首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined (1) the influence of whole body vibration (WBV) frequency (20 Hz, 30 Hz, 40 Hz), amplitude (low: 0.8 mm and high: 1.5 mm) and body postures (high-squat, deep-squat, tip-toe standing) on WBV transmissibility and signal purity, and (2) the relationship between stroke motor impairment and WBV transmissibility/signal purity. Thirty-four participants with chronic stroke were tested under 18 different conditions with unique combinations of WBV frequency, amplitude, and body posture. Lower limb motor function and muscle spasticity were assessed using the Fugl-Meyer Assessment and Modified Ashworth Scale respectively. Nine tri-axial accelerometers were used to measure acceleration at the WBV platform, and the head, third lumbar vertebra, and bilateral hips, knees, and ankles. The results indicated that WBV amplitude, frequency, body postures and their interactions significantly influenced the vibration transmissibility and signal purity among people with chronic stroke. In all anatomical landmarks except the ankle, the transmissibility decreased with increased frequency, increased amplitude or increased knee flexion angle. The transmissibility was similar between the paretic and non-paretic side, except at the ankle during tip-toe standing. Less severe lower limb motor impairment was associated with greater transmissibility at the paretic ankle, knee and hip in certain WBV conditions. Leg muscle spasticity was not significantly related to WBV transmissibility. In clinical practice, WBV amplitude, frequency, body postures need to be considered regarding the therapeutic purpose. Good contact between the feet and vibration platform and symmetrical body-weight distribution pattern should be ensured.  相似文献   

2.
Increased muscle activation during whole-body vibration (WBV) is mainly ascribed to a complex spinal and supraspinal neurophysiological mechanism termed the tonic vibration reflex (TVR). However, TVR has not been experimentally demonstrated during low-frequency WBV, therefore this investigation aimed to determine the expression of TVR during WBV.  Whilst seated, eight healthy males were exposed to either vertical WBV applied to the leg via the plantar-surface of the foot, or Achilles tendon vibration (ATV) at 25Hz and 50Hzfor 70s. Ankle plantar-flexion force, tri-axial accelerations at the shank and vibration source, and surface EMG activity of m. soleus (SOL) and m. tibialis anterior (TA) were recorded from the unloaded and passively loaded leg to simulate body mass supported during standing.  Plantar flexion force was similarly augmented by WBV and ATV and increased over time in a load- and frequency dependent fashion. SOL and TA EMG amplitudes increased over time in all conditions independently of vibration mode. 50Hz WBV and ATV resulted in greater muscle activation than 25Hz in SOL when the shank was loaded and in TA when the shank was unloaded despite the greater transmission of vertical acceleration from source to shank with 25Hz and WBV, especially during loading. Low-amplitude WBV of the unloaded and passively loaded leg produced slow tonic muscle contraction and plantar-flexion force increase of similar magnitudes to those induced by Achilles tendon vibration at the same frequencies. This study provides the first experimental evidence supporting the TVR as a plausible mechanism underlying the neuromuscular response to whole-body vibration.  相似文献   

3.
There is growing evidence that extremely small mechanical signals, if applied at a sufficiently high frequency, can serve as anabolic signals to bone tissue. To determine if the responsiveness of bone to low-magnitude, high-frequency parameters is modulated by endocrine imbalance, ovariectomized (OVX) Sprague-Dawley rats were subjected to whole body vibrations (WBV, 0.15 g) at 45 Hz (n=6) or 90 Hz (n=6) for 10 min/day, and compared to OVX age-matched controls (n=6). Five additional rats were used, in vivo, to establish the induced bone surface strain magnitudes (and strain rates). Following a 28 d protocol, bone formation rates in the metaphysis of the proximal tibia were 159% greater in 90 Hz rats when compared to age-matched controls, but 45 Hz rats were not significantly different from controls. Bone morphology of 90 Hz rats indicated significantly greater trabecular bone volume (22% and 25%) and thicker trabeculae (11% and 12%) over either controls or 45 Hz rats in the epiphysis of the distal femur, respectively. Despite the enhanced sensitivity of the skeleton towards the 90 Hz signal, the strain magnitudes and strain rates induced by this frequency were significantly lower than during 45 Hz vibration, suggesting that factors other than matrix strain are driving the anabolic response. Ideally, such mechanical signals represent a non-pharmacologic means of controlling bone mass and morphology in spite of systemic pressures for bone resorption.  相似文献   

4.
Objective:This study aimed to explore optimal conditions of whole-body vibration (WBV) for improving bone properties in aged rats.Methods:Eighty-week-old rats were divided into baseline control (BC), age-matched control (CON) and experimental groups, which underwent WBV (0.5 g) at various frequencies (15, 30, 45, 60 or 90 Hz) or WBV (45 Hz) with various magnitudes (0.3, 0.5, 0.7 or 1.0 g) for 7 weeks. After interventions, femur bone size, bone mechanical strength and circulating bone formation/resorption markers were measured, and trabecular bone microstructure (TBMS) and cortical bone geometry (CBG) of femurs were analyzed by micro-CT.Results:Several TBMS parameters and trabecular bone mineral content were significantly lower in the 15 Hz WBV (0.5 g) group than in the CON group, suggesting damage to trabecular bone. On the other hand, although frequency/magnitude of WBV did not influence any CBG parameters, the 0.7 g and 1.0 g WBV (45 Hz) group showed an increase in tissue mineral density of cortical bone compared with the BC and CON groups, suggesting the possibility of improving cortical bone properties.Conclusion:Based on these findings, it should be noted that WBV conditions are carefully considered when applied to elderly people.  相似文献   

5.
Whole body vibration (WBV) has been extensively studied as an anabolic stimulus for bone and muscle. Therapeutic WBV delivers low magnitude, high frequency vibrations to tissues, eliciting biological and structural responses. This study investigated the effect of 0.3G (Peak-to-Peak), 30Hz sinusoidal vibration on intact flexor carpi ulnaris tendons in rats. Experimental rats were subjected to twenty minutes of WBV daily for five days a week for a total of five weeks. The tendon cross-sectional area and the structural properties of the muscle-tendon-bone unit under tensile loading to failure were evaluated. Initial body weights were similar between the groups and the mean change in body weight of the animals of each group did not differ. The cross-sectional area of the tendons of the vibrated animals was found to be 32% greater (P<0.05) than the controls and the structural stiffness of the vibrated tendons was found to be 41% greater (P<0.05) than the controls. For specimens that failed in the midsubstance of the tendon, a trend (P=0.087) for increased ultimate load was observed in the vibrated tendons compared to the controls. No differences in material properties were observed except for the strain to ultimate load, which was reduced 22% in the vibrated group. These initial findings suggest that vibration may serve as an anabolic stimulus to tendon similar to its effects on bone and muscle. These findings are important as they open the potential that low magnitude, high frequency vibration might serve as a means to accelerate tendon healing.  相似文献   

6.
鸟类的Herbst小体是一种形态特殊的感觉性神经末梢器官.本文利用电生理学方法,研究了家鸽腿部胫骨-腓骨之间的Herbst小体对振动刺激的反应特征.这种小体对振动刺激非常敏感,当振动频率在600—800赫时,它们有反应的最低阈值约为0.3微米.不同的Herbst小体的反应阈值与频率的关系曲线表明:这种小体具有明显的带通滤波的特征,对振动反应的最佳频率范围为400—1000赫.在适宜频率、超阈值强度的振动刺激下,Herbst小体能以1:1的方式作出反应,即相对于每次正弦波振动刺激都有一个锁相的神经脉冲产生.在背根脊神经节内的细胞外记录表明:对振动敏感的神经节细胞具有和Herbst小体完全相似的反应特征.  相似文献   

7.
The purpose of this study was to investigate the acute effect of whole-body vibration with a frequency of 50 Hz (WBV(50Hz)) on peak power in squat jump (SJ), 1 repetition maximum (1RM) in parallel squat, and electromyography (EMG) activity and compare them with no-vibration conditions in power lifters. Twelve national level male power lifters (age 24 ± 5 years, body mass 110 ± 24 kg, height 179 ± 7 cm) tested peak power in SJ and 1RM in parallel squat while they were randomly exposed to WBV(50Hz) or to no vibration. These tests were performed in a Smith Machine. Peak power output was higher while performed with a WBV(50Hz) compared with the no-WBV condition (p < 0.05). This increase in power output was accompanied by higher EMG starting values and EMG peak values of the investigated thigh muscles during WBV(50Hz) (p < 0.05). There was no difference between adding WBV(50Hz) and no-vibration conditions in 1RM parallel squat. In conclusion, the results of this study suggest that the application of WBV(50Hz) acutely increases peak power output during SJ in well strength trained individuals such as power lifters. This increase in power was accompanied by an increased EMG activity in the quadriceps muscles. However, in 1RM parallel squat, there was no difference between WBV50Hz and no-vibration conditions. Therefore, adding WBV(50Hz) has no acute additive effect on 1RM parallel squat in power lifters and, based on the present findings, may thus not be recommended in the training to improve 1RM in power lifters. However, WBV(50Hz) seems to have an acute additive effect on peak power output and may be used in well strength trained individuals for whom a high power output is important for performance.  相似文献   

8.
Malalignment is the main cause of tibial component loosening. Implants that migrate rapidly in the first two post-operative years are likely to present aseptic loosening. It has been suggested that cancellous bone stresses can be correlated with tibial component migration. A recent study has shown that patient-specific finite element (FE) models have the power to predict the short-term behavior of tibial trays. The stresses generated within the implanted tibia are dependent on the kinematics of the joint; however, previous studies have ignored the kinematics and only applied static loads. Using explicit FE, it is possible to simultaneously predict the kinematics and stresses during a gait cycle. The aim of this study was to examine the cancellous bone strains during the stance phase of the gait cycle, for varying degrees of varus/valgus eccentric loading using explicit FE. A patient-specific model of a proximal tibia was created from CT scan images, including heterogeneous bone properties. The proximal tibia was implanted with a commercial total knee replacement (TKR) model. The stance phase of gait was simulated and the applied loads and boundary conditions were based on those used for the Stanmore knee simulator. Eccentric loading was simulated. As well as examining the tibial bone strains (minimum and maximum principal strain), the kinematics of the bone-implant construct are also reported. The maximum anterior-posterior displacements and internal-external rotations were produced by the model with 20 mm offset. The peak minimum and maximum principal strain values increased as the load was shifted laterally, reaching a maximum magnitude for -20 mm offset. This suggests that when in varus, the load transferred to the bone is shifted medially, and as the bone supporting this load is stiffer, the resulting peak bone strains are lower than when the load is shifted laterally (valgus). For this particular patient, the TKR design analyzed produced the highest cancellous bone strains when in valgus. This study has provided an insight in the variations produced in bone strain distribution when the axial load is applied eccentrically. To the authors' knowledge, this is the first time that the bone strain distribution of a proximal implanted tibia has been examined, also accounting for the kinematics of the tibio-femoral joint as part of the simulation. This approach gives greater insight into the overall performance of TKR.  相似文献   

9.
To facilitate the investigation of bone formation, in vivo, in response to mechanical loading a caudal vertebra axial compression device (CVAD) has been developed to deliver precise mechanical loads to the fifth caudal vertebra (C5) of the C57BL/6 female mouse. A combined experimental and computational approach was used to quantify the micro-mechanical strain induced in trabecular and cortical components following static and dynamic loading using the CVAD. Cortical bone strains were recorded using micro-strain gages. Finite element (FE) models based on micro-computed tomography were constructed for all C5 vertebrae. Both theoretical and experimental cortical strains correlated extremely well (R(2)>0.96) for a Young's modulus of 14.8 GPa, thus validating the FE model. In this study, we have successfully applied mechanical loads to the C5 murine vertebrae, demonstrating the potential of this model to be used for in vivo loading studies aimed at stimulating both trabecular and cortical bone adaptation.  相似文献   

10.
Whole-body vibration (WBV) has been shown to have beneficial effects on strength and power indices in sedentary and moderately trained individuals. The aim of this study was to investigate the effect of 4 weeks of WBV on jump height, active range of motion (AROM), and leg anthropometry in conservatoire dance students. Seventeen female dancers were randomly assigned to a control or intervention group. The intervention group trained for 30 seconds per position at a 35-Hz frequency, 8-mm displacement in the first 2 weeks, and 40 seconds at 40 Hz for the final 2 weeks, whereas the control group carried out the same exercises but without vibration stimulation. A significant (p < 0.01) difference in the intervention group was noted over time for vertical jump and active ROM. No significant changes over time were noted in the anthropometric data. In conclusion, WBV can be used as a beneficial supplemental training intervention to increase jump and active flexibility in highly trained dancers without corresponding increases in relative anthropometric data.  相似文献   

11.
The characteristics of EMG structure are studied for the voluntarily contracting human m. soleus against the background of vibrational stimulation. Averaging over the vibration cycle and spectral analysis are used. Averaging reveals EMG nonuniformity over the cycle; narrow peaks appear in the spectrum at the vibration frequency. EMG analysis proves informative at high vibration frequencies (70–120 Hz), while analysis of the rectified EMG proves informative at low frequencies (30–70 Hz). In the case of tibial ischemic blockade the peak disappears earlier than the tendon reflex. As the force increases, the peak amplitude normalized to the EMG power decreases. The peak rises with prolonged contraction under vibration. These effects are thought to reflect the changes in the relative contribution to the stimulating influx to the motoneurons of the part which is delivered via short connections from the muscle receptors.Institute for Problems of Information Transmission, Acdemy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 1, pp. 57–65, January–February, 1991.  相似文献   

12.
5 healthy males were exposed to vertical sinusoidal whole body vibration (WBV) at 5 frequencies (F1 = 0.315 Hz, F2 = 0.63 Hz, F3 = 1.25 Hz, F4 = 2.5 Hz, F5 = 5.0 Hz) and 2 intensities (I1 = 1.2 ms-2 rms, F1-F5; I2 = 2.0 ms-2 rms, F2-F5). Erector spinae EMGs were derived at the levels of the first thoracic (T1) and third lumbar (L3) spinous processes, rectified and synchronously averaged, as were the accelerations of the seat and the head. WBV induced vibration-synchronous EMG activity (T1 and L3) which exceeded the activity without WBV during enhanced gravitation and decreased during lowered gravitation from F1 to F3. At F4 and F5, these phase relations changed drastically, thus suggesting a different trigger mechanism. The extreme average EMG-amplitudes remained nearly constant at F1 to F3 and increased at higher frequencies. Maximum EMG activity was higher at I2 than at I1. WBV from F1 to F3 is supposed to cause tonic muscular activity triggered by the otoliths; at higher frequencies, stretch reflexes probably gain additional importance. The results hint at an increasing sensory conflict with decreasing frequency of WBV and are interpreted within the theoretical framework of different modes of motor control. Relations between transmissibility and muscle activity suggest the usefulness of including time-variant spring-characteristics into biomechanical models.  相似文献   

13.
The purpose of this investigation was to examine the acute effects of whole-body vibration (WBV) on muscular strength, flexibility, and heart rate (HR). Twenty adults (10 men, 10 women) untrained to WBV participated in the study. All subjects completed assessment of lower-extremity isokinetic torque, flexibility, and HR immediately before and after 6 minutes of WBV and 6 minutes of leg cycling ergometry (CYL), in randomized order. During WBV, subjects stood upright on a vibration platform for a total of 6 minutes. Vibration frequency was gradually increased during the first minute to a frequency of 26 Hz, which was maintained for the remaining 5 minutes. During CYL, power output was gradually increased to 50 W during the first minute and maintained at that power output for the remaining 5 minutes. Lower-extremity flexibility was determined using the sit-and-reach box test. Peak and average isokinetic torque of knee extension and flexion were measured by means of a motor-driven dynamometer with velocity fixed at 120 degrees .s. Change scores for the outcome measures were compared between treatments using Student's paired t-tests. Analysis revealed significantly greater HR acceleration with CYL (24.7 bpm) than after WBV (15.8 bpm). The increase of sit-and-reach scores after WBV (4.7 cm) was statistically greater (p < 0.05) than after CYL (0.8 cm). After WBV, increases in peak and average isokinetic torque of knee extension, 7.7% and 9.6%, were statistically greater than after CYL (p < 0.05). Average torque of knee flexion also increased more with WBV (+7.8%) than with CYL (-1.5%) (p < 0.05). The findings of this study indicate that short-term WBV standing elicits acute enhancements of lower-extremity muscular torque and flexibility, suggesting the application of this technology as a preparatory activity before more intense exercise.  相似文献   

14.
The purpose of this study was to investigate the effect of whole body vibration (WBV) training on maximal strength, squat jump, and flexibility of well-trained combat athletes. Twelve female and 8 male combat athletes (age: 22.8 ± 3.1 years, mass: 65.4 ± 10.7 kg, height: 168.8 ± 8.8 cm, training experience: 11.6 ± 4.7 years, training volume: 9.3 ± 2.8 hours/week) participated in this study. The study consisted of three sessions separated by 48 hours. The first session was conducted for familiarization. In the subsequent two sessions, participants performed WBV or sham intervention in a randomized, balanced order. During WBV intervention, four isometric exercises were performed (26 Hz, 4 mm). During the sham intervention, participants performed the same WBV intervention without vibration treatment (0 Hz, 0 mm). Hand grip, squat jump, trunk flexion, and isometric leg strength tests were performed after each intervention. The results of a two-factor (pre-post[2] × intervention[2]) repeated measures ANOVA revealed a significant interaction (p = 0.018) of pre-post × intervention only for the hand grip test, indicating a significant performance increase of moderate effect (net increase of 2.48%, d = 0.61) after WBV intervention. Squat jump, trunk flexion, and isometric leg strength performances were not affected by WBV. In conclusion, the WBV protocol used in this study potentiated hand grip performance, but did not enhance squat jump, trunk flexion, or isometric leg strength in well-trained combat athletes.  相似文献   

15.
Accelerations of vertebrae during whole-body vibration (WBV) are used in occupational biomechanics for the prediction of internal stress. To avoid invasive techniques, a method for the calculation of bone accelerations was developed using measurements on the skin. The soft tissue between spinous processes L3 and T5 and miniature accelerometers stuck to the skin over them was modelled by a simple Kelvin element, whose parameters i.e. angular natural frequency omega n and critical damping zeta, describe an approximate transfer function between the bone (input) and the skin surface (output). The parameters were determined from free damped oscillations of the accelerometer-skin complex in the Z-axis, and depended significantly on the factors "subject" and "point of measurement". In one subject, the time courses of bone accelerations during sinusoidal WBV (4.5 and 8 Hz; 1.5 m.s-2 RMS) were calculated using separate transfer functions for each of 11 different spinal levels. Since the output signals on the skin were non-sinusoidal, the skin accelerations had to be treated with an inverse transfer function in the frequency domain. A comparison of accelerations measured on the skin and predicted for the bone mainly indicates that absolute peak values of bone accelerations are smaller and occur earlier. Both kinds of acceleration hint at differences in WBV-induced internal stress within the spine.  相似文献   

16.
The aim of this study was to investigate the effects of two different frequencies of whole-body vibration (WBV) training on knee extensors muscle strength in healthy young volunteers. Twenty-two eligible healthy untrained young women aged 22-31 years were allocated randomly to the 30-Hz (n=11) and 50-Hz (n=11) groups. They participated in a supervised WBV training program that consisted of 24 sessions on a synchronous vertical vibration platform (peak-to-peak displacement: 2-4 mm; type of exercises: semi-squat, one-legged squat, and lunge positions on right leg; set numbers: 2-24) three times per week for 8 weeks. Isometric and dynamic strength of the knee extensors were measured prior to and at the end of the 8-week training. In the 30-Hz group, there was a significant increase in the maximal voluntary isometric contraction (p=0.039) and the concentric peak torque (p=0.018) of knee extensors and these changes were significant (p<0.05) compared with the 50-Hz group. In addition, the eccentric peak torque of knee extensors was increased significantly in both groups (p<0.05); however, there was no significant difference between the two groups (p=0.873). We concluded that 8 weeks WBV training in 30 Hz was more effective than 50 Hz to increase the isometric contraction and dynamic strength of knee extensors as measured using peak concentric torque and equally effective with 50 Hz in improving eccentric torque of knee extensors in healthy young untrained women.  相似文献   

17.
The influence of the knee flexion on muscle activation and transmissibility during whole body vibration is controversially discussed in the literature. In this study, 34 individuals had electromyography activity (EMG) of the vastus lateralis and the acceleration assessed while squatting with 60° and 90° of knee flexion either with or without whole-body vibration (WBV). The conditions were maintained for 10 s with 1 min of rest between each condition. The main findings were (1) the larger the angle of knee flexion (90° vs. 60°), the greater the EMG (p < 0.001), with no difference on acceleration transmissibility; (2) for both angles of knee flexion, the addition of WBV produced no significant difference in EMG and higher acceleration compared to without WBV (p < 0.001). These results suggest that the larger the knee flexion angle (60° vs. 90°), the greater the muscle activation without acceleration modification. However, the addition of WBV increases the transmissibility of acceleration in the lower limbs without modification in EMG of vastus lateralis.  相似文献   

18.
The purpose of this study was to examine the acute effects of different vibration loads (frequency and amplitude) of whole-body vibration (WBV) on flexibility and explosive strength of lower limbs in springboard divers. Eighteen male and female divers, aged 19 ± 2 years, volunteered to perform 3 different WBV protocols in the present study. To assess the vibration effect, flexibility and explosive strength of lower limbs were measured before (Pre), immediately after (Post 1) and 15 min after the end of vibration exposure (Post 15). Three protocols with different frequencies and amplitudes were used in the present study: a) low vibration frequency and amplitude (30 Hz/2 mm); b) high vibration frequency and amplitude (50 Hz/4 mm); c) a control protocol (no vibration). WBV protocols were performed on a Power Plate platform, whereas the no vibration divers performed the same protocol but with the vibration platform turned off. A two-way ANOVA 3 x 3 (protocol × time) with repeated measures on both factors was used. The level of significance was set at p < 0.05. Univariate analyses with simple contrasts across time were selected as post hoc tests. Intraclass coefficients (ICC) were used to assess the reliability across time. The results indicated that flexibility and explosive strength of lower limbs were significantly higher in both WBV protocols compared to the no vibration group (NVG). The greatest improvement in flexibility and explosive strength, which occurred immediately after vibration treatment, was maintained 15 min later in both WBV protocols, whereas NVG revealed a significant decrease 15 min later, in all examined strength parameters. In conclusion, a bout of WBV significantly increased flexibility and explosive strength in competitive divers compared with the NVG. Therefore, it is recommended to incorporate WBV as a method to increase flexibility and vertical jump height in sports where these parameters play an important role in the success outcome of these sports.  相似文献   

19.
High-frequency, low-magnitude vibration enhances bone formation ostensibly by mimicking normal postural muscle activity. We tested this hypothesis by examining whether daily exposure to low-magnitude vibration (VIB) would maintain bone in a muscle disuse model with botulinum toxin type A (BTX). Female 16-18 wk old BALB/c mice (N = 36) were assigned to BTX-VIB, BTX-SHAM, VIB, or SHAM. BTX mice were injected with BTX (20 μL; 1 U/100 g body mass) into the left hindlimb posterior musculature. All mice were anaesthetized for 20 min/d, 5 d/wk, for 3 wk, and the left leg mounted to a holder. Through the holder, VIB mice received 45 Hz, ± 0.6 g sinusoidal acceleration without weight bearing. SHAM mice received no vibration. At baseline and 3 wk, muscle cross-sectional area (MCSA) and tibial bone properties (epiphysis, metaphysis and diaphysis) were assessed by in vivo micro-CT. Bone volume fraction in the metaphysis decreased 12 ± 9% and 7 ± 6% in BTX-VIB and BTX-SHAM, but increased in the VIB and SHAM. There were no differences in dynamic histomorphometry outcomes between BTX-VIB and BTX nor between VIB and SHAM. Thus, vibration did not prevent bone loss induced by a rapid decline in muscle activity nor produce an anabolic effect in normal mice. The daily loading duration was shorter than would be expected from postural muscle activity, and may have been insufficient to prevent bone loss. Based on the approach used in this study, vibration does not prevent bone loss in the absence of muscle activity induced by BTX.  相似文献   

20.
R?nnestad, BR and Ellefsen, S. The effects of adding different whole-body vibration frequencies to preconditioning exercise on subsequent sprint performance. J Strength Cond Res 25(12): 3306-3310, 2011-The phenomenon postactivation potentiation can possibly be used to acutely improve sprint performance. The purpose of this study was to investigate the effect of adding whole-body vibration (WBV) to body-loaded half-squats, performed as preconditioning activity to the 40-m sprint test. Nine male amateur soccer players performed 1 familiarization session and 6 separate test sessions. Each session included a standardized warm-up followed by 1 of the after preconditioning exercises: 30-seconds of half-squats with WBV at either 50 or 30 Hz or half-squats without WBV. The 40-m sprint was performed 1 minute after the preconditioning exercise. For each subject, each of the 3 protocols was repeated twice on separate days in a randomized order. Mean values were used in the statistical analysis. Performing the preconditioning exercise with WBV at a frequency of 50 Hz resulted in a superior 40-m sprint performance compared to preconditioning exercise without WBV (5.48 ± 0.19 vs. 5.52 ± 0.21 seconds, respectively, p < 0.05). There was no difference between preconditioning exercise with WBV at a frequency of 30 Hz and the no-WBV condition. In conclusion, preconditioning exercise performed with WBV at 50 Hz seems to enhance 40-m sprint performance in recreationally trained soccer players. The present findings suggest that coaches can incorporate such exercise into the warm-up to improve sprint performance or the quality of the sprint training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号