首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective:This study aimed to explore optimal conditions of whole-body vibration (WBV) for improving bone properties in aged rats.Methods:Eighty-week-old rats were divided into baseline control (BC), age-matched control (CON) and experimental groups, which underwent WBV (0.5 g) at various frequencies (15, 30, 45, 60 or 90 Hz) or WBV (45 Hz) with various magnitudes (0.3, 0.5, 0.7 or 1.0 g) for 7 weeks. After interventions, femur bone size, bone mechanical strength and circulating bone formation/resorption markers were measured, and trabecular bone microstructure (TBMS) and cortical bone geometry (CBG) of femurs were analyzed by micro-CT.Results:Several TBMS parameters and trabecular bone mineral content were significantly lower in the 15 Hz WBV (0.5 g) group than in the CON group, suggesting damage to trabecular bone. On the other hand, although frequency/magnitude of WBV did not influence any CBG parameters, the 0.7 g and 1.0 g WBV (45 Hz) group showed an increase in tissue mineral density of cortical bone compared with the BC and CON groups, suggesting the possibility of improving cortical bone properties.Conclusion:Based on these findings, it should be noted that WBV conditions are carefully considered when applied to elderly people.  相似文献   

2.
The purpose of this investigation was to examine the acute effects of whole-body vibration (WBV) on muscular strength, flexibility, and heart rate (HR). Twenty adults (10 men, 10 women) untrained to WBV participated in the study. All subjects completed assessment of lower-extremity isokinetic torque, flexibility, and HR immediately before and after 6 minutes of WBV and 6 minutes of leg cycling ergometry (CYL), in randomized order. During WBV, subjects stood upright on a vibration platform for a total of 6 minutes. Vibration frequency was gradually increased during the first minute to a frequency of 26 Hz, which was maintained for the remaining 5 minutes. During CYL, power output was gradually increased to 50 W during the first minute and maintained at that power output for the remaining 5 minutes. Lower-extremity flexibility was determined using the sit-and-reach box test. Peak and average isokinetic torque of knee extension and flexion were measured by means of a motor-driven dynamometer with velocity fixed at 120 degrees .s. Change scores for the outcome measures were compared between treatments using Student's paired t-tests. Analysis revealed significantly greater HR acceleration with CYL (24.7 bpm) than after WBV (15.8 bpm). The increase of sit-and-reach scores after WBV (4.7 cm) was statistically greater (p < 0.05) than after CYL (0.8 cm). After WBV, increases in peak and average isokinetic torque of knee extension, 7.7% and 9.6%, were statistically greater than after CYL (p < 0.05). Average torque of knee flexion also increased more with WBV (+7.8%) than with CYL (-1.5%) (p < 0.05). The findings of this study indicate that short-term WBV standing elicits acute enhancements of lower-extremity muscular torque and flexibility, suggesting the application of this technology as a preparatory activity before more intense exercise.  相似文献   

3.
The purpose of this study was to investigate the acute effect of whole-body vibration with a frequency of 50 Hz (WBV(50Hz)) on peak power in squat jump (SJ), 1 repetition maximum (1RM) in parallel squat, and electromyography (EMG) activity and compare them with no-vibration conditions in power lifters. Twelve national level male power lifters (age 24 ± 5 years, body mass 110 ± 24 kg, height 179 ± 7 cm) tested peak power in SJ and 1RM in parallel squat while they were randomly exposed to WBV(50Hz) or to no vibration. These tests were performed in a Smith Machine. Peak power output was higher while performed with a WBV(50Hz) compared with the no-WBV condition (p < 0.05). This increase in power output was accompanied by higher EMG starting values and EMG peak values of the investigated thigh muscles during WBV(50Hz) (p < 0.05). There was no difference between adding WBV(50Hz) and no-vibration conditions in 1RM parallel squat. In conclusion, the results of this study suggest that the application of WBV(50Hz) acutely increases peak power output during SJ in well strength trained individuals such as power lifters. This increase in power was accompanied by an increased EMG activity in the quadriceps muscles. However, in 1RM parallel squat, there was no difference between WBV50Hz and no-vibration conditions. Therefore, adding WBV(50Hz) has no acute additive effect on 1RM parallel squat in power lifters and, based on the present findings, may thus not be recommended in the training to improve 1RM in power lifters. However, WBV(50Hz) seems to have an acute additive effect on peak power output and may be used in well strength trained individuals for whom a high power output is important for performance.  相似文献   

4.
Increased muscle activation during whole-body vibration (WBV) is mainly ascribed to a complex spinal and supraspinal neurophysiological mechanism termed the tonic vibration reflex (TVR). However, TVR has not been experimentally demonstrated during low-frequency WBV, therefore this investigation aimed to determine the expression of TVR during WBV.  Whilst seated, eight healthy males were exposed to either vertical WBV applied to the leg via the plantar-surface of the foot, or Achilles tendon vibration (ATV) at 25Hz and 50Hzfor 70s. Ankle plantar-flexion force, tri-axial accelerations at the shank and vibration source, and surface EMG activity of m. soleus (SOL) and m. tibialis anterior (TA) were recorded from the unloaded and passively loaded leg to simulate body mass supported during standing.  Plantar flexion force was similarly augmented by WBV and ATV and increased over time in a load- and frequency dependent fashion. SOL and TA EMG amplitudes increased over time in all conditions independently of vibration mode. 50Hz WBV and ATV resulted in greater muscle activation than 25Hz in SOL when the shank was loaded and in TA when the shank was unloaded despite the greater transmission of vertical acceleration from source to shank with 25Hz and WBV, especially during loading. Low-amplitude WBV of the unloaded and passively loaded leg produced slow tonic muscle contraction and plantar-flexion force increase of similar magnitudes to those induced by Achilles tendon vibration at the same frequencies. This study provides the first experimental evidence supporting the TVR as a plausible mechanism underlying the neuromuscular response to whole-body vibration.  相似文献   

5.
This study examined (1) the influence of whole body vibration (WBV) frequency (20 Hz, 30 Hz, 40 Hz), amplitude (low: 0.8 mm and high: 1.5 mm) and body postures (high-squat, deep-squat, tip-toe standing) on WBV transmissibility and signal purity, and (2) the relationship between stroke motor impairment and WBV transmissibility/signal purity. Thirty-four participants with chronic stroke were tested under 18 different conditions with unique combinations of WBV frequency, amplitude, and body posture. Lower limb motor function and muscle spasticity were assessed using the Fugl-Meyer Assessment and Modified Ashworth Scale respectively. Nine tri-axial accelerometers were used to measure acceleration at the WBV platform, and the head, third lumbar vertebra, and bilateral hips, knees, and ankles. The results indicated that WBV amplitude, frequency, body postures and their interactions significantly influenced the vibration transmissibility and signal purity among people with chronic stroke. In all anatomical landmarks except the ankle, the transmissibility decreased with increased frequency, increased amplitude or increased knee flexion angle. The transmissibility was similar between the paretic and non-paretic side, except at the ankle during tip-toe standing. Less severe lower limb motor impairment was associated with greater transmissibility at the paretic ankle, knee and hip in certain WBV conditions. Leg muscle spasticity was not significantly related to WBV transmissibility. In clinical practice, WBV amplitude, frequency, body postures need to be considered regarding the therapeutic purpose. Good contact between the feet and vibration platform and symmetrical body-weight distribution pattern should be ensured.  相似文献   

6.

Objective:

We investigated acute bone turnover marker (BTM) responses to high-intensity resistance exercise with and without whole-body vibration (WBV) in young men (n=10).

Methods:

In this randomized crossover study, subjects performed 2 protocols separated by 2-week wash out periods: 1) resistance exercise only (RE) (3 sets 10 repetitions 80% 1RM for 9 exercises); and 2) WBV + RE (side-alternating vibration platform 5 intermittent, 1-minute bouts 20 Hz, 3.38 mm peak-to-peak displacement followed by RE). Fasting morning blood draws were taken before RE or WBV (PRE), immediately post RE (IP), and 30 minutes post RE (30P). WBV + RE also had a blood draw after the WBV exposure (POST WBV). Blood samples were analyzed for lactate, hematocrit, bone-specific alkaline phosphatase (Bone ALP, U/L), C-terminal telopeptide of type I collagen (CTX-I, ng/mL) and tartrate-resistant acid phosphatase 5b (TRAP5b, U/L).

Results:

Lactate, hematocrit, and Bone ALP significantly increased (p<0.05) IP for both protocols. Bone resorption markers did not change during RE only. CTX-I significantly decreased POST WBV. TRAP5b increased POST WBV, then significantly decreased at 30P.

Conclusions:

Generally, BTM changes to RE only were not significant when adjusted for hemoconcentration. The WBV stimulus altered bone resorption marker but not bone formation marker responses.  相似文献   

7.
5 healthy males were exposed to vertical sinusoidal whole body vibration (WBV) at 5 frequencies (F1 = 0.315 Hz, F2 = 0.63 Hz, F3 = 1.25 Hz, F4 = 2.5 Hz, F5 = 5.0 Hz) and 2 intensities (I1 = 1.2 ms-2 rms, F1-F5; I2 = 2.0 ms-2 rms, F2-F5). Erector spinae EMGs were derived at the levels of the first thoracic (T1) and third lumbar (L3) spinous processes, rectified and synchronously averaged, as were the accelerations of the seat and the head. WBV induced vibration-synchronous EMG activity (T1 and L3) which exceeded the activity without WBV during enhanced gravitation and decreased during lowered gravitation from F1 to F3. At F4 and F5, these phase relations changed drastically, thus suggesting a different trigger mechanism. The extreme average EMG-amplitudes remained nearly constant at F1 to F3 and increased at higher frequencies. Maximum EMG activity was higher at I2 than at I1. WBV from F1 to F3 is supposed to cause tonic muscular activity triggered by the otoliths; at higher frequencies, stretch reflexes probably gain additional importance. The results hint at an increasing sensory conflict with decreasing frequency of WBV and are interpreted within the theoretical framework of different modes of motor control. Relations between transmissibility and muscle activity suggest the usefulness of including time-variant spring-characteristics into biomechanical models.  相似文献   

8.
Background: Whole body vibration (WBV) is a novel training intervention but a comparison of different methods of WBV has rarely been performed. Aim: To compare the short and medium term effects of two regimens of WBV on endocrine status, muscle function and markers of bone turnover. Patients and Methods: Over a period of 16 weeks, 10 men with a median age of 33 yrs (range, 29,49), were randomised to stand on the Galileo platform (GP) or Juvent1000 platform (JP) 3 times/wk. The total study duration was 16 weeks with measurements performed in a 4 week period of run-in, 8 weeks of WBV and a 4 week period of washout. These measurements included an assessment of anthropometry, body composition, muscle function and biochemical markers of endocrine status and bone turnover. To assess immediate effects of WBV, measurements were also performed at 60 mins before and 5, 30 and 60 mins after WBV. To assess immediate effects of WBV, measurements were also performed at 60 mins before and 5, 30 and 60 mins after WBV. Results: GP at 22 Hz was associated with an immediate increase in serum GH, rising from 0.07 μg/l (0.04,0.69) to 0.52 μg/l (0.06,2.4) (p=0.06), 0.63 μg/l (0.1,1.18) (p=0.03), 0.21 μg/l (0.07,0.65) (p=0.2) at 5 mins, 20 mins and 60 mins after WBV, respectively. An immediate effect was also observed in median serum cortisol which reduced from 316 nmol/l (247,442) before WBV to 173 nmol/l (123,245) (p=0.01),165 nmol/l (139,276) (p=0.02) and 198 nmol/l (106,294) (p=0.04) at 5 mins, 20 mins and 60 mins after WBV, respectively. Median serum CTX reduced significantly after 8 weeks of WBV training in the GP group from 0.42 ng/ml (0.29,0.90) pre-WBV to 0.29 ng/ml (0.18,0.44) at the end of WBV training (p=0.03). Over the 8 weeks, there was a reduction in median serum cortisol in the GP group from 333 nmol/l (242,445) (pre-WBV) to 270 nmol/l (115,323) (WBV) (p=0.04). None of the changes observed in the JP group reached statistical significance. Neither group showed any significant effect on muscle function, IGF-1, testosterone, leptin, CRP, creatine kinase, insulin or other markers of bone turnover. Conclusion: WBV can stimulate GH secretion, reduce circulating cortisol and reduce bone resorption. These effects are independent of clear changes in muscle function and depend on the type of WBV that is administered.  相似文献   

9.
Vibrational loading can stimulate the formation of new trabecular bone or maintain bone mass. Studies investigating vibrational loading have often used whole-body vibration (WBV) as their loading method. However, WBV has limitations in small animal studies because transmissibility of vibration is dependent on posture. In this study, we propose constrained tibial vibration (CTV) as an experimental method for vibrational loading of mice under controlled conditions. In CTV, the lower leg of an anesthetized mouse is subjected to vertical vibrational loading while supporting a mass. The setup approximates a one degree-of-freedom vibrational system. Accelerometers were used to measure transmissibility of vibration through the lower leg in CTV at frequencies from 20 Hz to 150 Hz. First, the frequency response of transmissibility was quantified in vivo, and dissections were performed to remove one component of the mouse leg (the knee joint, foot, or soft tissue) to investigate the contribution of each component to the frequency response of the intact leg. Next, a finite element (FE) model of a mouse tibia-fibula was used to estimate the deformation of the bone during CTV. Finally, strain gages were used to determine the dependence of bone strain on loading frequency. The in vivo mouse leg in the CTV system had a resonant frequency of 60 Hz for +/-0.5 G vibration (1.0 G peak to peak). Removing the foot caused the natural frequency of the system to shift from 60 Hz to 70 Hz, removing the soft tissue caused no change in natural frequency, and removing the knee changed the natural frequency from 60 Hz to 90 Hz. By using the FE model, maximum tensile and compressive strains during CTV were estimated to be on the cranial-medial and caudolateral surfaces of the tibia, respectively, and the peak transmissibility and peak cortical strain occurred at the same frequency. Strain gage data confirmed the relationship between peak transmissibility and peak bone strain indicated by the FE model, and showed that the maximum cyclic tibial strain during CTV of the intact leg was 330+/-82microepsilon and occurred at 60-70 Hz. This study presents a comprehensive mechanical analysis of CTV, a loading method for studying vibrational loading under controlled conditions. This model will be used in future in vivo studies and will potentially become an important tool for understanding the response of bone to vibrational loading.  相似文献   

10.

Objectives

Whole Body Vibration (WBV) is a passive exercise method known to have beneficial effects on various physical measures. Studies on adults furthermore demonstrated beneficial effects of WBV treatment on cognition (e.g. inhibition). The present study replicated these findings in healthy children and examined acute effects of WBV treatment on inhibition.

Methods

Fifty-five healthy children (aged 8–13) participated in this within-subject design study. WBV treatment was applied by having the children sit on a chair mounted to a vibrating platform. After each condition (vibration vs. non-vibration), inhibition was measured by using the Stroop Color-Word Interference Test. Repeated measures analyses were applied in order to explore the effects of WBV treatment on inhibition, and correlations were computed between the treatment effect and participant characteristics in order to explore individual differences in treatment sensitivity.

Results

Three-minute WBV treatments had significant beneficial effects on inhibition in this sample of healthy children. Especially the repeated application (three times) of WBV treatment appeared beneficial for cognition. Stronger WBV treatment effects were correlated with higher intelligence and younger age, but not with symptoms of Attention Deficit Hyperactivity Disorder (ADHD).

Conclusions

This study demonstrates that especially repeated WBV treatment improves inhibition in healthy children. As this cognitive function is often impaired in children with developmental disorders (e.g. ADHD), future studies should further explore the effects, working mechanism and potential applicability of WBV treatment for this target group.  相似文献   

11.
Functional ability is often impaired for people with rheumatoid arthritis (RA), rendering these patients highly sedentary. Additionally, patients with RA often take medication known to negatively affect bone mass. Thus improving functional ability and bone health in this group of patients is important. The aim of this study was to investigate the effects of whole body vibration (WBV) therapy in patients with stable, established RA. Thirty one females with RA were randomly assigned to a control group (CON, n = 15) who continued with their normal activities or a WBV group (n = 16) who underwent a three month WBV therapy intervention, consisting of 15 minutes of intermittent vibration, performed twice per week. Patients were assessed at baseline, three months, and three months post intervention for functional ability using the modified Health Assessment Questionnaire; for RA disease activity using the Clinical Disease Activity Index, for quality of life using self-report fatigue and pain scores; for physical activity profiles using accelerometry, and for BMD and body composition using DXA. Patients in both groups were matched for all variables at baseline. After the intervention period, functional ability was significantly improved in the WBV group (1.22(0.19) to 0.92(0.19), p = 0.02). Hip BMD was significantly reduced in the CON group (0.97(0.05) to 0.84(0.05) g.cm-2, p = 0.01), while no decreases were seen in the WBV group (1.01(0.05) to 0.94(0.05) g.cm-2, p = 0.50). Despite no change in RA disease activity in either group at either follow up, fatigue levels were improved in the WBV group (4.4(0.63) to 1.1(0.65), yet remained unchanged in the CON group at both follow ups (p = 0.01). Ten minute bouts of light to moderate physical activity were significantly reduced in the CON group after the intervention (2.8(0.61) to 1.8(0.64) bouts per day, p = 0.01), and were preserved in the WBV group (3.1(0.59) to 3.0(0.61) bouts per day, p = 0.70). Intermittent WBV shows promise for sustained improvements in functional ability, for attenuating loss of bone mass at the hip, as well as for decreasing fatigue in patients with established RA.Trial Registration: Pan African Clinical Trials Registry PACTR201405000823418  相似文献   

12.
The aims of this study were to assess the behavior of a vibrating platform under different conditions and to compare the effects of an 8-week periodized training program with whole-body vibration (WBV) alone or in combination with conventional strength training (ST). Vibrating frequencies, displacements, and peak accelerations were tested through a piezoelectric accelerometer under different conditions of load and subjects' position. Eighteen national-level female athletes were assigned to 1 of 3 different groups performing WBV, conventional ST, or a combination of the 2 (WBV + ST). Isometric maximal voluntary contraction, dynamic maximal concentric force, and vertical jump tests were performed before and after the conditioning program. Vibrating displacements and maximum accelerations measured on the device were not always consistent with their expected values calculated from the display and manufacturers' information (sinusoidal waveforms). The WBV alone or in combination with low-intensity resistance exercise did not seem to induce significant enhancements in force and power when compared with ST. It appears that WBV cannot substitute parts of ST loading in a cohort of young female athletes. However, vibration effects might be limited by the behavior of the commercial platforms as the one used in the study. More studies are needed to analyze the performances of devices and the effectiveness of protocols.  相似文献   

13.
Although research supports the use of whole-body vibration (WBV) to improve neuromuscular performance, the mechanisms for these improvements remain unclear. The purpose of this study was to identify the effect of WBV on the spectral properties of electrically evoked H-reflex recordings in the soleus (SOL) muscle. The H-reflex recordings were measured in the SOL muscle of 20 participants before and after a bout of WBV. The H-reflexes were evoked every 15 seconds for 150 seconds after WBV. A wavelet procedure was used to extract spectral data, which were then quantified with a principle components analysis. Resultant principle component scores were used for statistical analysis. The analysis extracted 1 principle component associated with the intensity of the myoelectric spectra and 1 principle component associated with the frequency. The scores of the principle component that were related to the myoelectric intensity were smaller at 30 and 60 milliseconds after WBV than before WBV. The WBV transiently decreased the intensity of myoelectric spectra during electrically evoked contractions, but it did not influence the frequency of the spectra. The decrease in intensity likely indicates a smaller electrically evoked muscle twitch response, whereas the lack of change in frequency would indicate a similar recruitment pattern of motor units before and after WBV.  相似文献   

14.

Background

Alendronate (ALE) is a conventional drug used to treat osteoporosis. Low-magnitude whole-body vibration (WBV) exercise has been developed as a potential treatment for osteoporosis. The aim of this study was to investigate whether low-magnitude WBV could enhance the protective effect of ALE on bone properties in ovariectomized rats.

Methods

A total of 128 Sprague-Dawley rats were randomly divided into five groups (SHAM, OVX+VEH, OVX+WBV, OVX + ALE, OVX+WBV+ALE). The level of WBV applied was 0.3 g at 45–55 Hz for 20 min/day, 5 day/week and for 3 months. ALE was administered in dose of 1 mg/Kg once a week. Every four weeks eight rats from each group were sacrificed and their blood and both tibiae were harvested. The expression of osteocalcin and CTX in serum was measured by enzyme-linked immunosorbent assay (ELISA) and the tibiae were subjected to metaphyseal three-point bending and μCT analysis.

Results

Osteocalcin rose after ovariectomy and was not appreciably changed by either alendronate or WBV alone or in combination. Alendronate treatment significantly prevented an increase in CTX. WBV alone treatment did not alter this effect. Compared with the OVX+WBV group, nearly all tested indices such as the BV/TV, TV apparent, Tb.N, Tb.Th, and Conn.D were higher in the OVX+ALE group at week 12.Compared with the OVX+WBV group, certain tested indices such as BV/TV, TV apparent, Tb.N, and Con.D, were higher in the OVX+WBV+ALE group at week 12. At week 12, tibiae treated with WBV+ALE exhibited a significantly higher Fmax compared to the OVX+VEH group, and a significant difference was also found in energy absorption between the OVX+WBV+ALE and OVX+VEH groups.

Conclusions

Compared with the WBV, ALE was more effective at preventing bone loss and improved the trabecular architecture. However, WBV enhanced the effect of alendronate in ovariectomized rats by inducing further improvements in trabecular architecture.  相似文献   

15.
A new method using a double-sensor difference based algorithm for analyzing human segment rotational angles in two directions for segmental orientation analysis in the three-dimensional (3D) space was presented. A wearable sensor system based only on triaxial accelerometers was developed to obtain the pitch and yaw angles of thigh segment with an accelerometer approximating translational acceleration of the hip joint and two accelerometers measuring the actual accelerations on the thigh. To evaluate the method, the system was first tested on a 2° of freedom mechanical arm assembled out of rigid segments and encoders. Then, to estimate the human segmental orientation, the wearable sensor system was tested on the thighs of eight volunteer subjects, who walked in a straight forward line in the work space of an optical motion analysis system at three self-selected speeds: slow, normal and fast. In the experiment, the subject was assumed to walk in a straight forward way with very little trunk sway, skin artifacts and no significant internal/external rotation of the leg. The root mean square (RMS) errors of the thigh segment orientation measurement were between 2.4° and 4.9° during normal gait that had a 45° flexion/extension range of motion. Measurement error was observed to increase with increasing walking speed probably because of the result of increased trunk sway, axial rotation and skin artifacts. The results show that, without integration and switching between different sensors, using only one kind of sensor, the wearable sensor system is suitable for ambulatory analysis of normal gait orientation of thigh and shank in two directions of the segment-fixed local coordinate system in 3D space. It can then be applied to assess spatio-temporal gait parameters and monitoring the gait function of patients in clinical settings.  相似文献   

16.
Pulsed electromagnetic field (PEMF) and whole body vibration (WBV) interventions are expected to be important strategies for management of osteoarthritis (OA). The aim of the study was to investigate the comparative effectiveness of PEMF versus WBV on cartilage and subchondral trabecular bone in mice with knee OA (KOA) induced by surgical destabilization of the medial meniscus (DMM). Forty 12-week-old male C57/BL mice were randomly divided into four groups (n = 10): Control, OA, PEMF, and WBV. OA was induced (OA, PEMF, and WBV groups) by surgical DMM of right knee joint. Mice in PEMF group received 1 h/day PEMF exposure with 75 Hz, 1.6 mT for 4 weeks, and the WBV group was exposed to WBV for 20 min/day with 5 Hz, 4 mm, 0.3 g peak acceleration for 4 weeks. Micro-computed tomography (micro-CT), histology, and immunohistochemistry analyses were performed to evaluate the changes in cartilage and microstructure of trabecular bone. The bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and trabecular number (Tb.N) increased, and bone surface/bone volume (BS/BV) decreased by micro-CT analysis in PEMF and WBV groups. The Osteoarthritis Research Society International (OARSI) scores in PEMF and WBV groups were significantly lower than in the OA group. Immunohistochemical results showed that PEMF and WBV promoted expressions of Aggrecan, and inhibited expressions of IL-1β, ADAMTS4, and MMP13. Superior results are seen in PEMF group compared with WBV group. Both PEMF and WBV were effective, could delay cartilage degeneration and preserve subchondral trabecular bone microarchitecture, and PEMF was found to be superior to WBV. Bioelectromagnetics. 2020;41:298–307 © 2020 Bioelectromagnetics Society  相似文献   

17.
Whole-body vibration (WBV), which is widely used as a type of exercise, involves the use of vibratory stimuli and it is used for rehabilitation and sports performance programmes. This study aimed to investigate the effect of WBV treatment in a chronic pain model after 10 WBV sessions. An animal model (chronic pain) was applied in 60 male Wistar rats (±180 g, 12 weeks old) and the animals were treated with low intensity exercise (treadmill), WBV (vibrating platform), and a combined treatment involving both. The controls on the platform were set to a frequency of 42 Hz with 2 mm peak-to-peak displacement, g ≈ 7, in a spiral mode. Before and after the vibration exposure, sensitivity was determined. Aβ-fibers-mediated mechanical sensitivity thresholds (touch-pressure) were measured using a pressure meter. C-fibers-mediated thermal perception thresholds (hot pain) were measured with a hot plate. After each session, WBV influenced the discharge of skin touch-pressure receptors, reducing mechanical sensitivity in the WBV groups (P < 0.05). Comparing the conditions “before vs. after”, thermal perception thresholds (hot pain) started to decrease significantly after the third WBV session (P < 0.05). WBV decreases mechanical hyperalgesia after all sessions and thermal sensitivity after the third session with the use of WBV.  相似文献   

18.
Whole-body vibration (WBV) has been shown to elicit acute and chronic improvements in neuromuscular function; however, there is little conclusive evidence regarding an optimum protocol for acute WBV. The aim of this study was to compare the effects of acute exposure to different frequencies of WBV on countermovement jump (CMJ) height. Twelve recreationally trained men (age, 31 ± 8 years; height, 177 ± 12 cm; weight, 83.0 ± 6.9 kg) completed maximal CMJs pre- and post-WBV in a half-squat position for 30 seconds. In a blinded design with randomized testing order, participants were exposed on different days to frequencies of 0, 30, 35, and 40 Hz. Significant main effects were found for time (pre-to-post WBV, p < 0.01) and frequency * time interaction (p < 0.01), with post hoc analysis highlighting that there was a significant mean improvement of 6% in CMJ as a result of WBV at 40 Hz but no significant change at other frequencies. This study demonstrates that for recreationally trained men, an acute 30-second bout of vertical WBV at 40 Hz and 8-mm peak-to-peak displacement significantly enhances explosive jumping performance in comparison to other frequencies. Acute vertical WBV for 30 seconds at 40 Hz may be incorporated into strength and conditioning training to enhance explosive power; however, the exact mechanisms for improvements remain to be elucidated and further well-controlled investigations on chronic WBV training and using well-trained athletes are recommended.  相似文献   

19.
Traumatic spinal cord injury (SCI) causes a loss of locomotor function with associated compromise of the musculo-skeletal system. Whole body vibration (WBV) is a potential therapy following SCI, but little is known about its effects on the musculo-skeletal system. Here, we examined locomotor recovery and the musculo-skeletal system after thoracic (T7-9) compression SCI in adult rats. Daily WBV was started at 1, 7, 14 and 28 days after injury (WBV1-WBV28 respectively) and continued over a 12-week post-injury period. Intact rats, rats with SCI but no WBV (sham-treated) and a group that received passive flexion and extension (PFE) of their hind limbs served as controls. Compared to sham-treated rats, neither WBV nor PFE improved motor function. Only WBV14 and PFE improved body support. In line with earlier studies we failed to detect signs of soleus muscle atrophy (weight, cross sectional diameter, total amount of fibers, mean fiber diameter) or bone loss in the femur (length, weight, bone mineral density). One possible explanation is that, despite of injury extent, the preservation of some axons in the white matter, in combination with quadripedal locomotion, may provide sufficient trophic and neuronal support for the musculoskeletal system.  相似文献   

20.
Whole body vibration (WBV) is one of the most vexing problems in industries. There is a debate about the effect of WBV exposure on hearing system as vibration-induced hearing loss. The purpose of this study was to investigate outer hair cells' (OHCs') hearing response hearing response to distortion product otoacoustic emissions (DPOAEs) in rabbits exposed to WBV. It was hypothesized that the DPOAE response amplitudes (A(dp)) in rabbits exposed to WBV would be lower than those in control rabbits not exposed to WBV. New Zealand white (NZW) rabbits as vibration group (n = 6, exposed to WBV in the z-axis at 4-8 Hz and 1.0 ms(-2) root mean square for 8 h per day during five consecutive days) and NZW rabbits as control group (n = 6, not exposed to any WBV) were participated. A(dp) and noise floor levels (L(nf)) were examined on three occasions: day 0 (i.e., baseline), day 8 (i.e., immediately 1 h after exposure), and day 11 (i.e., 72 h following exposure) with f(2) frequencies ranging from 500 to 10,000 Hz and primaries L(1) and L(2) levels of 65 and 55 dB sound pressure level, respectively. Main effects were statistically found to be significant for group, time, and frequency (p < 0.05). DPOAE amplitudes were significantly larger for rabbits exposed to WBV, larger on day 8 and larger for mid to high f(2) frequencies (at and above 5,888.50 Hz). Main effects were not statistically found to be significant for ear (p > 0.05). Also, four statistically significant interactions including time by ear, time by frequency, group by frequency, and group by time were detected (p < 0.05). Contrary to the main hypothesis, DPOAE amplitudes were significantly larger for rabbits exposed to WBV. WBV exposure significantly led to enhanced mean A(dp) at mid to high frequencies rather than at low ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号