首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
野生动物的自然行为受当地家畜影响。作为与家畜共享一个栖息地、并具有挖掘行为的兔形目高原鼠兔,其行为也受当地高原家畜影响。本文采用了Poisson回归分析方法,确定牦牛、不同土地利用对高原鼠兔行为频次的影响。结果显示觅食、移动频次是高原鼠兔的主要行为频次。在冬季牦牛觅食地高原鼠兔觅食行为频次高于警戒行为频次。相反,在夏季,无论是在牦牛觅食地还是在其夜宿地,高原鼠兔警戒行为的频次高于觅食行为频次。高原鼠兔行为也受不同土地利用、植被覆盖度以及季节因素的影响。植被覆盖度与觅食频次成反比,植被覆盖度高的生境高原鼠兔觅食较少,相反,植被覆盖度较低生境觅食行为频繁。另外当前牧民的定居化趋势造成局域放牧过度,加速了土地荒漠化。因此本文也认为,季节性传统游牧模式对于草地可持续发展具有重要意义。  相似文献   

2.
Aim Wildlife and pastoral peoples have lived side‐by‐side in the Mara ecosystem of south‐western Kenya for at least 2000 years. Recent changes in human population and landuse are jeopardizing this co‐existence. The aim of the study is to determine the viability of pastoralism and wildlife conservation in Maasai ranches around the Maasai Mara National Reserve (MMNR). Location A study area of 2250 km2 was selected in the northern part of the Serengeti‐Mara ecosystem, encompassing group ranches adjoining the MMNR. Emphasis is placed on Koyake Group Ranch, a rangeland area owned by Maasai pastoralists, and one of Kenya's major wildlife tourism areas. Methods Maasai settlement patterns, vegetation, livestock numbers and wildlife numbers were analysed over a 50‐year period. Settlement distributions and vegetation changes were determined from aerial photography and aerial surveys of 1950, 1961, 1967, 1974, 1983 and 1999. Livestock and wildlife numbers were determined from re‐analysis of systematic reconnaissance flights conducted by the Kenya Government from 1977 to 2000, and from ground counts in 2002. Corroborating data on livestock numbers were obtained from aerial photography of Maasai settlements in 2001. Trends in livestock were related to rainfall, and to vegetation production as indicated by the seasonal Normalized Difference Vegetation Index. With these data sets, per capita livestock holdings were determined for the period 1980–2000, a period of fluctuating rainfall and primary production. Results For the first half of the twentieth century, the Mara was infested with tsetse‐flies, and the Maasai were confined to the Lemek Valley area to the north of the MMNR. During the early 1960s, active tsetse‐control measures by both government and the Maasai led to the destruction of woodlands across the Mara and the retreat of tsetse flies. The Maasai were then able to expand their settlement area south towards MMNR. Meanwhile, wildebeest (Connochaetes taurinus) from the increasing Serengeti population began to spill into the Mara rangelands each dry season, leading to direct competition between livestock and wildlife. Group ranches were established in the area in 1970 to formalize land tenure for the Maasai. By the late 1980s, with rapid population growth, new settlement areas had been established at Talek and other parts adjacent to the MMNR. Over the period 1983–99, the number of Maasai bomas in Koyake has increased at 6.4% per annum (pa), and the human population at 4.4% pa. Over the same period, cattle numbers on Koyake varied from 20,000 to 45,000 (average 25,000), in relation to total rainfall received over the previous 2 years. The rangelands of the Mara cannot support a greater cattle population under current pastoral practices. Conclusions With the rapid increase in human settlement in the Mara, and with imminent land privatization, it is probable that wildlife populations on Koyake will decline significantly in the next 3–5 years. Per capita livestock holdings on the ranch have now fallen to three livestock units/reference adult, well below minimum pastoral subsistence requirements. During the 1980s and 90s the Maasai diversified their livelihoods to generate revenues from tourism, small‐scale agriculture and land‐leases for mechanized cultivation. However, there is a massive imbalance in tourism incomes in favour of a small elite. In 1999 the membership of Koyake voted to subdivide the ranch into individual holdings. In 2003 the subdivision survey allocated plots of 60 ha average size to 1020 ranch members. This land privatization may result in increased cultivation and fencing, the exclusion of wildlife, and the decline of tourism as a revenue generator. This unique pastoral/wildlife system will shortly be lost unless land holdings can be managed to maintain the free movement of livestock and wildlife.  相似文献   

3.
姚雪玲  李龙  王锋  刘书润  吴波  郭秀江 《生态学报》2020,40(5):1663-1671
浑善达克沙地榆树疏林是分布于草原地带的隐域植被类型,相较周边的典型草原区,其植被更加茂密,乔灌丛生,水草丰美,千百年来一直是牧民的优质冬季牧场。近半个世纪以来,因人类的过度开垦以及不合理的放牧管理,浑善达克沙地植被遭到空前的破坏,沙丘活化,载畜能力降低,生态价值和经济价值严重受损。近年来,随着国家草畜平衡以及禁牧政策的推广落实,放牧的牲畜总量得到一定程度的遏制,然而大面积草场还在继续退化。在牧民对生产生活的基本需求下,牲畜总量不可能无限制的压制。另外,适度的放牧对草原生态系统健康是有益的。因此,如何改良放牧方式,合理利用草场,在保持生态良好的基础上合理发挥草场的畜牧价值,是我们亟待探索的问题。以浑善达克沙地的典型天然植被榆树疏林为例,对不同放牧方式下的植被进行调查,基于沙地特殊的基质和植被特征,探讨适合沙地的放牧利用方式。研究表明,在相似的放牧强度下,把沙地作为冬营地,其榆树种群更新正常,植被覆盖度以及植物种类等均能保持良好,而把沙地作为夏季营地,榆树疏林植被退化严重,具体表现为:(1)榆树种群自然更新受阻;(2)灌木群落大量死亡或消失;(3)草本覆盖度显著降低,植物种类减少,多年生草本比例减少,一、二年生草本比例增加;(4)裸沙面积增加,沙丘趋于活化。本研究认为目前沙地植被的退化主要由不合理的放牧引起,并非气候因素所致。沙地适合于冬季放牧而不适合其他季节放牧。借鉴牧民的传统放牧方式,建议配合周边的典型草原区实行季节性倒场放牧,仅将沙地作为冬季营地使用,既能有效保护沙地植被又能充分发挥其畜牧价值。  相似文献   

4.
We investigated the vegetation structure and density of game birds along a successional gradient created by varying intensity of human settlement in a pastoral community in Shompole group ranch in southern Kenya. We examined four habitat types including heavily-grazed grass in currently occupied settlements, short grass in seasonal settlements, patches of bushed woodland in settlement sites that had been abandoned up to 30 years ago, and tall grass in a wildlife sanctuary. Vegetation biomass was the highest in the sanctuary where livestock are excluded and the lowest in the vicinity of currently occupied settlements. Abundance of doves ( Oena spp . and Streptopelia spp. ) was best associated with moderate grazing and per cent green grass, which provide good foraging opportunities. Francolin and spurfowl ( Francolinus spp .) were positively associated with vegetation biomass. Quail ( Coturnix spp .) were positively associated with tree cover. These data reflect the importance of maintaining a balance of wildlife and livestock grazing with patches of ungrazed grasslands and bushed woodlands in providing a mosaic of habitats that support a diverse population of game birds. The results have wide application for an integrated management approach to livestock, wildlife and game bird management in the savannas.  相似文献   

5.
Changes in species distributions open novel parasite transmission routes at the human–wildlife interface, yet the strength of biotic and biogeographical factors that prevent or facilitate parasite host shifting are not well understood. We investigated global patterns of helminth parasite (Nematoda, Cestoda, Trematoda) sharing between mammalian wildlife species and domestic mammal hosts (including humans) using >24,000 unique country‐level records of host–parasite associations. We used hierarchical modelling and species trait data to determine possible drivers of the level of parasite sharing between wildlife species and either humans or domestic animal hosts. We found the diet of wildlife species to be a strong predictor of levels of helminth parasite sharing with humans and domestic animals, followed by a moderate effect of zoogeographical region and minor effects of species’ habitat and climatic niches. Combining model predictions with the distribution and ecological profile data of wildlife species, we projected global risk maps that uncovered strikingly similar patterns of wildlife parasite sharing across geographical areas for the different domestic host species (including humans). These similarities are largely explained by the fact that widespread parasites are commonly recorded infecting several domestic species. If the dietary profile and position in the trophic chain of a wildlife species largely drives its level of helminth parasite sharing with humans/domestic animals, future range shifts of host species that result in novel trophic interactions may likely increase parasite host shifting and have important ramifications for human and animal health.  相似文献   

6.
Land‐use change is considered a major driver of biodiversity loss. In the western part of the Tarangire–Manyara ecosystem, we assessed large mammal species richness along a land‐use gradient (national park, uninhabited pastoral area and settled pastoral‐ and farmland). We found the highest species richness in the national park and in the pastoral area and lowest species richness in the settled and farmed area. There was little evidence of seasonal changes in species diversity. Except for top‐order carnivores, all functional feeding guilds were still represented in pastoral and settled areas. Although we did not find significant differences in body mass distributions and species’ representation of feeding guilds between the study sites, there was a trend that omnivores, mesopredators and top‐order carnivores tended to occur at lower species richness in agricultural areas than in the pastoral and fully protected areas. These results indicate that areas used for livestock keeping can maintain high wildlife species richness and that direct and indirect effects of agricultural and settlement expansions are the main drivers of species richness loss in the Tarangire–Manyara ecosystem and possibly other African savannah ecosystems. These results are useful for informed land‐use planning that aims to maintain species diversity and ecological connectivity between protected areas.  相似文献   

7.
The impacts of domesticated herbivores on ecosystems that did not evolve with mammalian grazing can profoundly influence community composition and trophic interactions. Also, such impacts can occur over long time frames by altering successional vegetation trajectories. Removal of domesticated herbivores to protect native biota can therefore lead to unexpected consequences at multiple trophic levels for native and non-native species. In the eastern South Island of New Zealand large areas of seral grassland–shrubland have had livestock (sheep and cattle) removed following changes in land tenure. The long-term (>10 years) outcomes for these communities are complex and difficult to predict: land may return to a native-dominated woody plant community or be invaded by exotic plants and mammals. We quantified direct and indirect effects of livestock removal on this ecosystem by comparing plant and invasive mammal communities at sites where grazing by livestock ceased c.10–35 years ago (conservation sites) with paired sites where pastoralism has continued to the present (pastoral sites). There was higher total native plant richness and reduced richness of exotic plants on conservation sites compared with pastoral sites. Further, there were differences in the use of conservation and pastoral sites by invasive mammals: rabbits and hedgehogs favoured sites grazed by livestock whereas house mice, brushtail possums and hares favoured conservation sites. Changes in the relative abundance of invasive mammal species after removal of domesticated livestock may compromise positive outcomes for conservation in successional plant communities with no evolutionary history of mammalian grazing.  相似文献   

8.
Riparian savanna habitats grazed by hippopotamus or livestock experience seasonal ecological stresses through the depletion of herbaceous vegetation, and are often points of contacts and conflicts between herbivores, humans and their livestock. We investigated how hippopotamus and livestock grazing influence vegetation structure and cover and facilitate other wild herbivores in the Mara region of Kenya. We used 5 km-long transects, each with 13 plots measuring 10 × 10 m2, and which radiate from rivers in the Masai Mara National Reserve and adjoining community pastoral ranches. For each plot, we measured the height and visually estimated the percent cover of grasses, forbs, shrubs and bare ground, herbivore abundance and species richness. Our results showed that grass height was shortest closest to rivers in both landscapes, increased with increasing distance from rivers in the reserve, but was uniformly short in the pastoral ranches. Shifting mosaics of short grass lawns interspersed with patches of medium to tall grasses occurred within 2.5 km of the rivers in the reserve in areas grazed habitually by hippos. Hence, hippo grazing enhanced the structural heterogeneity of vegetation but livestock grazing had a homogenizing effect in the pastoral ranches. The distribution of biomass and the species richness of other ungulates with distance from rivers followed a quadratic pattern in the reserve, suggesting that hippopotamus grazing attracted more herbivores to the vegetation patches at intermediate distances from rivers in the reserve. However, the distribution of biomass and the species richness of other ungulates followed a linear pattern in the pastoral ranches, implying that herbivores avoided areas grazed heavily by livestock in the pastoral ranches, especially near rivers.  相似文献   

9.
Habitat management within and outside protected areas is a key to effective conservation of wildlife. This is particularly vital for declining wildlife populations within the boundary of conservation areas, while sharing their potential habitat range with foraging livestock. In an effort to understand the habitat selection by Himalayan musk deer (Moschus chrysogaster) and explore any potential impacts of livestock grazing, we conducted the present study in a conservation area of central Nepal Himalaya. We recorded data on musk deer and livestock presence and absence (based on signs of fecal pellet, footprint, and resting site) along the elevational transect with associated topographic features (elevation, slope, aspect, distance to water, and vantage point distance) and vegetation features (tree spp., shrub spp., herb spp., and canopy-cover). Using logistic regression model we found that elevation, aspect, canopy-cover, and tree spp. in the area significantly affect the likelihood of habitat selection by musk deer. In particular, they selected the southern aspect of the area with elevation  3529 m, canopy-cover  42%, and with stands of Pinus spp. and Abies spp. Slope and canopy-cover significantly affected the foraging area selection by livestock. They selected the gentler slopes in the northern aspect of the area with altitude < 3529 m and canopy-cover < 42%. Also, presence of one group of herbivore (i.e. musk deer and livestock) was not found to affect the likelihood of habitat selection by the other group. These independent habitat selections are possibly the responses to morphological and behavioral adaptations than to impacts and interactions between these two groups of herbivores. We suggest to avoid any disturbances and livestock grazing on the area that disrupt the resources and conditions likely selected and occupied by musk deer population.  相似文献   

10.
Livestock grazing affects over 60% of the world's agricultural lands and can influence rangeland ecosystem services and the quantity and quality of wildlife habitat, resulting in changes in biodiversity. Concomitantly, livestock grazing has the potential to be detrimental to some wildlife species while benefiting other rangeland organisms. Many imperiled grouse species require rangeland landscapes that exhibit diverse vegetation structure and composition to complete their life cycle. However, because of declining populations and reduced distributions, grouse are increasingly becoming a worldwide conservation concern. Grouse, as a suite of upland gamebirds, are often considered an umbrella species for other wildlife and thus used as indicators of rangeland health. With a projected increase in demand for livestock products, better information will be required to mitigate the anthropogenic effects of livestock grazing on rangeland biodiversity. To address this need, we completed a data‐driven and systematic review of the peer‐reviewed literature to determine the current knowledge of the effects of livestock grazing on grouse populations (i.e., chick production and population indices) worldwide. Our meta‐analysis revealed an overall negative effect of livestock grazing on grouse populations. Perhaps more importantly, we identified an information void regarding the effects of livestock grazing on the majority of grouse species. Additionally, the reported indirect effects of livestock grazing on grouse species were inconclusive and more reflective of differences in the experimental design of the available studies. Future studies designed to evaluate the direct and indirect effects of livestock grazing on wildlife should document (i) livestock type, (ii) timing and frequency of grazing, (iii) duration, and (iv) stocking rate. Much of this information was lacking in the available published studies we reviewed, but is essential when making comparisons between different livestock grazing management practices and their potential impacts on rangeland biodiversity.  相似文献   

11.
Facilitating coexistence between people and wildlife is a major conservation challenge in East Africa. Some conservation models aim to balance the needs of people and wildlife, but the effectiveness of these models is rarely assessed. Using a case‐study approach, we assessed the ecological performance of a pastoral area in northern Tanzania (Manyara Ranch) and established a long‐term wildlife population monitoring program (carried out intermittently from 2003 to 2008 and regularly from 2011 to 2019) embedded in a distance sampling framework. By comparing density estimates of the road transect‐based long‐term monitoring to estimates derived from systematically distributed transects, we found that the bias associated with nonrandom placement of transects was nonsignificant. Overall, cattle and sheep and goat reached the greatest densities and several wildlife species occurred at densities similar (zebra, wildebeest, waterbuck, Kirk's dik‐dik) or possibly even greater (giraffe, eland, lesser kudu, Grant's gazelle, Thomson's gazelle) than in adjacent national parks in the same ecosystem. Generalized linear mixed models suggested that most wildlife species (8 out of 14) reached greatest densities during the dry season, that wildlife population densities either remained constant or increased over the 17‐year period, and that herbivorous livestock species remained constant, while domestic dog population decreased over time. Cross‐species correlations did not provide evidence for interference competition between grazing or mixed livestock species and wildlife species but indicate possible negative relationships between domestic dog and warthog populations. Overall, wildlife and livestock populations in Manyara Ranch appear to coexist over the 17‐year span. Most likely, this is facilitated by existing connectivity to adjacent protected areas, effective anti‐poaching efforts, spatio‐temporal grazing restrictions, favorable environmental conditions of the ranch, and spatial heterogeneity of surface water and habitats. This long‐term case study illustrates the potential of rangelands to simultaneously support wildlife conservation and human livelihood goals if livestock grazing is restricted in space, time, and numbers.  相似文献   

12.
Innovative conservation tools are greatly needed to reduce livelihood losses and wildlife declines resulting from human–carnivore conflict. Spatial risk modeling is an emerging method for assessing the spatial patterns of predator–prey interactions, with applications for mitigating carnivore attacks on livestock. Large carnivores that ambush prey attack and kill over small areas, requiring models at fine spatial grains to predict livestock depredation hot spots. To detect the best resolution for predicting where carnivores access livestock, we examined the spatial attributes associated with livestock killed by tigers in Kanha Tiger Reserve, India, using risk models generated at 20, 100, and 200‐m spatial grains. We analyzed land‐use, human presence, and vegetation structure variables at 138 kill sites and 439 random sites to identify key landscape attributes where livestock were vulnerable to tigers. Land‐use and human presence variables contributed strongly to predation risk models, with most variables showing high relative importance (≥0.85) at all spatial grains. The risk of a tiger killing livestock increased near dense forests and near the boundary of the park core zone where human presence is restricted. Risk was nonlinearly related to human infrastructure and open vegetation, with the greatest risk occurring 1.2 km from roads, 1.1 km from villages, and 8.0 km from scrubland. Kill sites were characterized by denser, patchier, and more complex vegetation with lower visibility than random sites. Risk maps revealed high‐risk hot spots inside of the core zone boundary and in several patches in the human‐dominated buffer zone. Validation against known kills revealed predictive accuracy for only the 20 m model, the resolution best representing the kill stage of hunting for large carnivores that ambush prey, like the tiger. Results demonstrate that risk models developed at fine spatial grains can offer accurate guidance on landscape attributes livestock should avoid to minimize human–carnivore conflict.  相似文献   

13.
Conflict between people and wildlife is a major issue in both wildlife conservation and rural development. In African rangelands, species such as African wild dogs (Lycaon pictus), cheetahs (Acinonyx jubatus), lions (Panthera leo), leopards (Panthera pardus), and spotted hyaenas (Crocuta crocuta) may kill livestock and are therefore themselves killed by local pastoralists. Such conflict has led to the extirpation of these species from many areas, and also impacts the livelihoods of local livestock farmers. To investigate the possibilities for coexistence of people, livestock, and large predators in community rangelands, we measured the effectiveness of traditional livestock husbandry in reducing depredation by wild carnivores, using a case–control approach. Different measures were effective against different predator species but, overall, the risk of predator attack by day was lowest for small herds, accompanied by herd dogs as well as human herders, grazing in open habitat. By night, the risk of attack was lowest for herds held in enclosures (‘bomas’) with dense walls, pierced by few gates, where both men and domestic dogs were present. Unexpectedly, the presence of scarecrows increased the risks of attack on bomas. Our findings suggest that improvements to livestock husbandry can contribute to the conservation and recovery of large carnivores in community rangelands, although other measures such as prey conservation and control of domestic dog diseases are also likely to be necessary for some species.  相似文献   

14.
Human–carnivore conflict is a primary driver of carnivore declines worldwide and resolving these conflicts is a conservation priority. However, resources to mitigate conflicts are limited and should be focused on areas of highest priority. We conducted 820 semistructured interviews with community members living within Kenya's Maasai Mara ecosystem. A multiscale analysis was used to determine the influence of husbandry and environmental factors on livestock depredation inside livestock enclosures (bomas). Areas with a high proportion of closed habitat and protected areas had the highest risk of depredation. Depredation was most likely to occur at weak bomas and at households where there were fewer dogs. We used the results to identify potential conflict hotspots by mapping the probability of livestock depredation across the landscape. 21.4% of the landscape was classified as high risk, and within these areas, 53.4% of the households that were interviewed had weak bomas. Synthesis and applications. With limited resources available to mitigate human–carnivore conflicts, it is imperative that areas are identified where livestock is most at risk of depredation. Focusing mitigation measures on high‐risk areas may reduce conflict and lead to a decrease in retaliatory killings of predators.  相似文献   

15.
Maasai pastoralists in Kenya are rapidly diversifying. Maasai may now derive their main livelihoods (and sometimes considerable income) from farming, wildlife tourism, and/or the leasing of land for large-scale cereal cultivation. The spread of large-scale commercial cultivation competes with wildlife for grazing land, and wildlife populations around protected areas are rapidly declining as a result. This paper presents new data to analyse the way returns from different land uses, and the social structures affecting their distribution, influence the land-use choices being made by Maasai around the Mara National Reserve in Kenya. Returns to different interest groups from livestock, cultivation, and wildlife enterprises, seen in the light of current social, economic, and political trajectories, can help to clarify likely future land-use trends in the Mara. In particular, community conservation initiatives that seek to make conservation worthwhile to reserve-adjacent dwellers inevitably have a strong economic dimension. However, the choices made by Maasai landowners are not a simple function of the economic returns potentially accruing from a particular enterprise. They are as much or more influenced by who is able to control the different flows of returns from these different types of enterprise. These findings are relevant not only for the wider Serengeti-Mara Ecosystem, but also for pastoral livelihoods and wildlife conservation elsewhere in sub-Saharan Africa.  相似文献   

16.
Assessing the drivers of survival across the annual cycle is important for understanding when and how population limitation occurs in migratory animals. Density‐dependent population regulation can occur during breeding and nonbreeding periods, and large‐scale climate cycles can also affect survival throughout the annual cycle via their effects on local weather and vegetation productivity. Most studies of survival use mark–recapture techniques to estimate apparent survival, but true survival rates remain obscured due to unknown rates of permanent emigration. This is especially problematic when assessing annual survival of migratory birds, whose movement between breeding attempts, or breeding dispersal, can be substantial. We used a multistate approach to examine drivers of annual survival and one component of breeding dispersal (habitat‐specific movements) in a population of American redstarts (Setophaga ruticilla) over 11 years in two adjacent habitat types. Annual survival displayed a curvilinear relation to the Southern Oscillation Index, with lower survival during La Niña and El Niño conditions. Although redstart density had no impact on survival, habitat‐specific density influenced local movements between habitat types, with redstarts being less likely to disperse from their previous year's breeding habitat as density within that habitat increased. This finding was strongest in males and may be explained by conspecific attraction influencing settlement decisions. Survival was lowest in young males, but movement was highest in this group, indicating that apparent survival rates were likely biased low due to permanent emigration. Our findings demonstrate the utility of examining breeding dispersal in mark–recapture studies and complement recent work using spatially explicit models of dispersal probability to obtain greater accuracy in survival estimates.  相似文献   

17.
Wildlife habitats in pastoral lands adjoining protected areas in east African savannas are getting progressively degraded, fragmented and compressed by expanding human populations and intensification of land use. To understand the consequences of these influences on wildlife populations, we contrasted the density and demography of 13 wild and three domestic large herbivores between the Masai Mara National Reserve and the adjoining pastoral ranches using aerial surveys conducted in the wet and dry seasons during 1977–2010. Species of different body sizes and feeding styles had different densities between landscapes and seasons. Small-sized herbivores, requiring short, nutritious grasses, and browsers were more abundant in the ranches than the reserve in both seasons. Medium-sized herbivores moved seasonally between landscapes. Larger-bodied herbivores, requiring bulk forage but less susceptible to predation, were more abundant in the reserve than the ranches. The proportions of newborn warthog (Phacochoerus africanus) and juvenile topi (Damaliscus korrigum) were higher in the ranches, with shorter grasses and lower predation risk than in the reserve. These results suggest that pastoral lands adjoining protected areas in African savannas are important as seasonal dispersal and breeding grounds for wild herbivores. However, human population growth and dramatic land use changes are progressively degrading wildlife habitats in pastoral areas, thus restricting the seasonal wildlife dispersal movements between the protected areas and adjoining pastoral lands. Conservation efforts should focus on (1) creating and maintaining functional heterogeneity in protected areas that mimic moderate pastoral grazing conditions to attract small and medium-bodied grazers and (2) securing dispersal areas, including corridors, to ensure continued seasonal large herbivore movements between protected and pastoral systems.  相似文献   

18.
This paper presents data on the impact of biotic pressure in terms of grazing by livestock and wood cutting by humans on the plant community in the Nilgiri Biosphere Reserve of India. Grass, and herbaceous plant biomass, number of cattle dung piles, number of woody stems available and damaged by human activities and weed biomass were assessed at different proximity along transects radiating from village-forest boundary to forest interior to measure the ecological impact of livestock grazing and fire wood collection. The grass biomass was positively correlated to overgrazing indicating the adverse effect on natural vegetation by cattle. Woodcutting was intense along the forest boundary and significantly declined as distance increased. Similarly, weed biomass and number of thorny species declined positively with proximity from village-forest boundary and the weed biomass was significantly higher in the pastoral sites compared to residential sites. The results suggest that human impact adversely affects natural vegetation and promotes weed proliferation in forest areas adjoining human settlements in the ecologically important Nilgiri Biosphere Reserve. Continued anthropogenic pressure could cause reduction in fodder availability to large herbivores like elephants, which in turn leads to an increase in human–elephant conflict.  相似文献   

19.
Large vertebrate herbivores, as well as plant–soil feedback interactions are important drivers of plant performance, plant community composition and vegetation dynamics in terrestrial ecosystems. However, it is poorly understood whether and how large vertebrate herbivores and plant–soil feedback effects interact. Here, we study the response of grassland plant species to grazing‐induced legacy effects in the soil and we explore whether these plant responses can help us to understand long‐term vegetation dynamics in the field. In a greenhouse experiment we tested the response of four grassland plant species, Agrostis capillaris, Festuca rubra, Holcus lanatus and Rumex acetosa, to field‐conditioned soils from grazed and ungrazed grassland. We relate these responses to long‐term vegetation data from a grassland exclosure experiment in the field. In the greenhouse experiment, we found that total biomass production and biomass allocation to roots was higher in soils from grazed than from ungrazed plots. There were only few relationships between plant production in the greenhouse and the abundance of conspecifics in the field. Spatiotemporal patterns in plant community composition were more stable in grazed than ungrazed grassland plots, but were not related to plant–soil feedbacks effects and biomass allocation patterns. We conclude that grazing‐induced soil legacy effects mainly influenced plant biomass allocation patterns, but could not explain altered vegetation dynamics in grazed grasslands. Consequently, the direct effects of grazing on plant community composition (e.g. through modifying light competition or differences in grazing tolerance) appear to overrule indirect effects through changes in plant–soil feedback.  相似文献   

20.
Biased research and conservation efforts result in some faunal groups (e.g., small felids) being understudied, and hence these groups are often declining without adequate knowledge to manage for threat reduction. The Pallas's cat (Otocolobus manul) occurs across central and western Asia with declining populations and the largest population is likely in Mongolia. A potential threat to this felid is livestock encroachment across its range, including within protected areas, yet we lack a clear understanding of the impact of livestock husbandry on this cat. We used motion-sensitive camera data from 216 sites in 4 study areas in western Mongolia to study the occurrence probability of Pallas's cat in relation to habitat characteristics and occurrence of livestock, and conducted a local assessment within a strictly protected area where we obtained the highest number of detections. We estimated a relatively low occupancy (0.33 ± 0.10), which is associated with sites with natural vegetation, steeper slopes, and greater prey abundance. Occupancy also increased with increasing livestock occurrence, particularly large herds of sheep and goats. Such co-occurrence was partially adjusted by diel activity segregation, presumably to limit direct encounters. Our results suggest that the preferred habitat by Pallas's cat in the study region coincides with areas encroached by livestock. The Pallas's cat's habitat is specialized and its dependence on areas that are increasingly used for grazing may eventually threaten the cat with habitat degradation, prey depletion, predation by dogs, and poisoning from pest control. Relevant conservation actions should regulate livestock encroachment within protected areas and improve grazing regimes. The Pallas's cat is an indicator species of mountainous and steppe ecosystems in central Asia; hence, further research towards the preservation of its populations would also benefit other key species across its range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号