首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
To study spatiotemporal regulation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling cascade in living cells, a HeLa cell line in which MAPK kinase of ERK kinase (MEK) 2 (MAPK kinase) was knocked down by RNA interference and replaced with the green fluorescent protein (GFP)-tagged MEK2 was generated. In these cells, MEK2-GFP was stably expressed at a level similar to that of the endogenous MEK2 in the parental cells. Upon activation of the EGF receptor (EGFR), a pool of MEK2-GFP was found initially translocated to the plasma membrane and then accumulated in a subset of early and late endosomes. However, activated MEK was detected only at the plasma membrane and not in endosomes. Surprisingly, MEK2-GFP endosomes did not contain active EGFR, suggesting that endosomal MEK2-GFP was separated from the upstream signaling complexes. Knockdown of clathrin by small interfering RNA (siRNA) abolished MEK2 recruitment to endosomes but resulted in increased activation of ERK without affecting the activity of MEK2-GFP. The accumulation of MEK2-GFP in endosomes was also blocked by siRNA depletion of RAF kinases and by the MEK1/2 inhibitor, UO126. We propose that the recruitment of MEK2 to endosomes can be a part of the negative feedback regulation of the EGFR-MAPK signaling pathway by endocytosis.  相似文献   

2.
The phosphatidylinositide-3-OH kinase/3-phospho-inositide-dependent protein kinase-1 (PDK1)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. Despite their importance, however, the cross-talk between these two pathways has not been fully understood. Here we report that PDK1 promotes MAPK activation in a MEK-dependent manner. In vitro kinase assay revealed that the direct targets of PDK1 in the MAPK pathway were the upstream MAPK kinases MEK1 and MEK2. The identified PDK1 phosphorylation sites in MEK1 and MEK2 are Ser222 and Ser226, respectively, and are known to be essential for full activation. To date, these sites are thought to be phosphorylated by Raf kinases. However, PDK1 gene silencing using small interference RNA demonstrates that PDK1 is associated with maintaining the steady-state phosphorylated MEK level and cell growth. The small interference RNA-mediated down-regulation of PDK1 attenuated maximum MEK and MAPK activities but could not prolong MAPK signaling duration. Stable and transient expression of constitutively active MEK1 overcame these effects. Our results suggest a novel cross-talk between the phosphatidylinositide-3-OH kinase/PDK1/Akt pathway and the Raf/MEK/MAPK pathway.  相似文献   

3.
The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway is a highly conserved signaling pathway that regulates diverse cellular processes including differentiation, proliferation, and survival. Kinase suppressor of Ras-1 (KSR1) binds each of the three ERK cascade components to facilitate pathway activation. Even though KSR1 contains a C-terminal kinase domain, evidence supporting the catalytic function of KSR1 remains controversial. In this study, we produced recombinant wild-type or kinase-inactive (D683A/D700A) KSR1 proteins in Escherichia coli to test the hypothesis that KSR1 is a functional protein kinase. Recombinant wild-type KSR1, but not recombinant kinase-inactive KSR1, underwent autophosphorylation on serine residue(s), phosphorylated myelin basic protein (MBP) as a generic substrate, and phosphorylated recombinant kinase-inactive MAPK/ERK kinase-1 (MEK1). Furthermore, FLAG immunoprecipitates from KSR1−/− colon epithelial cells stably expressing FLAG-tagged wild-type KSR1 (+KSR1), but not vector (+vector) or FLAG-tagged kinase-inactive KSR1 (+D683A/D700A), were able to phosphorylate kinase-inactive MEK1. Since TNF activates the ERK pathway in colon epithelial cells, we tested the biological effects of KSR1 in the survival response downstream of TNF. We found that +vector and +D683A/D700A cells underwent apoptosis when treated with TNF, whereas +KSR1 cells were resistant. However, +KSR1 cells were sensitized to TNF-induced cell loss in the absence of MEK kinase activity. These data provide clear evidence that KSR1 is a functional protein kinase, MEK1 is an in vitro substrate of KSR1, and the catalytic activities of both proteins are required for eliciting cell survival responses downstream of TNF.  相似文献   

4.
The purpose of this study was to evaluate whether the mitogen-activated protein kinase (MAPK) signaling pathway contributes to 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mononuclear differentiation in the human myeloblastic leukemia ML-1 cells. Upon TPA treatment, the activity of ERK1 and ERK2 rapidly increased, with maximal induction between 1 and 3 h, while ERK2 protein levels remained constant. The activity of JNK1 was also significantly induced, with JNK1 protein levels increasing moderately during exposure to TPA. Treatment of cells with PD98059, a specific inhibitor of mitogen-activated protein kinase kinase (MEK), inhibited TPA-induced ERK2 activity. Furthermore, PD98059 completely blocked the TPA-induced differentiation of ML-1 cells, as assessed by a number of features associated with mononuclear differentiation including changes in morphology, nonspecific esterase activity, phagocytic ability, NADPH oxidase activity, mitochondrial respiration, and c-jun mRNA inducibility. We conclude that activation of the MEK/ERK signaling pathway is necessary for TPA-induced mononuclear cell differentiation.  相似文献   

5.
6.
Activation of cyclin B-Cdc2 is an absolute requirement for entry into mitosis, but other protein kinase pathways that also have mitotic functions are activated during G(2)/M progression. The MAPK cascade has well established roles in entry and exit from mitosis in Xenopus, but relatively little is known about the regulation and function of this pathway in mammalian mitosis. Here we report a detailed analysis of the activity of all components of the Ras/Raf/MEK/ERK pathway in HeLa cells during normal G(2)/M. The focus of this pathway is the dramatic activation of an endomembrane-associated MEK1 without the corresponding activation of the MEK substrate ERK. This is because of the uncoupling of MEK1 activation from ERK activation. The mechanism of this uncoupling involves the cyclin B-Cdc2-dependent proteolytic cleavage of the N-terminal ERK-binding domain of MEK1 and the phosphorylation of Thr(286). These results demonstrate that cyclin B-Cdc2 activity regulates signaling through the MAPK pathway in mitosis.  相似文献   

7.
In 3T3-L1 adipocytes, insulin activates three major signaling cascades, the phosphoinositide 3-kinase (PI3K) pathway, the Cbl pathway, and the mitogen-activated protein kinase (MAPK) pathway. Although PI3K and Cbl mediate insulin-stimulated glucose uptake by promoting the translocation of the insulin-responsive glucose transporter (GLUT4) to the plasma membrane, the MAPK pathway does not have an established role in insulin-stimulated glucose uptake. We demonstrate in this report that PI3K inhibitors also inhibit the MAPK pathway. To investigate the role of the MAPK pathway separately from that of the PI3K pathway in insulin-stimulated glucose uptake, we used two specific inhibitors of MAPK kinase (MEK) activity, PD-98059 and U-0126, which reduced insulin-stimulated glucose uptake by approximately 33 and 50%, respectively. Neither MEK inhibitor affected the activation of Akt or PKCzeta/lambda, downstream signaling molecules in the PI3K pathway. Inhibition of MEK with U-0126 did not prevent GLUT4 from translocating to the plasma membrane, nor did it inhibit the subsequent docking and fusion of GLUT4-myc with the plasma membrane. MEK inhibitors affected glucose transport mediated by GLUT4 but not GLUT1. Importantly, the presence of MEK inhibitors only at the time of the transport assay markedly impaired both insulin-stimulated glucose uptake and MAPK signaling. Conversely, removal of MEK inhibitors before the transport assay restored glucose uptake and MAPK signaling. Collectively, our studies suggest a possible role for MEK in the activation of GLUT4.  相似文献   

8.
9.
Cellular and genetic approaches were used to investigate the requirements for activation during spermatogenesis of the extracellular signal-regulated protein kinases (ERKs), more commonly known as the mitogen-activated protein kinases (MAPKs). The MAPKS and their activating kinases, the MEKs, are expressed in specific developmental patterns. The MAPKs and MEK2 are expressed in all premeiotic germ cells and spermatocytes, while MEK1 is not expressed abundantly in pachytene spermatocytes. Phosphorylated (active) variants of these kinases are diminished in pachytene spermatocytes. Treatment of pachytene spermatocytes with okadaic acid (OA), to induce transition from meiotic prophase to metaphase I (G2/MI), resulted in phosphorylation and enzymatic activation of ERK1/2. However, U0126, an inhibitor of the ERK-activating kinases, MEK1/2, did not inhibit OA-induced MAPK activation or chromosome condensation. Analysis of spermatocytes lacking MOS, a mitogen-activated protein kinase kinase kinase responsible for MEK and MAPK activation, revealed that MOS is not required for OA-induced activation of the MAPKs. OA-induced MAPK activation was inhibited by butyrolactone I, an inhibitor of cyclin-dependent kinases 1 and 2 (CDK1, CDK2); thus, these kinases may regulate MAPK activity. Additionally, spermatocytes lacking CDC25C condensed bivalent chromosomes and activated both MPF and MAPKs in response to OA treatment; therefore, there is a CDC25C-independent pathway for MPF and MAPK activation. These studies reveal that spermatocytes do not require either MOS or CDC25C for onset of the meiotic division phase or for activation of MPF and the MAPKs, thus implicating a novel pathway for activation of the ERK1/2 MAPKs in spermatocytes.  相似文献   

10.
p70S6 kinase (S6K1) plays a pivotal role in hypertrophic cardiac growth via ribosomal biogenesis. In pressure-overloaded myocardium, we show S6K1 activation accompanied by activation of protein kinase C (PKC), c-Raf, and mitogen-activated protein kinases (MAPKs). To explore the importance of the c-Raf/MAPK kinase (MEK)/MAPK pathway, we stimulated adult feline cardiomyocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA), insulin, or forskolin to activate PKC, phosphatidylinositol-3-OH kinase, or protein kinase A (PKA), respectively. These treatments resulted in S6K1 activation with Thr-389 phosphorylation as well as mammalian target of rapamycin (mTOR) and S6 protein phosphorylation. Thr-421/Ser-424 phosphorylation of S6K1 was observed predominantly in TPA-treated cells. Dominant negative c-Raf expression or a MEK1/2 inhibitor (U0126) treatment showed a profound blocking effect only on the TPA-stimulated phosphorylation of S6K1 and mTOR. Whereas p38 MAPK inhibitors exhibited only partial effect, MAPK-phosphatase-3 expression significantly blocked the TPA-stimulated S6K1 and mTOR phosphorylation. Inhibition of mTOR with rapamycin blocked the Thr-389 but not the Thr-421/Ser-424 phosphorylation of S6K1. Therefore, during PKC activation, the c-Raf/MEK/extracellular signal-regulated kinase-1/2 (ERK1/2) pathway mediates both the Thr-421/Ser-424 and the Thr-389 phosphorylation in an mTOR-independent and -dependent manner, respectively. Together, our in vivo and in vitro studies indicate that the PKC/c-Raf/MEK/ERK pathway plays a major role in the S6K1 activation in hypertrophic cardiac growth.  相似文献   

11.
Members of the mitogen-activated protein kinase (MAPK) cascade such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 are implicated as important regulators of cardiomyocyte hypertrophic growth in culture. However, the role that individual MAPK pathways play in vivo has not been extensively evaluated. Here we generated nine transgenic mouse lines with cardiac-restricted expression of an activated MEK1 cDNA in the heart. MEK1 transgenic mice demonstrated concentric hypertrophy without signs of cardiomyopathy or lethality up to 12 months of age. MEK1 transgenic mice showed a dramatic increase in cardiac function, as measured by echocardiography and isolated working heart preparation, without signs of decompensation over time. MEK1 transgenic mice and MEK1 adenovirus-infected neonatal cardiomyocytes each demonstrated ERK1/2, but not p38 or JNK, activation. MEK1 transgenic mice and MEK1 adenovirus-infected cultured cardiomyocytes were also partially resistant to apoptotic stimuli. The results of the present study indicate that the MEK1-ERK1/2 signaling pathway stimulates a physiologic hypertrophy response associated with augmented cardiac function and partial resistance to apoptotsis.  相似文献   

12.
Activation of the ERK mitogen-activated protein (MAP) kinase pathway has been implicated in the regulation of cell growth, differentiation and senescence. In this pathway, the MAP kinases ERK1/ERK2 are phosphorylated and activated by the dual-specificity kinases MEK1 and MEK2, which in turn are activated by serine phosphorylation by a number of MAP kinase kinase kinases. We report here the chromosomal localization of the human genes encoding the MAP kinase kinase isoforms MEK1 and MEK2. Using a combination of fluorescence in situ hybridization, somatic cell hybrid analysis, DNA sequencing and yeast artificial chromosome (YAC) clone analysis, we have mapped the MEK1 gene (MAP2K1) to chromosome 15q21. We also present evidence for the presence of a MEK1 pseudogene on chromosome 8p21. The MEK2 gene (MAP2K2) was mapped to chromosome 7q32 by fluorescence in situ hybridization and YAC clone analysis.  相似文献   

13.
Kinase Suppressor of Ras1 (KSR1) functions as a positive modulator of Ras-dependent signaling either upstream of or parallel to Raf-1, and pharmacologic inactivation of KSR1 may serve as a treatment for Rasdriven malignancies such as pancreatic cancer (Xing, H. R., Cordon-Cardo, C., Deng, X., Tong, W., Campodonico, L., Fuks, Z., and Kolesnick, R. (2003) Nat. Med. 9, 1266-1268). Although some studies demonstrated a requirement for KSR1 kinase activity for its action, others suggested KSR1 acts primarily as a scaffold facilitating assembly of the c-Raf-1/MEK module. We recently established a two-stage in vitro reconstitution assay to measure KSR1 kinase activity (Xing, H. R., Lozano, J., and Kolesnick, R. (2000) J. Biol. Chem. 275, 17276-17280). In this assay, KSR1, immunopurified to apparent homogeneity, never comes in contact with recombinant kinases other than c-Raf-1. In the first assay stage, activated KSR1 is incubated with recombinant c-Raf-1 and ATP. In the second stage, activated c-Raf-1 is separated from KSR1, and incubated with unactivated MEK1, unactivated MAPK, Elk-1, and ATP. Elk-1 phosphorylation serves as a specific readout for MAPK activation. However, because KSR1 constitutively associates with MEK1 and this interaction appears critical for KSR1 scaffolding function, it has been argued that the kinase activity detected is an artifact of KSR1-bound MEK1. To address these concerns, we depleted as much as 90% of KSR1-bound MEK1 by high salt washing without altering KSR1 kinase activity. Further, a complete inactivation of KSR1-bound MEK1 by pretreating with the MEK inhibitor PD 98059 prior to the first assay stage did not alter KSR1 kinase activity. In addition, the omission of exogenous recombinant GST-MEK1 from the reaction mixture during the second assay stage abolished Elk-1 phosphorylation confirming KSR1-bound MEK1 does not support MAPK activation in our in vitro assay. Moreover, a kinase-inactive mutant, FLAG-Ki-KSR1(D683A/D700A), which efficiently interacts with endogenous MEK1, lacks kinase activity. These results collectively support our contention that the kinase activity of KSR1 is an intrinsic property of this protein independent of KSR1-bound endogenous MEK.  相似文献   

14.
Oligonol is a lychee fruit-derived low-molecular form of polyphenol. In this study, the effect of Oligonol on the mitogen activated-protein kinase (MAPK) signaling pathway in primary adipocytes was investigated to examine the mechanism underlying the enhanced levels of phosphorylated extracellular-signaling regulatory kinase1/2 (ERK1/2) that accompany an in vitro increase in lipolysis. Oligonol significantly elevated the levels of activated Ras and the phosphorylation of Raf-1 and MAPK/ERK kinase1/2 (MEK1/2) with no increase in pan-Raf-1 and -MEK1/2 proteins. The increase in phosphorylation of Raf-1 and MEK1/2 with Oligonol was inhibited completely by pretreatment with GW5074, a selective Raf-1 inhibitor, or PD98059, a selective MEK1/2 inhibitor. IL-6 also activated the MAPK signaling pathway in adipocytes through the association with its receptor. IL-6-induced phosphorylation of Raf-1 and MEK1/2 was significantly inhibited by pretreatment with the IL-6 receptor antibody. Under such a condition, however, the levels of phosphorylated Raf-1 and MEK1/2 with Oligonol still remained significantly higher, and there was a significant decrease in secretion of IL-6 from adipocytes, compared with untreated control cells. These results suggest that Oligonol activates the Ras/Raf-1/MEK1/2 signaling pathway, independent of the IL-6 signaling pathway, leading to activation of ERK1/2 proteins in primary adipocytes.  相似文献   

15.
Cardiotrophin-1 protects cardiac myocytes from ischaemic re-oxygenation (IR) injury. CT-1 activates MEK1/2,p42/44MAPK as well as the phosphatidylinositol (PI) 3-OH kinase (PI3) protein kinase B (PKB/Akt) pathway. In this study we investigate the signalling pathways that mediate the anti-apoptotic cell survival effect of CT-1 in IR. Dominant negative gene based inhibitors of MEK1/2, PI3-kinase and Akt inhibited CT-1 mediated cardioprotection in re-oxygenation as did chemical inhibitors of the PI3-kinase pathway. Hence the PI3-kinase/Akt pathway is required in addition to MEK1/2 to mediate CT-1 cardioprotection in IR.  相似文献   

16.
Activation of the Ras-MAPK signal transduction pathway is necessary for biological responses both to growth factors and ECM. Here, we provide evidence that phosphorylation of S298 of MAPK kinase 1 (MEK1) by p21-activated kinase (PAK) is a site of convergence for integrin and growth factor signaling. We find that adhesion to fibronectin induces PAK1-dependent phosphorylation of MEK1 on S298 and that this phosphorylation is necessary for efficient activation of MEK1 and subsequent MAPK activation. The rapid and efficient activation of MEK and phosphorylation on S298 induced by cell adhesion to fibronectin is influenced by FAK and Src signaling and is paralleled by localization of phospho-S298 MEK1 and phospho-MAPK staining in peripheral membrane-proximal adhesion structures. We propose that FAK/Src-dependent, PAK1-mediated phosphorylation of MEK1 on S298 is central to the organization and localization of active Raf-MEK1-MAPK signaling complexes, and that formation of such complexes contributes to the adhesion dependence of growth factor signaling to MAPK.  相似文献   

17.
The MAPK pathway is identified as one of the most important pathways involved in cell proliferation and differentiation. A key kinase in the pathway, the Mitogen-activated protein kinase kinase (MEK) is recognized as a promising target for antitumor drugs. Structure-based design and optimization of known MEK inhibitors resulted in identification of compound 10a as a potent non-ATP competitive MEK inhibitor in both in vitro and in vivo tests.  相似文献   

18.
The RAS-mitogen-activated protein kinase (MAPK) signaling pathway has a central role in regulating the proliferation and survival of both normal and tumor cells. This pathway has been 1 focus area for the development of anticancer drugs, resulting in several compounds, primarily kinase inhibitors, in clinical testing. The authors have undertaken a cell-based, high-throughput screen using a novel ERF1 Redistribution assay to identify compounds that modulate the signaling pathway. The hit compounds were subsequently tested for activity in a functional cell proliferation assay designed to selectively detect compounds inhibiting the proliferation of MAPK pathway-dependent cancer cells. The authors report the identification of 2 cell membrane-permeable compounds that exhibit activity in the ERF1 Redistribution assay and selectively inhibit proliferation of MAPK pathway-dependent malignant melanoma cells at similar potencies (IC(50)=< 5 microM). These compounds have drug-like structures and are negative in RAF, MEK, and ERK in vitro kinase assays. Drugs belonging to these compound classes may prove useful for treating cancers caused by excessive MAPK pathway signaling. The results also show that cell-based, high-content Redistribution screens can detect compounds with different modes of action and reveal novel targets in a pathway known to be disease relevant.  相似文献   

19.
Utilizing mutants of extracellular signal-regulated kinase 2 (ERK2) that are defective for intrinsic mitogen-activated protein kinase or ERK kinase (MEK) binding, we have identified a convergent signaling pathway that facilitates regulated MEK-ERK association and ERK activation. ERK2-delta19-25 mutants defective in MEK binding could be phosphorylated in response to mitogens; however, signaling from the Raf-MEK pathway alone was insufficient to stimulate their phosphorylation in COS-1 cells. Phosphorylation of ERK2-delta19-25 but not of wild-type ERK2 in response to Ras V12 was greatly inhibited by dominant-negative Rac. Activated forms of Rac and Cdc42 could enhance the association of wild-type ERK2 with MEK1 but not with MEK2 in serum-starved adherent cells. This effect was p21-activated kinase (PAK) dependent and required the putative PAK phosphorylation sites T292 and S298 of MEK1. In detached cells placed in suspension, ERK2 was complexed with MEK2 but not with MEK1. However, upon replating of cells onto a fibronectin matrix, there was a substantial induction of MEK1-ERK2 association and ERK activation, both of which could be inhibited by dominant-negative PAK1. These data show that Rac facilitates the assembly of a mitogen-activated protein kinase signaling complex required for ERK activation and that this facilitative signaling pathway is active during adhesion to the extracellular matrix. These findings reveal a novel mechanism by which adhesion and growth factor signals are integrated during ERK activation.  相似文献   

20.
MEKK2 and MEKK3 are two closely related mitogen-activated protein kinase (MAPK) kinase kinases. The kinase domains of MEKK2 and MEKK3 are nearly identical, although their N-terminal regulatory domains are significantly divergent. By yeast two-hybrid library screening, we have identified MEK5, the MAPK kinase in the big mitogen-activated protein kinase 1 (BMK1)/ERK5 pathway, as a binding partner for MEKK2. MEKK2 expression stimulates BMK1/ERK5 activity, the downstream substrate for MEK5. Compared with MEKK3, MEKK2 activated BMK1/ERK5 to a greater extent, which might correlate with a higher affinity MEKK2-MEK5 interaction. A dominant negative form of MEK5 blocked the activation of BMK1/ERK5 by MEKK2, whereas activation of c-Jun N-terminal kinase (JNK) was unaffected, showing that MEK5 is a specific downstream effector of MEKK2 in the BMK1/ERK5 pathway. Activation of BMK1/ERK5 by epidermal growth factor and H2O2 in Cos7 and HEK293 cells was completely blocked by a kinase-inactive MEKK3 (MEKK3kin(-)), whereas MEKK2kin(-) had no effect. However, in D10 T cells, expression of MEKK2kin(-) but not MEKK3kin(-) inhibited BMK1/ERK5 activity. Two-hybrid screening also identified Lck-associated adapter/Rlk- and Itk-binding protein (Lad/RIBP), a T cell adapter protein, as a binding partner for MEKK2. MEKK2 and Lad/RIBP colocalize at the T cell contact site with antigen-loaded presenting cells, demonstrating cotranslocation of MEKK2 and Lad/RIBP during T cell activation. MEKK3 neither binds Lad/RIBP nor is recruited to the T cell contact with antigen presenting cell. MEKK2 and MEKK3 are differentially associated with signaling from specific upstream receptor systems, whereas both activate the MEK5-BMK1/ERK5 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号