首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A low-cost and effective iron-chelated catalyst was developed as an electrocatalyst for the oxygen reduction reaction (ORR) in microbial fuel cells (MFCs). The catalyst was prepared by pyrolyzing carbon mixed iron-chelated ethylenediaminetetraacetic acid (PFeEDTA/C) in an argon atmosphere. Cyclic voltammetry measurements showed that PFeEDTA/C had a high catalytic activity for ORR. The MFC with a PFeEDTA/C cathode produced a maximum power density of 1122 mW/m2, which was close to that with a Pt/C cathode (1166 mW/m2). The PFeEDTA/C was stable during an operation period of 31 days. Based on X-ray diffraction and X-ray photoelectron spectroscopy measurements, quaternary-N modified with iron might be the active site for the oxygen reduction reaction. The total cost of a PFeEDTA/C catalyst was much lower than that of a Pt catalyst. Thus, PFeEDTA/C can be a good alternative to Pt in MFC practical applications.  相似文献   

2.
Yuan Y  Zhao B  Jeon Y  Zhong S  Zhou S  Kim S 《Bioresource technology》2011,102(10):5849-5854
Amino-functionalized multi-walled carbon nanotube (a-MWCNT)-supported iron phthalocyanine (FePc) (a-MWCNT/FePc) has been investigated as a catalyst for the oxygen reduction reaction (ORR) in an air-cathode single-chambered microbial fuel cell (MFC). Cyclic and linear sweep voltammogram are employed to investigate the electrocatalytic activity of the a-MWCNT/FePc for ORR. The maximum power density of 601 mW m−2 is achieved from a MFC with the a-MWCNT/FePc cathode, which is the highest energy output compared to those MFCs with other materials supported FePc, such as carbon black, pristine MWCNT (p-MWCNT), carboxylic acid functionalized MWCNT (c-MWCNT), and even with a Pt/C cathode. Furthermore, cyclic voltammetry performed on the a-MWCNT/FePc electrode suggests that the a-MWCNT/FePc has an electrochemical activity for ORR via a four-electron pathway in a neutral pH solution. This work provides a potential alternative to Pt in MFCs for sustainable energy generation.  相似文献   

3.
Luo Y  Zhang R  Liu G  Li J  Qin B  Li M  Chen S 《Bioresource technology》2011,102(4):3827-3832
In this study, the microbial fuel cell (MFC) was combined with the Fenton-like technology to simultaneously generate electricity and degrade refractory contaminants in both anode and cathode chambers. The maximum power density achieved was 15.9 W/m3 at an initial pH of 3.0 in the MFC. In the anode chamber, approximately 100% of furfural and 96% COD were removed at the end of a cycle. In the cathode chamber, the Fenton-like reaction with FeVO4 as a catalyst enhanced the removal of AO7 and COD. The removal rates of AO7 and COD reached 89% and 81%, respectively. The optimal pH value and FeVO4 dosage toward degrading AO7 were about 3.0 and 0.8 g, respectively. Furthermore, a two-way catalyst mechanism of FeVO4 and the contaminant degradation pathway in the MFC were explored.  相似文献   

4.
Two different microbial fuel cell (MFC) configurations were investigated for electricity production from ethanol and methanol: a two-chambered, aqueous-cathode MFC; and a single-chamber direct-air cathode MFC. Electricity was generated in the two-chamber system at a maximum power density typical of this system (40+/-2 mW/m2) and a Coulombic efficiency (CE) ranging from 42% to 61% using ethanol. When bacteria were transferred into a single-chamber MFC known to produce higher power densities with different substrates, the maximum power density increased to 488+/-12 mW/m2 (CE = 10%) with ethanol. The voltage generated exhibited saturation kinetics as a function of ethanol concentration in the two-chambered MFC, with a half-saturation constant (Ks) of 4.86 mM. Methanol was also examined as a possible substrate, but it did not result in appreciable electricity generation. Analysis of the anode biofilm and suspension from a two-chamber MFC with ethanol using 16S rDNA-based techniques indicated that bacteria with sequences similar to Proteobacterium Core-1 (33.3% of clone library sequences), Azoarcus sp. (17.4%), and Desulfuromonas sp. M76 (15.9%) were significant members of the anode chamber community. These results indicate that ethanol can be used for sustained electricity generation at room temperature using bacteria on the anode in a MFC.  相似文献   

5.
Ammonia losses during swine wastewater treatment were examined using single- and two-chambered microbial fuel cells (MFCs). Ammonia removal was 60% over 5 days for a single-chamber MFC with the cathode exposed to air (air-cathode), versus 69% over 13 days from the anode chamber in a two-chamber MFC with a ferricyanide catholyte. In both types of systems, ammonia losses were accelerated with electricity generation. For the air-cathode system, our results suggest that nitrogen losses during electricity generation were increased due to ammonia volatilization with conversion of ammonium ion to the more volatile ammonia species as a result of an elevated pH near the cathode (where protons are consumed). This loss mechanism was supported by abiotic tests (applied voltage of 1.1 V). In a two-chamber MFC, nitrogen losses were primarily due to ammonium ion diffusion through the membrane connecting the anode and cathode chambers. This loss was higher with electricity generation as the rate of ammonium transport was increased by charge transfer across the membrane. Ammonia was not found to be used as a substrate for electricity generation, as intermittent ammonia injections did not produce power. The ammonia-oxidizing bacterium Nitrosomonas europaea was found on the cathode electrode of the single-chamber system, supporting evidence of biological nitrification, but anaerobic ammonia-oxidizing bacteria were not detected by molecular analyses. It is concluded that ammonia losses from the anode chamber were driven primarily by physical-chemical factors that are increased with electricity generation, although some losses may occur through biological nitrification and denitrification.  相似文献   

6.
Microbial fuel cell (MFC) can generate electricity from organic substances based on anodic electrochemically active microorganisms and cathodic oxygen reduction reaction (ORR), thus exhibiting promising potential for harvesting electric energy from organic wastewater. The ORR performance is crucial to both power production efficiency and overall cost of MFC. A new type of metal‐organic‐framework‐derived electrocatalysts containing cobalt and nitrogen‐doped carbon (CoNC) is developed, which is effective to enhance activity, selectivity, and stability toward four‐electron ORR in pH‐neutral electrolyte. When glucose is used as the substrate, the maximum power density of 1665 mW m?2 is achieved for the optimized CoNC pyrolyzed at 900 °C, which is 39.8% higher than that of 1191 mW m?2 for commercial Pt/C catalyst in the single‐chamber MFC. The improved performance of CoNC catalyst can be attributed to large surface area, microporous nature, and the involvement of nitrogen‐coordinated cobalt species. These properties enable the efficient ORR by increasing the active sites and enhancing mass transfer of oxygen and protons at “water‐flooding” three‐phase boundary where ORR occurs. This work provides a proof‐of‐concept demonstration of a noble‐metal‐free high‐efficiency and cost‐effective ORR electrocatalyst for effective recovery of electricity from biomass materials and organic wastewater in MFC.  相似文献   

7.
A two-chambered microbial fuel cell (MFC) with potassium ferricyanide as its electron acceptor was utilized to degrade excess sewage sludge and to generate electricity. Stable electrical power was produced continuously during operation for 250 h. Total chemical oxygen demand (TCOD) of sludge was reduced by 46.4% when an initial TCOD was 10,850 mg/l. The MFC power output did not significantly depend on process parameters such as substrate concentration, cathode catholyte concentration, and anodic pH. However, the MFC produced power was in close correlation with the soluble chemical oxygen demand (SCOD) of sludge. Furthermore, ultrasonic pretreatment of sludge accelerated organic matter dissolution and, hence, TCOD removal rate in the MFC was increased, but power output was insignificantly enhanced. This study demonstrates that this MFC can generate electricity from sewage sludge over a wide range of process parameters.  相似文献   

8.
Co-naphthalocyanine (CoNPc) was prepared by heat treatment for cathode catalysts to be used in microbial fuel cells (MFCs). Four different catalysts (Carbon black, NPc/C, CoNPc/C, Pt/C) were compared and characterized using XPS, EDAX and TEM. The electrochemical characteristics of oxygen reduction reaction (ORR) were compared by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The Co-macrocyclic complex improves the catalyst dispersion and oxygen reduction reaction of CoNPc/C. The maximum power of CoNPc/C was 64.7 mW/m2 at 0.25 mA as compared with 81.3 mW/m2 of Pt/C, 29.7 mW/m2 of NPc/C and 9.3 mW/m2 of carbon black when the cathodes were implemented in H-type MFCs. The steady state cell, cathode and anode potential of MFC with using CoNPc/C were comparable to those of Pt/C.  相似文献   

9.
Because of the advantages of low cost, good electrical conductivity and high oxidation resistance, nitrogen-doped carbon (NDC) materials have a potential to replace noble metals in microbial fuel cells (MFCs) for wastewater treatment. In spite of a large volume of studies on NDC materials as catalysts for oxygen reduction reaction, the influence of sulfide on NDC materials has not yet been explicitly reported so far. In this communication, nitrogen-doped carbon powders (NDCP) were prepared by treating carbon powders in nitric acid under reflux condition. Sodium sulfide (Na(2)S) was added to the cathodic electrolyte to compare its effects on platinum (Pt) and NDCP cathodes. Cell voltages, power density and cathodic potentials were monitored without and with Na(2)S and after Na(2)S was removed. The maximum cell voltage of the MFCs with Pt cathode decreased by 10% in the presence of Na(2)S that did not change the performance of the MFC with NDCP cathode, and the maximum power density of the MFC with NDCP cathode was even 11.3% higher than that with Pt cathode (222.5 ± 8 mW m(-2) vs. 199.7 ± 4 mW m(-2)).  相似文献   

10.
Simultaneous carbon and nitrogen removal using loop configuration microbial fuel cell (MFC) with relatively large size of 5 L was investigated in this study. Four MFC reactors were constructed with a loop configuration to eliminate the pH gradient, and the reactor performance was examined with different separators and cathode materials. The performance of the reactors in terms of electricity generation and contaminant removal rate was examined. Results showed that a maximum power density of 1415.6 mW/m3 (The empty bed volume of anode chamber) was obtained at a current density of 3258.5 mA/m3 with cation exchange membrane as separator and graphite felt (Pt coated) as cathode using the piggery wastewater as feed, and the organic removal rate obtained was approximately 0.523 kg COD/m3/d (total anode chamber) with nitrogen removal rate of 0.194 kg N/m3/d (total cathode chamber).  相似文献   

11.
《Process Biochemistry》2010,45(6):929-934
The aim of this study is to compare the performance of different membrane cathode assembly (MCA) and cloth-cathode assembly (CCA) in air-chamber microbial fuel cells (MFCs) and provide an optimum cathode configuration for MFC scaling up. Two MCAs were prepared by hot-pressing carbon cloth containing cathodic catalyst to anion exchange membrane (AEM) and cation exchange membrane (CEM), respectively. A CCA was built by coating GORE-TEX® cloth with a mixture of nickel-based conductive paint and cathodic catalyst. Under the fed-batch mode using brewery wastewater, the MFCs were compared with respect to power production, coulombic efficiency, COD removal, internal resistance and material cost. The experimental results show that CCA is a more favorable alternative than MCAs due to its easier preparation, higher maximum power density and COD removal, and lower internal resistance and cost. The optimum cathode assembly of CCA is cost-effective and mechanically robust enough to meet the important requirements for MFC scalability.  相似文献   

12.
A microbial fuel cell (MFC) was optimized in terms of MFC design factors and operational parameters for continuous electricity production using artificial wastewater (AW). The performance of MFC was analyzed through the polarization curve method under different conditions using a mediator-less MFC. The highest power density of 0.56 W/m2 was achieved with AW of 300 mg/l fed at the rate of 0.53 ml/min at 35 degrees C. The power per unit cell working volume was 102 mW/l, which was over 60 times higher than those reported in the previous mediator-less MFCs which did not use a cathode or an anode mediator. The power could be stably generated over 2 years.  相似文献   

13.
产电微生物及微生物燃料电池最新研究进展   总被引:4,自引:0,他引:4  
新型产电微生物(Electricigens)的发现,使得微生物燃料电池概念的内涵发生了根本性的变化,展现了广阔的应用前景。这种微生物能够以电极作为唯一电子受体,把氧化有机物获得的电子通过电子传递链传递到电极产生电流,同时微生物从中获得能量而生长。这种代谢被认为是一种新型微生物呼吸方式。以这种新型微生物呼吸方式为基础的微生物燃料电池可以同时进行废水处理和生物发电,有望可以把废水处理发展成一个有利可图的产业,是MFC最有发展前景的方向。  相似文献   

14.
Yang S  Jia B  Liu H 《Bioresource technology》2009,100(3):1197-1202
In order to analyze the effect of cathode's Pt loading side on the performance of single-chamber microbial fuel cells (MFCs), power generation of a bamboo charcoal membrane-less air-cathode MFC was examined. The maximum power outputs obtained were 0.144 and 1.16 mW, while the maximum voltage outputs were 0.400 and 0.500 V (external resistance was 500 Omega), respectively, when the Pt loading side facing to the air and to the anode chamber solution; after a long time of operation with the side of cathode loaded Pt facing to anode chamber solution, a biofilm was developed on the inner side of cathode. With the formation of this biofilm, the power outputs of MFC increased first, and then decreased to 0.8 mW; oxidation-reduction potentials (ORP) dropped first, and then achieved the level of stability. Coulombic efficiency (CE) increased at a certain extent. In addition, the impact of cathode-biofilm on the loss of water in anode chamber solution was determined.  相似文献   

15.
测试阳极液和阴极液的pH值和电导率的变化情况, 分析微生物燃料电池(MFC)的产电过程和能量利用情况, 为改善MFC的性能提供理论依据。试验结果表明: 随着MFC的运行, 阳极液的pH值和电导率呈现下降的趋势, 阴极液的pH值和电导率呈现上升的趋势, 阴极液的pH值比阳极液的pH值大约高0.30?0.50, 阳极液和阴极液的平均电导率变化不大。MFC稳定运行时, 欧姆内阻为29.69 Ω, 极限电流为2.69 mA, 最大输出功率约为0.8 mW, 对应的内阻约为95.72 Ω。铁氰化钾的质量传输是极限电流的限制性因素。能量分析发现, MFC阳极液中91.1%的葡萄糖被其他微生物消耗, 仅有8.9%的葡萄糖用来发电; 而用来发电的葡萄糖的88.5%的能量转化为其他形式的能量, 仅有11.5%的能量转化为电能。  相似文献   

16.

Objectives

Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source.

Results

This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m?3. At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m?3 and 18.8 g COD m?3 h?1, respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450–600 to 350–370 Ω.

Conclusions

Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.
  相似文献   

17.
Soils are rich in organics, particularly those that support growth of plants. These organics are possible sources of sustainable energy, and a microbial fuel cell (MFC) system can potentially be used for this purpose. Here, we report the application of an MFC system to electricity generation in a rice paddy field. In our system, graphite felt electrodes were used; an anode was set in the rice rhizosphere, and a cathode was in the flooded water above the rhizosphere. It was observed that electricity generation (as high as 6 mW/m2, normalized to the anode projection area) was sunlight dependent and exhibited circadian oscillation. Artificial shading of rice plants in the daytime inhibited the electricity generation. In the rhizosphere, rice roots penetrated the anode graphite felt where specific bacterial populations occurred. Supplementation to the anode region with acetate (one of the major root-exhausted organic compounds) enhanced the electricity generation in the dark. These results suggest that the paddy-field electricity-generation system was an ecological solar cell in which the plant photosynthesis was coupled to the microbial conversion of organics to electricity.  相似文献   

18.
Three types of manganese dioxide, α-MnO(2), β-MnO(2), γ-MnO(2) were tested as alternative cathode catalysts for oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). Prepared by solution-based methods, the MnO(2) nanomaterials were comprehensively characterized, and their electrocatalytic activities in neutral electrolyte were investigated with the supporting material of carbon nanotubes (CNTs) by cyclic voltammetry (CV). The CV results showed that all MnO(2) species could catalyze ORR in neutral NaCl solution with different catalytic activities. β-MnO(2) had the highest catalytic activity due to its intrinsic structure and better interaction with CNTs. Three MnO(2) species were further used as cathode catalysts under optimized conditions in air-cathode cubic MFCs, in which mixed culture was inoculated as biocatalysts and domestic wastewater was used as the substrate in the anode chamber. It was also found that β-MnO(2) based MFC yielded the best performance with a power density of 97.8 mWm(-2) which was 64.1% that of the Pt-based MFC, and a lower internal resistance of 165 Ω. Furthermore, the COD removal efficiency of β-MnO(2) based MFC was estimated as 84.8%, higher than that of the Pt-based MFC. This study demonstrated that using β-MnO(2) on CNT support instead of Pt could potentially improve the feasibility of scaling up air-cathode MFCs for practical applications by lowering the material cost.  相似文献   

19.
Fei Zhang  Zhen He 《Process Biochemistry》2012,47(12):2146-2151
This study presented a dual-cathode microbial fuel cell (MFC) that was designed to accomplish nitrification in its outer cathode and denitrification in the inner cathode. The MFC was continuously operated for more than 150 days and achieved organic removal of 85–99% in the anode, depending on the initial organic loading rates. More than 96% of the ammonium was removed, while the total nitrogen removal was between 66.7 and 89.6%, largely affected by the remaining nitrate in the effluent of the inner cathode. The coulombic efficiency suggested that the nitrate was primarily removed by bioelectrochemcial denitrification in the inner cathode, especially at the low nitrogen loading rates. However, a higher nitrogen loading rate encouraged nitrate migration through the anion exchange membrane, thereby being removed by conventional denitrification. The preliminary energy analysis suggested that the energy production in the dual-cathode MFC could potentially support its pumping system. To achieve an energy-neutral system, aeration must be omitted in the future design and passive oxygen supply should be considered with a proper design of the outer cathode. Those results demonstrated the feasibility of using a tubular dual-cathode MFC to remove both organics and nitrogen while producing electricity.  相似文献   

20.
Microbial fuel cells (MFCs) are remarkable “green energy” devices that exploit microbes to generate electricity from organic compounds. MFC devices currently being used and studied do not generate sufficient power to support widespread and cost-effective applications. Hence, research has focused on strategies to enhance the power output of the MFC devices, including exploring more electrochemically active microbes to expand the few already known electricigen families. However, most of the MFC devices are not compatible with high throughput screening for finding microbes with higher electricity generation capabilities. Here, we describe the development of a microfabricated MFC array, a compact and user-friendly platform for the identification and characterization of electrochemically active microbes. The MFC array consists of 24 integrated anode and cathode chambers, which function as 24 independent miniature MFCs and support direct and parallel comparisons of microbial electrochemical activities. The electricity generation profiles of spatially distinct MFC chambers on the array loaded with Shewanella oneidensis MR-1 differed by less than 8%. A screen of environmental microbes using the array identified an isolate that was related to Shewanella putrefaciens IR-1 and Shewanella sp. MR-7, and displayed 2.3-fold higher power output than the S. oneidensis MR-1 reference strain. Therefore, the utility of the MFC array was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号