and 2,4-O-α- -rhamnopyranosyl, 2- and 2,3-O-α- -arabinofuranosyl and 3-, 2,4-and terminal α- -galactopyranosyl bearing side chains has been tentatively assigned. The preliminary study in the murine model showed some significant in vivo Ehrlich ascites carcinoma cell growth inhibition.  相似文献   

20.
A large panel of fungal β-N-acetylhexosaminidases was tested for the regioselectivity of the β-GlcNAc transfer onto galacto-type acceptors ( -galactose, lactose, 2-acetamido-2-deoxy- -galactopyranose). A unique, non-reducing disaccharide β- -GlcpNAc-(1→1)-β- -Galp and trisaccharides β- -GlcpNAc-(1→4)-β- -GlcpNAc-(1→1)-β- -Galp, β- -Galp-(1→4)-β- -Glcp-(1→1)-β- -GlcpNAc and β- -Galp-(1→4)-α- -Glcp-(1→1)-β- -GlcpNAc were synthesised under the catalysis of the β-N-acetylhexosaminidase from the Aspergillus flavofurcatis CCF 3061 with -galactose and lactose as acceptors. The use of 2-acetamido-2-deoxy- -galactopyranose as an acceptor with the β-N-acetylhexosaminidases from A. flavofurcatis CCF 3061, A. oryzae CCF 1066 and A. tamarii CCF 1665 afforded only β- -GlcpNAc-(1→6)- -GalpNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号