首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effect of neurotensin on canine ileal circular muscle devoid of myenteric plexus was investigated using single and double sucrose gap techniques. Similar results were obtained with microelectrode techniques. Neurotensin caused a temperature-sensitive and dose-dependent biphasic response, an initial hyperpolarization associated with inhibition of contractile activity, followed by an excitatory phase, usually consisting of spike discharge and tonic and phasic contractions, for which depolarization was not required. Neither response was affected by tetrodotoxin, phentolamine, propranolol, or atropine. The hyperpolarization was associated with decreased membrane resistance, blocked by 10(-7) M apamin, and converted to tonic depolarization by apamin (10(-6) M). Tachyphylaxis to neurotensin occurred when the stimulation interval was less than 20 min. After Ca2+ depletion, depolarization was observed instead of the hyperpolarization; this depolarization was not affected by nitrendipine and was gradually abolished with repetitive stimulation at 20-min intervals. When Ca2+ was present, nifedipine did not alter the hyperpolarizing phase of the response but inhibited spiking and blocked all contractions. The excitatory phase of the response was enhanced by Bay K-8644. Neuromedin N elicited a response identical with that of neurotensin. The responses of the two peptides were completely cross tachyphylactic. Inhibitory junction potentials were not affected by neurotensin tachyphylaxis. It is concluded that neurotensin and neuromedin N activate apamin-sensitive, calcium-dependent potassium channels in circular muscle, causing membrane hyperpolarization and inhibition of muscle contraction. Release of intracellular calcium is involved in the activation of these potassium channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.  相似文献   

3.
The ciliary muscle which is involved in accommodation and regulation of aqueous humour outflow resistance resembles smooth muscle in other parts of the body. In the present investigation we used an established primary cell line (H7CM) to study the effects of endothelin, a novel vasoconstrictor peptide, on membrane voltage (V) and intracellular calcium in cultured human ciliary muscle cells. Membrane voltage was measured in confluent monolayers of H7CM cells using conventional microelectrodes. Intracellular calcium concentration [( Ca]i) was measured in single H7CM cells using the fluorescent calcium indicator fura-2. Under resting conditions V averaged -66.9 +/- 0.7 mV (mean +/- SEM, n = 125). Endothelin (10(-10)-10(-6)M) induced a dose-dependent reversible membrane voltage depolarization and a dose-dependent rise in [Ca]i. The initial calcium peak was followed by a recovery phase during which oscillations of [Ca]i occurred. The initial calcium peak was not dependent on the presence of extracellular calcium and was not abolished in the presence of the calcium antagonist verapamil (10(-4)M). Thus it is probably mediated by a release of calcium from intracellular reservoirs. We conclude that cultured human ciliary muscle cells express a functional endothelin receptor.  相似文献   

4.
王阿敬  李之望 《生理学报》1989,41(2):145-152
本文应用细胞内记录方法,对去甲肾上腺素(NA)引起蟾蜍背根神经节(DRG)神经细胞膜电位去极化或超极化反应时的膜电导及翻转电位值进行了测量,并观察了钾和钙离子通道阻断剂灌流DRG对NA引起膜电位反应的影响。当NA引起去极化反应时,15个细胞的膜电导减小32.6%。少数细胞膜电导开始增加,继而减小(n=4)。NA超极化反应时膜电导增加13.2%(n=8)。NA去极化反应的翻转电位值为-88.5±0.9mV((?)±SE,n=4),NA超极化反应在膜电位处于-89至-92mV时消失。 钾通道阻断剂四乙铵可使NA去极化幅值增加73.7±11.9%((?)±SE,n=7),并使NA超极化幅值减小40.5%(n=4)。细胞内注入氯化铯使苯肾上腺素去极化幅值增加34.5%(n=4)。钙通道阻断剂氯化锰使NA去极化及超极化反应分别减小50.5±9.9%((?)±SE,n=10)和89.5±4.9%((?)±SE,n=7)。结果提示,NA引起DRG神经细胞膜电位的去极化或超极化反应,可能与膜的钾及钙通道活动的改变有关。  相似文献   

5.
Ca2+-sensitive K+ (K(Ca)) channels play an important role in mediating perinatal pulmonary vasodilation. We hypothesized that lung K(Ca) channel function may be decreased in persistent pulmonary hypertension of the newborn (PPHN). To test this hypothesis, pulmonary artery smooth muscle cells (PASMC) were isolated from fetal lambs with severe pulmonary hypertension induced by ligation of the ductus arteriosus in fetal lambs at 125-128 days gestation. Fetal lambs were killed after pulmonary hypertension had been maintained for at least 7 days. Age-matched, sham-operated animals were used as controls. PASMC K+ currents and membrane potentials were recorded using amphotericin B-perforated patch-clamp techniques. The increase in whole cell current normally seen in response to normoxia was decreased (333.9 +/- 63.6% in control vs. 133.1 +/- 16.0% in hypertensive fetuses). The contribution of the K(Ca) channel to the whole cell current was diminished in hypertensive, compared with control, fetal PASMC. In PASMC from hypertensive fetuses, a change from hypoxia to normoxia caused no change in membrane potential compared with a -14.6 +/- 2.8 mV decrease in membrane potential in PASMC from control animals. In PASMC from animals with pulmonary hypertension, 4-aminopyridine (4-AP) caused a larger depolarization than iberiotoxin, whereas in PASMC from control animals, iberiotoxin caused a larger depolarization than 4-AP. These data confirm the hypothesis that the contribution of the K(Ca) channel to membrane potential and O2 sensitivity is decreased in an ovine model of PPHN, and this may contribute to the abnormal perinatal pulmonary vasoreactivity associated with PPHN.  相似文献   

6.
The possible contribution of Ca2+-activated Cl- channel [I(Cl(Ca))] and myosin light-chain kinase (MLCK) to nonadrenergic, noncholinergic slow inhibitory junction potentials (sIJP) was studied using conventional intracellular microelectrode recordings in circular smooth muscle of opossum esophageal body and guinea pig ileum perfused with Krebs solution containing atropine (3 microM), guanethidine (3 microM), and substance P (1 microM). In opossum esophageal circular smooth muscle, resting membrane potential (MP) was -51.9 +/- 0.7 mV (n = 89) with MP fluctuations of 1-3 mV. A single square-wave nerve stimulation of 0.5 ms duration and 80 V induced a sIJP with amplitude of 6.3 +/- 0.2 mV, half-amplitude duration of 635 +/- 19 ms, and rebound depolarization amplitude of 2.4 +/- 0.1 mV (n = 89). 9-Anthroic acid (A-9-C), niflumic acid (NFA), wortmannin, and 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-9) abolished MP fluctuations, sIJP, and rebound depolarization in a concentration-dependent manner. A-9-C and NFA but not wortmannin and ML-9 hyperpolarized MP. In guinea pig ileal circular smooth muscle, nerve stimulation elicited an IJP composed of both fast (fIJP) and slow (sIJP) components, followed by rebound depolarization. NFA (200 microM) abolished sIJP and rebound depolarization but left the fIJP intact. These data suggest that in the tissues studied, activation of I(Cl(Ca)), which requires MLCK, contributes to resting MP, and that closing of I(Cl(Ca)) is responsible for sIJP.  相似文献   

7.
The whole-cell secretory response evoked by acetylcholine (ACh) in human chromaffin cells was examined using a new protocol based on quickly switching from the voltage-clamp to the current-clamp (CC) configuration of the patch-clamp technique. Our experiments revealed that Ca(2+) entry through the nicotinic receptor at hyperpolarized membrane potentials contributed as much to the exocytosis (100.4 +/- 27.3 fF) evoked by 200 ms pulses of ACh, as Ca(2+) flux through voltage-dependent Ca(2+) channels at depolarized membrane potentials. The nicotinic current triggered a depolarization event with a peak at +49.3 mV and a 'plateau' phase that ended at -23.9 mV, which was blocked by 10 mumol/L mecamylamine. When a long ACh stimulus (15 s) was applied, the nicotinic current at the end of the pulse reached a value of 15.45 +/- 3.6 pA, but the membrane potential depolarization still remained at the 'plateau' stage until withdrawal of the agonist. Perfusion with 200 mumol/L Cd(2+) during the 15 s ACh pulse completely abolished the plasma membrane depolarization at the end of the pulse, indicating that Ca(2+) entry through Ca(2+) channels contributed to the membrane potential depolarization provoked by prolonged ACh pulses. These findings also reflect that voltage-dependent Ca(2+) channels were recruited by the small current flowing through the desensitized nicotinic receptor to maintain the depolarization. Finally, muscarinic receptor activation triggered a delayed exocytotic process after prolonged ACh stimulation, dependent on Ca(2+) mobilization from the endoplasmic reticulum. In summary, we show here that nicotinic and muscarinic receptors contribute to the exocytosis of neurotransmitters in human chromaffin cells, and that the nicotinic receptor plays a key role in several stages of the stimulus-secretion coupling process in these cells.  相似文献   

8.
The relationship between fMet-Leu-Phe-induced changes in the cytosolic free Ca2+ concentration [( Ca2+]i), plasma membrane potential depolarization, and metabolic responses was studied in human neutrophils. Receptor-activated depolarization occurred both at high and resting [Ca2+]i, but was inhibited at very low [Ca2+]i. Phorbol 12-myristate 13-acetate-induced plasma membrane depolarization, on the contrary, was independent of [Ca2+]i. The threshold fMet-Leu-Phe concentration for plasma membrane depolarization (10(-8) M) was at least 1 log unit higher than that for [Ca2+]i increases (5 X 10(-10) M) and coincident with that for NADPH oxidase activation. Nearly maximal [Ca2+]i increases were elicited by 3 X 10(-9) fMet-Leu-Phe in the absence of any significant plasma membrane potential change. This observation allowed us to investigate the effects of artificially induced plasma membrane depolarization and hyperpolarization at low fMet-Leu-Phe concentrations (10(-9) to 3 X 10(-9) M) which did not perturb plasma membrane potential. Depolarizing (gramicidin D at 10(-7) to 10(-6) M or KCl at 50 mM) and hyperpolarizing (valinomycin at 4 microM) treatments had little influence on unstimulated [Ca2+]i levels, whereas fMet-Leu-Phe-induced transients were significantly altered. Gramicidin D and KCl decreased the fMet-Leu-Phe-induced [Ca2+]i increases in Ca2+-containing or in Ca2+-free media. Valinomycin, on the contrary, increased receptor-stimulated [Ca2+]i increases, and the effect was larger in the presence of extracellular Ca2+. Valinomycin also strongly potentiated secretion. It is suggested that plasma membrane depolarization in human neutrophils is a physiological feedback mechanism inhibiting receptor-dependent [Ca2+]i changes.  相似文献   

9.
The rabbit main pulmonary artery (RMPA) has frequently been used for studies of contraction, membrane properties, and ion fluxes. The resting membrane potential (Em) of the smooth muscle cells of the RMPA is close to -60 mV. The diffusion potential calculated from ion concentrations and permeabilities is -31 to -40 mV, which suggests that electrogenic ion pumping contributes to the actual Em. Circumferential strips of RMPA possess cablelike properties with a space constant lambda of 1.9 mm. Contraction of RMPA to high K+ depends on extracellular Ca2+, is associated with 45Ca influx, is inhibited by Ca2+ entry blockers, and occurs after depolarization of the membrane to -45 to -33 mV. Maximal contractile responses to K+ and norepinephrine (NE) were similar. At low concentrations (3 X 10(-8)-10(-6) M) NE and the alpha 1-agonist methoxamine induced concentration-dependent depolarization and contraction. Above 10(-6) M contraction occurred in the absence of further changes in Em. Membrane resistance, estimated from measurements of space constant, decreased over the entire concentration-contraction curve of alpha agonists. Blockade of potassium channels by tetraethylammonium unmasked depolarization at high NE concentrations. It is concluded that in the RMPA alpha 1-adrenoceptor stimulation is associated with changes in electrical membrane properties and may in this way trigger contraction.  相似文献   

10.
A contraction of the rabbit ear artery can be induced by depolarizing the cells with a K-rich solution if Ca is present. 10(-9)-10(-6) M noradrenaline and 10(-8)-10(-7) M histamine cause a contraction of this tissue without modifying the membrane potential. If the histamine concentration exceeds 10(-7) M some depolarization of the membrane also occurs. Both noradrenaline and histamine also induce a contraction in Ca-free medium, even if La is present. None of these stimuli produces action potentials or fluctuations of the membrane potential. Besides these tonic contractions, the ear artery can also produce phasic contractions when 10 mM TEA is added to the medium. Such contractions are caused by the appearance of action potentials which are Ca dependent and which are similar to those appearing in visceral smooth muscle. A study of 45Ca fluxes has revealed that K depolarization and noradrenaline cause only a small increase in 45Ca uptake by the cells, while noradrenaline also releases cellular Ca, even in Ca-free medium. A comparison of tension development and 45Ca release induced by noradrenaline in Ca-free medium suggests that Ca extrusion could be very efficient in the rabbit ear artery and that it could play a direct role in its relaxation.  相似文献   

11.
The effect of Bay K 8644 on the electrical activity of the smooth muscle cells in the main pulmonary artery of the rabbit was examined. In normal physiological solution, the resting membrane potential was -56 +/- 0.6 mV, and the cells were electrically quiescent. Tetraethylammonium (5 mM) depolarized the membrane to about -45 mV, and electrical stimulation elicited action potentials. To suppress contractile responses and thereby facilitate sustained impalements, the muscle strips were bathed with a hypertonic solution containing sucrose. The mean amplitude of the tetraethylammonium-induced action potentials in the hypertonic solution was 35 +/- 0.9 mV. The action potentials were dependent upon the extracellular Ca2+ concentration and were abolished by diltiazem (10(-6) M). Spontaneous action potentials were occasionally generated in the presence of tetraethylammonium alone and could be induced by the further addition of Ba2+ (0.5 mM). The Ca2+ agonist Bay K 8644 (10(-8) to 10(-6) M) had no effect on the resting membrane potential or excitability in normal solution. However, in the hypertonic solution containing tetraethylammonium, Bay K 8644 caused a further depolarization and oscillatory potential changes, which were not prevented by tetrodotoxin. The oscillations were suppressed or abolished by diltiazem or nilvadipine. Thus, active responses can occur in the normally quiescent smooth muscle cells of the rabbit pulmonary artery when the outward K+ current(s) are suppressed.  相似文献   

12.
Na+- and CA2+-sensitive microelectrodes were used to measure intracellular Na+ and Ca2+ activities (alpha iCa) of sheep ventricular muscle and Purkinje strands to study the interrelationship between Na+ and Ca2+ electrochemical gradients (delta muNa and delta muCa) under various conditions. In ventricular muscle, alpha iNa was 6.4 +/- 1.2 mM and alpha iCa was 87 +/- 20 nM ([Ca/+] = 272 nM). A graded decrease of external Na+ activity (alpha oNa) resulted in decrease of alpha iNa, and increase of alpha iCa. There was increase of twitch tension in low- alpha oNa solutions, and occasional increase of resting tension in 40% alpha oNa. Increase of external Ca2+ (alpha oCa) resulted in increase of alpha iCa and decrease of alpha iNa. Decrease of alpha oCa resulted in decrease of alpha iCa and increase of alpha iNa. The apparent resting Na-Ca energy ratio (delta muCa/delta muNa) was between 2.43 and 2.63. When the membrane potential (Vm) was depolarized by 50 mM K+ in ventricular muscle, Vm depolarized by 50 mV, alpha iNa decreased, and alpha iCa increased, with the development of a contracture. The apparent energy coupling ratio did not change with depolarization. 5 x 10(-6) M ouabain induced a large increase in alpha iNa ad alpha iCa, accompanied by an increase in twitch and resting tension. Under the conditions we have studied, delta muNa and delta muCa appeared to be coupled and n was nearly constant at 2.5, as would be expected if the Na-Ca exchange system was able to set the steady level of alpha iCa. Tension threshold was about 230 nM alpha iCa. The magnitude of twitch tension was directly related to alpha iCa.  相似文献   

13.
We established the content in neuropeptide-metabolizing peptidases present in highly purified plasma membranes prepared from the circular and longitudinal muscles of dog ileum. Activities were measured by the use of fluorigenic substrates and the identities of enzymes were confirmed by the use of specific peptidase inhibitors. Endopeptidase 24.11, angiotensin-converting enzyme, post-proline dipeptidyl aminopeptidase and aminopeptidases were found in both membrane preparations. Proline endopeptidase was only detected in circular smooth muscle plasma membranes while pyroglutamyl-peptide hydrolase was not observed in either tissue. The relative contribution of these peptidases to the inactivation of neurotensin was assessed. The enzymes involved in the primary inactivating cleavages occurring on the neurotensin molecule were as follows. In both membrane preparations, endopeptidase 24.11 was responsible for the formation of neurotensin-(1-11) and contributed to the formation of neurotensin-(1-10); a recently purified neurotensin-degrading neutral metallopeptidase was also involved in the formation of neurotensin-(1-10). A carboxypeptidase-like activity hydrolysed neurotensin at the Ile12-Leu13 peptide bond, leading to the formation of neurotensin-(1-12). Proline endopeptidase and endopeptidase 24.15 only occurred in circular muscle plasma membranes, yielding neurotensin-(1-7) and neurotensin-(1-8), respectively. In addition, the secondary processing of neurotensin degradation products was catalyzed by the following peptidases. In circular and longitudinal muscle membranes, angiotensin-converting enzyme converted neurotensin-(1-10) into neurotensin-(1-8) and tyrosine resulted from the rapid hydrolysis of neurotensin-(11-13) by bestatin-sensitive aminopeptidases. A post-proline dipeptidyl aminopeptidase activity converted neurotensin-(9-13) into neurotensin-(11-13) in circular muscle plasma membranes. The mechanism of neurotensin inactivation occurring in these membranes will be compared to that previously established for membranes from central origin.  相似文献   

14.
Effects of sodium nitroprusside (SNP), a nitric oxide donor, on the action potential in isolated guinea-pig sinoatrial nodes and ventricular papillary muscles were investigated. In the driven ventricular papillary muscle, SNP (10(-10)-10(-3) M) decreased the twitch tension in a concentration-dependent manner without significantly changing the configuration of action potential and the maximal velocity of depolarizing upstroke. In isolated sinoatrial nodes, SNP (10(-8)-10(-3) M) increased the pacemaker rhythm in a concentration-dependent manner. At 10(-5) M SNP, the pacemaker activity increased from 197.2+/-6.1 to 221.4+/-9.7 bpm. Changes of configuration of the action potential included a decrease of the duration of repolarization, i.e., from peak to the maximal diastolic potential (MDP), from 141.4+/-6.4 to 130.0+/-7.0 ms and an increase of the slope of the diastolic membrane potential from 101.6+/-5.3 to 116.5+/-7.3 mV/s (n=6, p<0.05). However, MDP and threshold potential were not significantly changed. Methylene blue (MB, 10(-5) M), a guanylate cyclase inhibitor, significantly decreased the pacemaker activity of the sinoatrial node by increasing the durations of repolarization and diastolic depolarization. After pretreatment with 10(-5) M MB, the effect of SNP was inhibited. The results indicate that nitric oxide, released from SNP, increases the pacemaker activity by enhancing the rates of repolarization and diastolic depolarization. These effects are possibly due to increases in delayed-rectifier K+ and diastolic slow inward currents, which are involved in a mechanism associated with the NO-cGMP pathway.  相似文献   

15.
Using the double sucrose gap, we have examined the role of K+ channels in the cholinergic depolarizations in response to field stimulation and acetylcholine (Ach) in canine trachealis. Acetylcholine-like depolarization per se decreased electrotonic potentials from hyperpolarizing currents. The net effect of acetylcholine (10(-6) M) depolarization on membrane conductance was a small increase after the depolarization was compensated by current clamp. Reversal potentials for acetylcholine depolarization and for the excitatory junction potential (EJP) were determined by extrapolation to be 20-30 mV positive to the resting potential, previously shown to be approximately -55 mV. They were shifted positively by tetraethylammonium ion (TEA) at 20 mM or Ba2+ at 1 mM. TEA or Ba2+ initially depolarized the membrane and increased membrane resistance. Repolarization of the membrane restored any reductions in EJP amplitudes associated with depolarization. After 15 min, the membrane potential partially repolarized, and acetylcholine-induced depolarization and contractions were then increased by TEA. 4-Aminopyridine depolarized the membrane but decreased membrane resistance. Apamin (10(-6) M), charybdotoxin (10(-7) M), and glybenclamide (10(-5) M) each failed to significantly depolarize membranes, increase membrane resistance, or reduce EJP amplitudes or depolarization to 10(-6) M Ach. Glybenclamide reduced depolarizations to added acetylcholine slightly. TEA occasionally reduced the EJP markedly, but this was shown to be most likely a prejunctional effect mediated by norepinephrine release. TEA alone among K(+)-channel blockers slowed the onset and the time courses of the EJP as well as the acetylcholine-induced depolarization. K(+)-channel closure cannot be a complete explanation of acetylcholine-induced membrane effects on this tissue. Acetylcholine must have increased the conductance of an ion with a reversal potential positive to the resting potential in addition to any effect to close K+ channels.  相似文献   

16.
Using flow cytometric analysis and potential-sensitive fluorescent dye TMRM Ca2+ -induced changes of membrane potential of isolated smooth muscle mitochondria were studied. It was shown, that Ca2+ (100 microM) addition to the incubation medium induced mitochondrial membrane depolarization that probably could be explained by Ca2+/H+ -exchanger activation which functioning lead to membrane potential dissipation. In the case of ruthenium red (10 microM) preliminary presence in incubation medium, Ca2+ (100 microM) addition did not lead to membrane potential dissipation. Hence, membrane potential dissipation was caused by an increase of matrix Ca2+ concentration. In the presence of Mg2+ (3 mM) and ATP (3 mM), Ca2+ addition did not cause depolarization. It was supposed that in this case ATP synthase acted in the opposite direction as H+ -pump and prevented from mitochondrial membrane potential dissipation. Thus, the flow cytometry method allows to register membrane potential of isolated smooth muscle mitochondria and also to test the effectors, capable to modulate this parameter.  相似文献   

17.
Receptor characterization in human esophageal smooth muscle is limited by tissue availability. We used human esophageal smooth muscle cells in culture to examine the expression and function of muscarinic receptors. Primary cultures were established using cells isolated by enzymatic digestion of longitudinal muscle (LM) and circular muscle (CM) obtained from patients undergoing esophagectomy for cancer. Cultured cells grew to confluence after 10-14 days in medium containing 10% fetal bovine serum and stained positively for anti-smooth muscle specific alpha-actin. mRNA encoding muscarinic receptor subtypes M(1)-M(5) was identified by RT-PCR. The expression of corresponding protein for all five subtypes was confirmed by immunoblotting and immunocytochemistry. Functional responses were assessed by measuring free intracellular Ca(2+) concentration ([Ca(2+)](i)) using fura 2 fluorescence. Basal [Ca(2+)](i), which was 135 +/- 22 nM, increased transiently to 543 +/- 29 nM in response to 10 microM ACh in CM cells (n = 8). This response was decreased <95% by 0.01 microM 4-diphenylacetoxy-N-methylpiperidine, a M(1)/M(3)-selective antagonist, whereas 0.1 microM methoctramine, a M(2)/M(4)-selective antagonist, and 0.1 microM pirenzepine, a M(1)-selective antagonist, had more modest effects. LM and CM cells showed similar results. We conclude that human smooth muscle cells in primary culture express five muscarinic receptor subtypes and respond to ACh with a rise in [Ca(2+)](i) mediated primarily by the M(3) receptor and involving release of Ca(2+) from intracellular stores. This culture model provides a useful tool for further study of esophageal physiology.  相似文献   

18.
Noradrenaline (NA) in a concentration of 5 X 10(-6) M produces depolarization of smooth muscle cells of the rabbit pulmonary artery and reduction of membrane resistance followed by contraction and increased excitability of muscle cells. Experiments with repolarization of the membrane exposed to NA in normal and Ca-free Krebs solutions have shown that activation of the NA-induced contraction is mainly due to Ca++ entering the cells through NA-sensitive potential-dependent Ca-channels. The NA-induced depolarization results from an initial decrease of K-permeability of the membrane subsequent increase of the permeability of NA-sensitive potential-dependent channels for Na+ and/or Cl-, which provides further depolarization of the membrane. Depolarization ceases after becoming sufficient for activation of potential-dependent non-inactivated K-channels. Voltage clamp experiments have shown that the NA-induced increased excitability is related to a reduction of slow, particularly of fast component of outward current, whose early activation prevents the development of regenerative process of action potential generation under normal conditions.  相似文献   

19.
Mechanotransduction is required for a wide variety of biological functions. The aim of this study was to determine the effect of activation of a mechanosensitive Ca(2+) channel, present in human jejunal circular smooth muscle cells, on whole cell currents and on membrane potential. Currents were recorded using patch-clamp techniques, and perfusion of the bath (10 ml/min, 30 s) was used to mechanoactivate the L-type Ca(2+) channel. Perfusion resulted in activation of L-type Ca(2+) channels and an increase in outward current from 664 +/- 57 to 773 +/- 72 pA at +60 mV. Membrane potential hyperpolarized from -42 +/- 4 to -50 +/- 5 mV. In the presence of nifedipine (10 microM), there was no increase in outward current or change in membrane potential with perfusion. In the presence of charybdotoxin or iberiotoxin, perfusion of the bath did not increase outward current or change membrane potential. A model is proposed in which mechanoactivation of an L-type Ca(2+) channel current in human jejunal circular smooth muscle cells results in increased Ca(2+) entry and cell contraction. Ca(2+) entry activates large-conductance Ca(2+)-activated K(+) channels, resulting in membrane hyperpolarization and relaxation.  相似文献   

20.
Ca2+ entry under resting conditions may be important for contraction of vascular smooth muscle, but little is known about the mechanisms involved. Ca2+ leakage was studied in the A7r5 smooth muscle-derived cell line by patch-clamp techniques. Two channels that could mediate calcium influx at resting membrane potentials were characterized. In 110 mM Ba2+, one channel had a slope conductance of 6.0 +/- 0.6 pS and an extrapolated reversal potential of +41 +/- 13 mV (mean +/- SD, n = 8). The current rectified strongly, with no detectable outward current, even at +90 mV. Channel gating was voltage independent. A second type of channel had a linear current-voltage relationship, a slope conductance of 17.0 +/- 3.2 pS, and a reversal potential of +7 +/- 4 mV (n = 9). The open probability increased e-fold per 44 +/- 10 mV depolarization (n = 5). Both channels were also observed in 110 mM Ca2+. Noise analysis of whole-cell currents indicates that approximately 100 6-pS channels and 30 17-pS channels are open per cell. These 6-pS and 17-pS channels may contribute to resting calcium entry in vascular smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号