首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从包含牛流行热病毒G蛋白基因的质粒pMD-G中克隆G1抗原表位区基因,亚克隆进表达载体pPIC9K,构建重组载体pPIC9K-G1,线性化后电转化毕赤酵母GS115,通过G418压力和PCR法筛选阳性重组酵母进行诱导表达。经SDS-PAGE、脱糖基化分析、Western blot、ELISA、兔体免疫实验和特异性分析,表明该基因在GS115中表达并进行了适度的糖基化,表达蛋白有良好的生物学活性和特异性,可作为包被抗原,开发ELISA诊断试剂盒。  相似文献   

2.
从包含牛流行热病毒G蛋白基因的质粒pMD-G中克隆G1抗原表位区基因,亚克隆进表达载体pPIC9K,构建重组载体pPIC9K-G1,线性化后电转化毕赤酵母GS115,通过G418压力和PCR法筛选阳性重组酵母进行诱导表达。经SDS-PAGE、脱糖基化分析、Western blot、ELISA、兔体免疫实验和特异性分析,表明该基因在GS115中表达并进行了适度的糖基化,表达蛋白有良好的生物学活性和特异性,可作为包被抗原,开发ELISA诊断试剂盒。  相似文献   

3.
To obtain human tissue inhibitor of metalloproteinase-2 (TIMP-2)cDNA and the secretory expression of TIMP-2 gene in Pichia pastoris,we designed and synthesized a 618 base pairs artificial gene coding for the TIMP-2 with a computer-aided design method using a standard chemical synthesis technique,which was composed of frequently used codons in the highly expressed Pichia pastoris genes.Then the synthetic gene encoding TIMP-2 was checked by means of dideoxynucleotide sequencing.The verified gene of TIMP-2 was cloned to the Escherichia coli-yeast shuttle vector of pPIC9 to construct a recombinant plasmid pPIC9-T2.The plasmid was transformed into GS115 cells of the methylotrophic yeast,Pichia pastoris by electroporation,and we got the expression cell through phenotype selection and induction with methanol.Separation,purification,and bioactivity analysis of the expressed products were performed.  相似文献   

4.
Phytase genephyA2, whose signal peptide encoding sequence and intron sequence had been removed, was modified. The Arg-encoding codons CGG and CAG inphyA2 were mutated into synonymous codon AGA. The modifiedphyA2 was fused behind a-factor signal sequence under the control ofAOX1 promoter in plasmid pPIC9, then introduced into the hostPichia pastoris by electroporation. The results of Southern blotting analysis and Northem blotting analysis demonstrated that thephyA2 gene had integrated into the genome ofP. pastoris and transcribed. The result of SDS-PAGE of the phytase expressed by P.pastoris showed that the modifiedphyA2 had been overexpressed and secreted. The concentration of the phytase expressed by P.pastoris with modifiedphyA2 exceeded 15 000 U/mL, which had a 3 000-fold increase over that of originAspergillus niger 963 and was 37 times higher than that of recombinantP. pastoris with non-modifiedphyA2. Project supported by the “863” program, National Science and Technology Commission of China.  相似文献   

5.
A 777-bp cDNA fragment encoding a mature alkaline lipase (LipI) from Penicillium cyclopium PG37 was amplified by RT–PCR, and inserted into the expression plasmid pPIC9 K. The recombinant plasmid, designated as pPIC9 K-lipI, was linearized with SalI and transformed into Pichia pastoris GS115 (his4, Mut+) by electroporation. MD plate and YPD plates containing G418 were used for screening of the multi-copy P. pastoris transformants (His+, Mut+). One transformant resistant to 4.0 mg/ml of G418, numbered as P. pastoris GSL4-7, expressing the highest recombinant LipI (rLipI) activity was chosen for optimizing expression conditions. The integration of the gene LipI into the P. pastoris GS115 genome was confirmed by PCR analysis using 5′- and 3′-AOX1 primers. SDS–PAGE and lipase activity assays demonstrated that the rLipI, a glycosylated protein with an apparent molecular weight of about 31.5 kDa, was extracellularly expressed in P. pastoris. When the P. pastoris GSL4-7 was cultured under the optimized conditions, the expressed rLipI activity was up to 407 U/ml, much higher than that (10.5 U/ml) expressed with standard protocol. The rLipI showed the highest activity at pH 10.5 and 25°C, and was stable at a broad pH range of 7.0–10.5 and at a temperature of 30°C or below.  相似文献   

6.
To explore a new approach of high expression of -amino acid oxidase (DAAO) in Pichia pastoris, a gene encoding DAAO from Trigonopsis variabilis (TvDAAO gene) deleted intron was prepared by PCR amplification and cloned into the intracellular expression vector pPIC3.5K. The expression plasmid pPIC3.5K-DAAO linearized by SalI was transformed into Pichia pastoris strain GS115 (hismut+). By means of MM and MD plates and PCR, the recombinant P. pastoris strains (his+mut+) were obtained. Activity assay and SDS-PAGE demonstrated that DAAO was intracellularly expressed in P. pastoris with the induction of methanol. The recombinant strain PD27 with the highest expression of DAAO was screened through activity assay and its high-density fermentation was carried out in a 1-l fermentor. Activity assay and SDS-PAGE demonstrated that DAAO was intracellularly expressed in P. pastoris with the induction of methanol. The recombinant cells with high expression of DAAO were screened and the high-density fermentation was carried out in a 1-l fermentor. Interestingly, the DAAO expression level reached up to 473 U/g dry cell weight in fermentation yield. Finally, 1-hexanol was used to break recombinant cells and the specific activity of DAAO was 1.46 U/mg protein in crude extraction.  相似文献   

7.
The expression of the mouse α-amylase gene in the methylotrophic yeast,P. pastoris was investigated. The mouse α-amylase gene was inserted into the multi-cloning site of a Pichia expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested withSalI orBglII, and was introduced intoP. pastoris strain GS115 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested withSalI orBglII into theHIS 4 locus (38 of Mut+ clone) or into theAOX1 locus (45 of Muts clone). Southern blot was carried out in 11 transformants, which showed that the mouse α-amylase gene was integrated into thePichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest α-amylase activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse α-amylase gene is compared with that in recombinantSaccharomyces cerevisiae harboring a plasmid encoding the same mouse α-amylase gene, the specific enzyme activity is eight fold higher than that of the recombinantS. cerevisiae.  相似文献   

8.
To improve the expression level of recombinant Drosophila melanogaster AChE (R-DmAChE) in Pichia pastoris, the cDNA of DmAChE was first optimized and synthesized based on the preferred codon usage of P. pastoris. The synthesized AChE cDNA without glycosylphosphatidylinositol (GPI) signal peptide sequence was then ligated to the P. pastoris expression vector, generating the plasmid pPIC9K/DmAChE. The linearized plasmid was homologously integrated into the genome of P. pastoris GS115 via electrotransformation. Finally seven transformants with high expression level of R-DmAChE activity were obtained. The highest production of R-DmAChE in shake-flask culture after 5-day induction by methanol was 718.50 units/mL, which was about three times higher than our previous expression level of native DmAChE gene in P. pastoris. Thus, these new strains with the ability to secret R-DmAChE in the medium could be used for production of R-DmAChE to decrease the cost of the enzyme expense for rapid detection of organophosphate and carbamate insecticide residues.  相似文献   

9.
Abstract

In this work, Pichia pastoris was applied to produce human insulin by a simple procedure. The synthesized insulin precursor (ILP) gene was inserted into pPIC9K to obtain secretary expression plasmid pPIC9K/ILP. Pichia pastoris GS115 was transformed by pPIC9K/ILP and the high expresser was screened. In a 16 L fermentor, the insulin precursor production was 3.6 g/L. Insulin precursor, purified by one-step chromatography, was converted into human insulin by transpeptidation. The yield of the processing procedure from insulin precursor to insulin reached up to 70%. In vivo assay showed that the biological activity of the produced recombinant human insulin was 28.8 U/mg.  相似文献   

10.
Glucoamylase is an industrially extremely important enzyme in the fermentative production of ethanol, used in the enzymatic conversion of starch into high glucose and fructose syrups. The aim of this study is to construct a Rhizopus arrhizus glucoamylase gene (RaGA)—introns artificially spliced by PCR—suitable for expression in S. cerevisiae host and tried expressing in Picha pastoris. In previous work, we failed in amplifying glucoamylase gene from R. arrhizus by RT-PCR, so several primers were designed to splicing the introns by PCR in vitro. Sequence analysis shown that all introns in the RaGA were deleted correctly and no mutant was induced in the extrons compared with the RaGA gene originally cloned. The RaGA gene artificially constructed was transferred into P. pastoris integrative expression vectors pPIC9 (containing а-factor). Consequently, the plasmids pPIC9-RaGA was lineared by SacI and inserted into P. pastoris GS115 (His) genome downstream of the 5′AOX1 promoter by the method of electroporation. Induction by 0.75% methanol for 72 h led to synthesis of secreted glucoamylase. So it is demonstrated that the glucoamylase gene has been expressed in and secreted from P. pastoris.  相似文献   

11.
Endo-β-glucanase II (EG II) gene cDNA was isolated from the fungus Humicola insolens H31-3 by RT-PCR. It was cloned into the expression vector pGAPZαA. The resultant recombinant plasmid was introduced into Pichia pastoris GS115 by electroporation after being linearized by BspHI digestion. The recombinant Pichia pastoris strain was obtained and SDS-PAGE showed that the molecular weight of the expression protein was about 55 kD.The cultivation condition and the characteristics of the recombinant EG II were also explored. __________ Translated from Microbiology, 2006, 33(6): 68273 [译自: 微生物学 通报]  相似文献   

12.
β-Mannanase (EC 3.2.1.78) is a key enzyme to hydrolyze the β-mannosidic linkages in mannan and heteromannan. The expression of a wild type β-mannanase (manWT) of Aspergillus sulphureus in Pichia pastoris is not high enough for its application in feed supplement. To earn a high expression level, the manWT gene was firstly optimized to manM according to the code bias of P. pastoris, which was then inserted into pPICzαA and transformed into P. pastoris strain X-33. In the induction by methanol, β-mannanase was expressed in high level with 32% increase in comparison with the manWT gene expressed in P. pastoris in shaken flask. In a 10-L fermenter, the manM was expressed in 9-fold higher level than that in shaken flask, which yielded the enzyme activity of 1100 U/mL. This is the first study on codon bias effect on the β-mannanase gene expression level, which helps to achieve high β-mannanase yield and enzymatic activity in P. pastoris.  相似文献   

13.
An expression vector constructed from genes of Pichia pastoris was applied for heterologous gene expression in Saccharomyces cerevisiae. Recombinant hepatitis B surface antigen was synthesized by cloning hepatitis B virus ‘S’ gene under the control of glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter of Pichia pastoris in Saccharomyces cerevisiae. Hepatitis B surface antigen was constitutively expressed, was stable and exhibited ∼20–22 nm particle formation. Stability and absence of toxicity to the host with the expression vector indicates the expression system can be applied for large-scale production.  相似文献   

14.
The epitope-G1 gene of Bovine ephemeral fever virus (BEFV) glycoprotein was synthesised by PCR and cloned into expression vector pPIC9K to construct recombinant plasmid pPIC9K-G1. Then the pPIC9K-G1 was linearized and transformed into Pichia pastoris GS115. The recombinant P. pastoris strains were selected by a G418 transformation screen and confirmed by PCR. After being induced with methanol, an expressed protein with 26 kDa molecular weight was obtained, which was much bigger than the predicted size (15.54 kDa). Deglycosylation analysis indicated the recombinant G1 was glycosylated. Western blot and ELISA tests, as well as rabbit immunization and specificity experiments indicated that the target protein had both higher reaction activity and higher immunocompetence and specificity. The recombinant G1 protein could be used as a coating antigen to develop an ELISA kit for bovine ephemeral fever diagnosis. Foundation item: National Dairy Foundation of China (2002BA518A04)  相似文献   

15.
Lipoprotein-associated phospholipase A2 (Lp-PLA2) has been shown to play a crucial role in atherosclerosis, and has been proposed as a promising target for drug discovery. Here, we cloned the Lp-PLA 2 gene from differentiated THP-1 cells, and inserted a carboxy-terminal His6-tagged version of the gene into the pPIC9 Pichia expression vector. The Lp-PLA2 fusion protein was successfully expressed in Pichia pastoris expression system and could be rapidly purified to apparent homogeneity using a single-step purification method. The activity of our recombinant Lp-PLA2 was strong when [3H] PAF was used as a substrate, and the Lp-PLA2 inhibitor SB435495 exhibited an inhibitory curve against the recombinant Lp-PLA2 (IC50=15.93±1 μM). This novel recombinant Lp-PLA2 could prove useful as a screening model for Lp-PLA2 inhibitors, and may facilitate further investigation of this protein in atherosclerosis.  相似文献   

16.
Chien LJ  Lee CK 《Biotechnology letters》2005,27(19):1491-1497
The PsADH2-promoter of Pichia stipitis alcohol dehydrogenase II (ADH II) gene was employed to control the expression of Vitreoscilla hemoglobin (VHb) gene in Pichia pastoris. As in P. stipitis, the promoter was also induced microaerobically in P. pastoris. The expression level of VHb in P. pastoris at low O2 tension (<5% air saturation) was 16 nmol/g dry cell wt, i.e. about 24-fold higher than that at 60% air saturation. The expressed VHb enhanced growth of P. pastoris under microaerobic conditions. The application of O2-regulated promoter in P. pastoris revealed that induction of high-level expression of heterologous protein is feasible without addition of supplementary compounds.  相似文献   

17.
The porcine circovirus type 2 (PCV2) capsid protein (Cap) is an important antigen for the development of vaccines. To achieve high-level expression of recombinant PCV2 Cap in Pichia pastoris, the wild-type Cap (wt-Cap) and optimized Cap (opti-Cap) gene fragments encoding the same amino acid sequence of PCV2 were amplified by PCR using DNA from lymph nodes of postweaning multisystemic wasting syndrome-suffered pigs and synthesized based on the codon bias of the methylotrophic yeast P. pastoris, respectively. The wt-Cap and opti-Cap gene fragments were inserted into the site between EcoRI and NotI sites in pPIC9K, which was under the control of the alcohol oxidase 1 (AOX1) promoter and α-mating factor signal sequence from Saccharomyces cerevisiae. The recombinant plasmids, designated as pPIC9K-wt-Cap and pPIC9K-opti-Cap, were linearized using SacI and transformed into P. pastoris GS115 by electroporation. The expressed intracellular soluble opti-Cap reached 174 μg/mL without concentration in a shake flask and kept good reactivity to PCV2-specific positive sera, whereas the wt-Cap could not be detectable throughout three times electroporation. Strong specific PCV2-Cap antibodies were elicited from piglets immunized with vaccine based on opti-Cap. To the best of our knowledge, the achieved opti-Cap yield is the highest ever reported. Our results demonstrated that codon optimization play an important role on the high-level expression of a codon-optimized PCV2-Cap gene in P. pastoris, and the vaccine based on opti-Cap may be a potential subunit vaccine candidate.  相似文献   

18.
The administration of antibodies against the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is a promising approach in the upregulation of immune responses in many cancers and infectious diseases. The single-chain variable fragment of antibody against CTLA4 is also useful in developing immunotoxins that might be used in the treatment of cancer, transplant rejection, and autoimmune diseases. Here, we report the production of a soluble and functional scFv antibody against CTLA4 by using Pichia pastoris as the expression system. The gene encoding scFv hS83 with an additional 6His-tag at the 5’-end was inserted into the expression vector pPIC9K. Then, the transformants were double-screened on plates containing 0.25 mg/mL and 1.5 mg/mL of neomycin G418 and many clones with different levels of G418-resistance were selected for further studies on expression. After induction by the addition of methanol, various levels of hS83 were detected in the supernatant of P. pastoris containing pPIC9K-hS83. Clones with low G418-resistance produced more hS83 than those with higher G418-resistance. Under the optimized conditions (initial inoculum, 40 A600nm AU/mL; pH 6.0; methanol concentration, 3.0%; induction time, 72 h), approximately 16–20 mg protein could be recovered from 1 L of the culture. The purified hS83 had a stronger binding ability towards CTLA4-positive Raji cells than CTLA4-negative ECV304 cells. This finding indicates that the antibody produced by P. pastoris is functional and may be used in immunotherapy for cancer, infection, transplant rejection, and autoimmune diseases. Huawei Cai and Lihong Chen contributed equally to this work.  相似文献   

19.
Chen P  Fu X  Ng TB  Ye XY 《Biotechnology letters》2011,33(12):2475-2479
A β-glucosidase gene (bglI) from Trichoderma reesei was cloned into the pPIC9 vector and integrated into the genome of Pichia pastoris GS115. Under the control of the methanol-inducible alcohol oxidase (AOX) promoter and using Saccharomyces cerevisiae secretory signal peptide (α-factor), the recombinant β-glucosidase was expressed and secreted into the culture medium. The maximum recombinant β-glucosidase activity achieved was 60 U/ml, and β-glucosidase expression reached 0.3 mg/ml. The recombinant 76 kDa β-glucosidase was purified 1.8-fold with 26% yield and a specific activity of 197 U/mg. It was optimally active at 70°C and pH 5.0.  相似文献   

20.
Liu J  Li D  Yin Y  Wang H  Li M  Yu L 《Biotechnology letters》2011,33(10):1985-1991
The open reading frame of the Δ6-desaturase gene was isolated from Mortierella alpina W15 and the gene was cloned into a pPIC3.5K vector. The vector was transformed into Pichia pastoris GS115 and expression was induced with methanol. The Δ6-desaturase expressed in P. pastoris GS115 catalyzed the conversion of linoleic acid to γ-linolenic acid but not the conversion of α-linolenic acid to octadecatetraenoic acid. The results indicate that the Δ6-desaturase gene from M. alpina W15 has substrate specificity in different organisms. Phylogenetic analysis revealed that Δ6-desaturase genes can be divided into four monophyletic groups. This work paves the way for further study of the functions of Δ6-desaturase in fatty acid metabolism and its three-dimensional structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号