首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The extent of DNA base sequence homology between entomopoxviruses (EPVs) from Lepidoptera, Orthoptera, and the vertebrate poxvirus Vaccinia was investigated by DNA-DNA hybridization. α-32P-Labeled DNA from Amsacta moorei EPV, Melanoplus sanguinipes EPV, and Vaccinia virus strain WR was hybridized with the DNA from six different entomopoxvirus isolates. Based on the thermal denaturation temperature of hybrid DNA molecules, approximately 54% base sequence homology was detected between Amsacta moorei and Euxoa auxiliaris EPV DNAs. Extensive DNA hybridization was detected between α-32P-labeled Melanoplus sanguinipes EPV DNA and DNA from Arphia conspirsa and Phoetaliotes nebrascensis entomopoxviruses. No base sequence homology was detected between vaccinia DNA and DNA from any of the entomopoxvirus isolates used in this study.  相似文献   

2.
Entomopoxvirus (EPV) occlusion bodies isolated from Arphia conspersa and Melanoplus sanguinipes grasshoppers were fed to 3rd and 4th instar Locusta migratoria nymphs. Locus mortality induced by A. conspersa EPV was first detected 18 days after addition of virus to the diet, and reached a level of approximately 68% of the colony population by 60 days after virus inoculation. In a similar population of L. migratoria nymphs, mortality induced by M. sanguinipes virus reached 90% 60 days after virus inoculation. Entomopoxvirus was isolated from M. sanguinipes EPV infected locust nymphs and the viral DNA was cleaved with several restriction endonucleases. The DNA fragment patterns obtained after agarose gel electrophoresis were compared with the fragment patterns from the original sample of M. sanguinipes EPV DNA cleaved with the same restriction endonucleases. No differences in the cleavage patterns were detected between the two virus DNA samples. Virus structural proteins of M. sanguinipes EPV purified from infected locust nymphs were compared by polyacrylamide gel electrophoresis with virus proteins isolated from the original sample of M. sanguinipes EPV. A total of six different virus protein bands were detected between the two poxvirus preparations.  相似文献   

3.
The structural proteins of Amsacta moorei, Euxoa auxiliaris, and Melanoplus sanguinipes entomopoxviruses (EPVs) were separated by electrophoresis on sodium dodecyl sulfate (SDS)-polyacrylamide gels. More than 35 structural proteins were detected in each virus. Based on the distribution and the variation in the molecular weights of the virus structural proteins little homology was detected between the EPVs and vaccinia virus. The molecular weight of Amsacta EPV occlusion body matrix protein (110,000) was determined by SDS-acrylamide gel electrophoresis. The occlusion body matrix protein of Amsacta EPV occluded virus isolated from infected E. acrea larvae was rapidly degraded at pH 10.6 to peptides of approximately 94,000 and 60,000 daltons. After 2 hr incubation at alkaline pH, Amsacta EPV occlusion body protein was degraded to approximately 56,000 daltons. Proteolysis of occlusion body protein was inhibited by SDS. No proteolytic degradation was detected in occlusion body matrix protein isolated from Amsacta EPV infected BTI-EAA cells. Amino acid analysis indicates that entomopoxvirus occlusion body matrix protein consists of approximately 20% acidic amino acids and 9% of the sulfur-containing amino acids cysteine and methionine.  相似文献   

4.
Extensive genomic heterogeneity was detected in the restriction endonuclease cleavage patterns of DNA from five entomopoxvirus isolates and vaccinia virus, strain WR. An 8.2 kilobase pair extra-chromosomal element was detected in Amsacta moorei entomopoxvirus and a 22 kilobase pair extra-chromosomal DNA element was isolated from Choristoneura biennis EPV. The extent of DNA base sequence homology was determined by Southern hybridization of HindIII and BamHI DNA restriction fragments of C. biennis EPV DNA and A. moorei EPV DNA with (α32P)-labeledA. moorei EPV DNA. Methylation of 5′-CmCGG-3′ sequences was not detected in the DNA of A. moorei, C. biennis, E. auxiliaris, M. sanguinipes, and A. conspersa entomopoxviruses after cleavage of the viral DNAs with MspI and HpaII restriction endonucleases. Based upon the DNA base sequence homology data presented here, the five entomopoxviruses used in this study appear to be unrelated.  相似文献   

5.
The DNA genome of the orthopteran entomopoxvirus (EPV) isolated from Melanoplus sanguinipes was released from the virus by treatment with proteinase K and sodium dodecyl sulfate (SDS). The average length of the virus DNA molecule was determined by electron microscopy to be 62.8 μm, corresponding to a molecular weight of 124.3 × 106 daltons (80 kb). The buoyant density of Melanoplus EPV DNA in cesium chloride was calculated to be 1.678 g/cm3, which corresponds to a base ratio of 18.6 mole% guanine + cytosine.  相似文献   

6.
Amsacta moorei entomopoxvirus DNA synthesis was detected in Estigmene acrea cells by [3H]thymidine incorporation 12 hr after virus inoculation. Hybridization of 32P-labeled Amsacta entomopoxvirus DNA to the DNA from virus-infected cells indicated that viral-specific DNA synthesis was initiated between 6 and 12 hr after virus inoculation. A rapid increase in the rate of virus DNA synthesis was detected from 12 to 24 hr after virus inoculation. Amsacta entomopoxvirus protein biosynthesis in E. acrea cells was studied by [su35S]methionine incorporation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Extracellular virus and virus-containing occlusion bodies were first detected in virus-infected cell cultures 18 hr after virus inoculation. Thirty-seven virus structural proteins, ranging in molecular weight from 13,000 to 208,000 were detected in both occluded and nonoccluded forms of the virus. The biosynthesis of virus structural proteins increased rapidly from 18 to 34 hr after infection. A major viral-induced protein corresponding in molecular weight to viral occlusion body protein (110,000) was detected approximately 24 hr after virus inoculation.  相似文献   

7.
The DNA of three baculoviruses propagated in larvae of a common host species (Heliothis zea) were easily distinguished from each other by their restriction endonuclease patterns. Molecular weights of 79.7 ± 7.3, 119.6 ± 5.1, and 86.6 ± 6.3 × 106 daltons were estimated for the viral genome of a single-embedded nucleopolyhedrosis virus isolated from Heliothis zea, a multiple-embedded nucleopolyhedrosis virus isolated from Heliothis armigera, and a granulosis virus isolated from Heliothis armigera, respectively.  相似文献   

8.
A cytoplasmic polyhedrosis virus (CPV) containing a segmented double-stranded RNA genome was isolated from Estigmene acrea larvae by isopycnic centrifugation in a sucrose density gradient. Ten double-stranded RNA segments with molecular weights (MW) from 2.8 to 0.67 × 106 were separated by agarose gel electrophoresis. A total of ten virus proteins ranging from 14,000 to 128,000 MW were detected after separation by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. A MW of 28,500 was determined for E. acrea CPV occlusion body protein.  相似文献   

9.
A biochemical and limited morphological characterization of an entomopoxvirus infecting the lesser cornstalk borer, Elasmopalpus lignosellus, was made. The oval virions measure 270 × 200 nm and the spheroids average 1.5 μm in diameter. Sodium dodecyl sulfate polyacrylamide gel electrophoresis elucidated 32 structural polypeptides with molecular weights ranging from 13,000 to 145,000. The viral genome was examined with the restriction endonuclease EcoRI. Gel electrophoresis of the digested DNA yielded 26 bands and a total molecular weight of 140.8 × 106.  相似文献   

10.
Four entomopathogenic bacteria contained extrachromosomal deoxyribonucleic acid (DNA) molecules of various sizes. Bacillus thuringiensis var. kurstaki contained twelve elements banding on agarose gels that ranged from 0.74 to > 50 × 106 daltons, three of which were giant extrachromosomal DNA elements. B. thuringiensis var. sotto contained one giant extrachromosomal DNA element with a molecular size of about 23.5 × 106 daltons and two lesser elements of 0.80 and 0.62 × 106 daltons. B. thuringiensis var. finitimus harbored two giant DNA elements corresponding to >50 × 106 daltons and two lesser bands with relative small size (0.98 and 0.97 × 106 daltons). B. popilliae contained no giant extrachromosomal DNA elements but did contain two smaller elements corresponding to 4.45 and 0.58 × 106 daltons. The possible use of extrachromosomal DNA elements that prove to be autonomous replicons for recombinant DNA studies is discussed.  相似文献   

11.
DNA fragments of several sizes have been produced by shearing E. coli DNA under different pressures. These fragments have been used to demonstrate that column chromatography on agarose Bio-Gel A-15M can provide a rapid, inexpensive fractionation and sizing method for single-stranded nucleic acids having masses between 105 and 106 daltons. Both chromatographic and electrophoretic analysis of the sheared DNA indicated that discrete fragment populations were produced at each shearing pressure and that these fragments were distributed essentially symmetrically around a mean piece size. The average molecular weight of the several DNA fragment distributions was determined electrophoretically by comparison with standard DNA fragments obtained from restriction endonuclease cleavage of SV40 viral DNA. The molecular weights of the denatured, sheared fragments (single-stranded) ranged from 1.25 × 105 to 7.4 × 105. The single-stranded DNA fragments were chromatographed over agarose Bio-Gel A-15M and a linear relationship was found to exist between the mobilities and logarithms of the molecular weights. Readily available tRNA, 5s RNA, and φX174 single-stranded circular DNA chromatographed at the extremes of the linear relationship and could be used to calibrate the column chromatography.  相似文献   

12.
13.
Nucleic Acid Homology of Murine Type-C Viral Genes   总被引:3,自引:3,他引:0       下载免费PDF全文
The nucleic acid sequence homology between various murine, endogenous type-C viruses (three host range classes of BALB/c virus, the AT-124 virus, and the CCL 52 virus) and two laboratory strains of murine leukemia virus (Rauscher and Kirsten) was determined by DNA:RNA hybridization. The viral sequences exhibit varying degrees of partial homology. DNA:DNA hybridizations were performed between [3H]DNA probes prepared from N- and X-tropic BALB/c endogenous viruses and cellular DNAs from BALB/c, NIH Swiss, and AKR inbred mouse strains as well as from California feral mice and the Asian mouse subspecies Mus musculus molossinus and M. musculus castaneus. All of these strains of mice are shown to possess multiple (six to seven per haploid genome), partially related copies of type-C virogenes in their DNAs. Thermal melting profiles of the DNA:RNA and DNA:DNA hybrids suggest that the partial homology of the viral nucleic acid sequences is the result of base alterations throughout the viral genomes, rather than the loss of discrete segments of viral sequences.  相似文献   

14.
The Genome of Melanoplus sanguinipes Entomopoxvirus   总被引:13,自引:0,他引:13       下载免费PDF全文
  相似文献   

15.
We have sequenced the 3′ end of five actin genomic clones and three actin complementary DNA clones from Dictyostelium. Comparison of the sequences shows that the protein coding regions are highly conserved, while the region corresponding to the 3′ untranslated regions are divergent. Additional analysis indicates regions of homology in the 3′ untranslated region between sets of actin genes. Southern DNA blot hybridization studies using labeled 3′ ends suggest that there are sub-families of actin genes that are related within the 3′ untranslated regions. No homology is found in the sequences outside the messenger RNA encoding regions. Analysis of the sequence data has shown that the difference in length between the ~1.25 × 103 and ~1.35 × 103 base actin messenger RNAs is in the lengths of the 3′ untranslated region.  相似文献   

16.
The titer of Amsacta entomopoxvirus (EPV) protein detected in murine L-929 cells by enzyme-linked immunosorbent assay (ELISA) decreased to within preimmune serum levels by 24 hr after inoculation of the virus which indicates that Amsacta EPV structural protein biosynthesis does not occur in the vertebrate cell line. A viral-induced protein of approximately 100,000 Mr was detected by [35S]methionine incorporation 4 hr after inoculation of Tn-368 cells with Amsacta EPV. Biosynthesis of protein which reacted with vaccina antiserum was detected in Estigmene acrea (BTI-EAA) cells by ELISA 10 hr after inoculation with 10 PFU of virus per cell. The amount of putative vaccinia structural protein detected in BTI-EAA cells increased approximately twofold by 70 hr after virus inoculation. No increase in vaccinia structural protein biosynthesis was detected in BTI-EAA cells inoculated with vaccinia virus previously inactivated by heat and UV light.  相似文献   

17.
Mitochondrial DNA (mtDNA) of Physarum polycephalum was isolated gently by CsCl centrifugation. The mtDNA was linear with molecular weights ranging from 25·106 to 45·106 and heterogeneous in size. Nevertheless, thermal transition profiles of the mtDNA suggested that this DNA fraction was more homogeneous than nuclear DNA. Exhaustive digestions of this DNA with restriction endonucleases yielded unique fragments, and then the total of their molecular weights of each digest was around 45·106. This value is equivalent to the maximum molecular weight estimated using electron microscopy and electrophoresis. Moreover, EcoRI digests of the mtDNA fractionated by the sucrose gradient showed unequimolar quantities of large fragments and a high background between bands. These results suggest that the mtDNA of Physarum has a homogeneous base sequence, and that the size heterogeneity of the mtDNA is attributable to degradation of the DNA under isolation procedures. The mtDNA was cleaved by EcoRI and XhoI to yield 16 and 7 fragments, respectively. A physical map of these fragments was constructed using the routine mapping procedures. The physical map showed that the mitochondrial genome of Physarum was linear with a molecular weight of 45·106. We concluded therefore that the mitochondrial nucleoid is a structure in which the homogeneous mtDNA is highly amplified.  相似文献   

18.
Serial passage of the non-defective form of a simian virus 40-like virus (DAR) isolated from human brain results in the appearance of three distinct classes of supercoiled DNAs: RI resistant, RI sensitive (one cleavage site) and RI “supersensitive” (three cleavage sites). The RI cleavage product of the “super sensitive” form is one-third the physical size of simian virus 40 DNA (10.4 S) and reassociates about three times more rapidly than “standard” viral DNA. To identify the portions of the DAR genome present in the 10.4 S segment, the plus strand of each of the 11 fragments of 32P-labeled simian virus 40 DNA, produced by cleavage with the Hemophilus influenzae restriction endonuclease, was hybridized in solution with the sheared RI cleavage product of the “supersensitive” class of viral DNA. Reaction was observed with fragments located in two distinct regions of the simian virus 40 genome: (1) Hin-A and C; (2) Hin-G, J, F and K.Further studies indicated that simian virus 40 complementary RNA transcribed in vitro with Escherichia coli RNA polymerase from one strand of simian virus 40 DNA reacts with both strands of the denatured 10.4 S cleavage product when hybridization is monitored with hydroxyapatite. Treatment of the 10.4 S DNA-simian virus 40 cRNA hybrid with the single-strand spcific nuclease, S1, converted approximately 50% of the radioactive counts to an acid-soluble product. These results indicate that the 10.4 S product contains a transposition of sequences originally present on one of the DAR DNA strands to the other strand. Examination of heteroduplexes formed between the 10.4 S segment and unique linear forms of DAR DNA produced with the R · Eco RI restriction endonuclease have confirmed these observations. Thus it appears that a molecular rearrangement(s) has resulted in the recombination and inversion of viral DNA sequences from two separate loci on the parental DAR genome. This 1.1 × 106 dalton segment is reiterated three times in a supercoiled molecule equivalent in physical size to parental DAR DNA.  相似文献   

19.
Twenty-eight Bam H 1 restriction fragments were isolated from normal mitochondrial DNA of maize by recombinant DNA techniques to investigate the organization of the mitochondrial genome. Each cloned fragment was tested by molecular hybridization against a Bam digest of total mitochondrial DNA. Using Southern transfers, we identified the normal fragment of origin for d each clone. Twenty-three of the tested clones hybridized only to the fragment from which the clone was derived. In five cases, labeling of an additional band indicated some sequence repetition in the mitochondrial genome. Four clones from normal mitochondrial DNA were found which share sequences with the plasmid-like DNAs, S-1 and S-2, found in S male sterile cytoplasm. The total sequence complexity of the clones tested is 121×106 d (daltons), which approximates two thirds of the total mitochondrial genome (estimated at 183×106 d). Most fragments do not share homology with other fragments, and the total length of unique fragments exceeds that of the largest circular molecules observed. Therefore, the different size classes of circular molecules most likely represent genetically discrete chromosomes in a complex organelle genome. The variable abundance of different mitochondrial chromosomes is of special interest because it represents an unusual mechanism for the control of gene expression by regulation of gene copy number. This mechanism may play an important role in metabolism or biogenesis of mitochondria in the development of higher plants.  相似文献   

20.
A baculovirus was isolated from larvae of Condylorrhiza vestigialis (Guenée) (Lepidoptera: Crambidae), a pest of a forest species known as Poplar (family Salicaceae, genus: Populus) with high economic value. Electron microscopy analysis of the occlusion body obtained from diseased larvae showed polyhedra containing multiple nucleocapsids per envelope. This baculovirus was thus named Condylorrhiza vestigialis multiple nucleopolyhedrovirus (CoveMNPV) and characterized by its DNA restriction endonuclease pattern, polyhedral protein, viral protein synthesis, and infectivity in insect cell lines. Restriction endonuclease profiles of viral DNA digested with five restriction enzymes were obtained and the CoveMNPV genome size was estimated to be 81 ± 2.5 kbp. The isolation of the polyhedra (OBs) was done from the crude extract of infected larvae by ultracentrifugation through sucrose gradients. These viral particles were analyzed by denaturing polyacrylamide gel electrophoresis (SDS-PAGE), which showed a strong band with approximately 33 kDa, corresponding to the main protein of the occlusion bodies (polyhedrin). Also, a similar band was observed for CoveMNPV infected Spodoptera frugiperda cells (SF-21 AE) pulse-labeled with [35S] methionine and fractionated by SDS-PAGE. Of the four insect cell lines tested for susceptibility to CoveMNPV infection, the SF-21 AE was the most susceptible with occlusion bodies produced in most of the inoculated cells. This is the first record of an NPV from C. vestigialis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号