首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
SUMMARY. 1. Vertical profiles of pH were measured at nine shallow water (<5m) locations in Esthwaite Water. These indicate strong gradients of pH near the sediment water interface suggesting a marked buffering capacity of the sediments.
2. Thirteen littoral sediment cores were horizontally sectioned and sequentially extracted (0.5 M NaHCO3, 0.1 M NaOH, 1 M HCI) and analysed for soluble reactive phosphorus. The core sections were also analysed for total phosphorus and per cent organic content to determine the vertical and areal variability of phosphorus within the littoral sediments of Esthwaite Water.
3. The rate of release of phosphorus from intact sediment cores was measured in the laboratory as a function of the pH of overlying water, yielding the relationship log K=0.54 pH−3.94, K=mg Pm−2day−1. The maximum release rate measured was 75 mg P m−2 day−2 at pH = 10.5.
4. Experiments on sediment slurries indicate that the release of phosphorus at pH 10 is rapid with approximately 50% of the total NaHCO3+ NaOH extractable phosphorus being released within 3 h.
5. Phosphorus release from the littoral sediments may equal or exceed external sources plus hypolimnetic inputs during periods of high pH associated with times of maximum algal biomass.  相似文献   

3.
Rates of methane emission from intact cores were measured during anoxic dark and oxic light and dark incubations. Rates of methane oxidation were calculated on the basis of oxic incubations by using the anoxic emissions as an estimate of the maximum potential flux. This technique indicated that methane oxidation consumed up to 91% of the maximum potential flux in peat sediments but that oxidation was negligible in marl sediments. Oxygen microprofiles determined for intact cores were comparable to profiles measured in situ. Thus, the laboratory incubations appeared to provide a reasonable approximation of in situ activities. This was further supported by the agreement between measured methane fluxes and fluxes predicted on the basis of methane profiles determined by in situ sampling of pore water. Methane emissions from peat sediments, oxygen concentrations and penetration depths, and methane concentration profiles were all sensitive to light-dark shifts as determined by a combination of field and laboratory analyses. Methane emissions were lower and oxygen concentrations and penetration depths were higher under illuminated than under dark conditions; the profiles of methane concentration changed in correspondence to the changes in oxygen profiles, but the estimated flux of methane into the oxic zone changed negligibly. Sediment-free, root-associated methane oxidation showed a pattern similar to that for methane oxidation in the core analyses: no oxidation was detected for roots growing in marl sediment, even for roots of Cladium jamaicense, which had the highest activity for samples from peat sediments. The magnitude of the root-associated oxidation rates indicated that belowground plant surfaces may not markedly increase the total capacity for methane consumption. However, the data collectively support the notion that the distribution and activity of methane oxidation have a major impact on the magnitude of atmospheric fluxes from the Everglades.  相似文献   

4.
Achromatium oxaliferum is a large, morphologically conspicuous, sediment-dwelling bacterium. The organism has yet to be cultured in the laboratory, and very little is known about its physiology. The presence of intracellular inclusions of calcite and sulfur have given rise to speculation that the bacterium is involved in the carbon and sulfur cycles in the sediments where it is found. Depth profiles of oxygen concentration and A. oxaliferum cell numbers in a freshwater sediment revealed that the A. oxaliferum population spanned the oxic-anoxic boundary in the top 3 to 4 cm of sediments. Some of the A. oxaliferum cells resided at depths where no oxygen was detectable, suggesting that these cells may be capable of anaerobic metabolism. The distributions of solid-phase and dissolved inorganic sulfur species in the sediment revealed that A. oxaliferum was most abundant where sulfur cycling was most intense. The sediment was characterized by low concentrations of free sulfide. However, a comparison of sulfate reduction rates in sediment cores incubated with either oxic or anoxic overlying water indicated that the oxidative and reductive components of the sulfur cycle were tightly coupled in the A. oxaliferum-bearing sediment. A positive correlation between pore water sulfate concentration and A. oxaliferum numbers was observed in field data collected over an 18-month period, suggesting a possible link between A. oxaliferum numbers and the oxidation of reduced sulfur species to sulfate. The field data were supported by laboratory incubation experiments in which sodium molybdate-treated sediment cores were augmented with highly purified suspensions of A. oxaliferum cells. Under oxic conditions, rates of sulfate production in the presence of sodium molybdate were found to correlate strongly with the number of cells added to sediment cores, providing further evidence for a role for A. oxaliferum in the oxidation of reduced sulfur.  相似文献   

5.
SUMMARY. 1. The exchange of phosphorus between the epilimnetic (shallow zone) sediment and water column in Lough Ennell was investigated in laboratory experiments using five intact cores.
2. Variations in water mixing, sediment suspension and aerobic–anaerobic oxygen status in the water column and its effects on sediment phosphorus release rates were determined.
3. Experimental results indicated that phosphorus release is possible under both aerobic and anaerobic conditions. Aerobic release (0.025 mg P l−1 over 5 days) was possible up to the point when mass resuspension of sediment occurred. Anaerobic release for the same period and mixing conditions was 0.183 mg Pl−1.
4. The release rate under aerobic conditions at 10°C equates to an internal areal loading of 0.134 g P m−2 yr−1, which is approximately 17% and 30% of the average total phosphorus and orthophosphate loadings respectively for the period 1974–79.
5. The results clearly implicate aerobic inorganic phosphorus release from the epilimnetic sediments as a significant source of this nutrient to the overlying water column and is likely a major factor in the continuing eutrophic status in the lake.  相似文献   

6.
The capacity of a lake to remove reactive nitrogen (N) through denitrification has important implications both for the lake and for downstream ecosystems. In large oligotropic lakes such as Lake Superior, where nitrate (NO3 ?) concentrations have increased steadily over the past century, deep oxygen penetration into sediments may limit the denitrification rates. We tested the hypothesis that the position of the redox gradient in lake sediments affects denitrification by measuring net N-fluxes across the sediment–water interface for intact sediment cores collected across a range of sediment oxycline values from nearshore and offshore sites in Lake Superior, as well as sites in Lake Huron and Lake Erie. Across this redox gradient, as the thickness of the oxygenated sediment layer increased from Lake Erie to Lake Superior, fluxes of NH4 + and N2 out of the sediment decreased, and sediments shifted from a net sink to a net source of NO3 ?. Denitrification of NO3 ? from overlying water decreased with thickness of the oxygenated sediment layer. Our results indicate that, unlike sediments from Lake Erie and Lake Huron, Lake Superior sediments do not remove significant amounts of water column NO3 ? through denitrification, likely as a result of the thick oxygenated sediment layer.  相似文献   

7.
SUMMARY 1. A field study was made of the spatial distribution of denitrification activity in the sediment of the River Dorn, Oxfordshire, England.
2. An assay of denitrifying enzyme activity was used to examine the distribution of denitrification with depth in cores of sediment representative of the types found in the stream. The maximum activity recorded in a predominantly silt sediment core was 5 times greater than that recorded in a sandy gravel core. In both fine sand and silt cores, peaks in denitrifier enzyme activity were shown to correspond to the limit of the nitrate diffusion front. At this depth the redox potential dropped rapidly from + 300 mV to 0 or less. Denitrifying enzyme activity in the stream water was negligible.
3. In situ denitrification activity (I DA) measurements were carried out in an 800 m reach of the Dorn using the acetylene inhibition technique on small sediment cores. Concurrent measurements were also made of stream depth and velocity, nitrate concentration in the interstitial water, and the wet bulk density, loss on ignition, mineraliz- able carbon and total nitrogen contents of the sediment. Mineralizable carbon was the variable which showed the best correlation with I DA. Highest IDAs were associated with accumulations of fine-grained sediment at meander bends. Mean IDAs measured under flood conditions were significantly higher ( P <0.05) than those measured under baseflow. It was estimated that denitrification reduced the nitrate load in the River Dorn by 15% under summer baseflow conditions  相似文献   

8.
Denitrifying activity in a sediment from the freshwater part of a polluted estuary in northwest Europe was quantified using two independent approaches. High-resolution N(2)O microprofiles were recorded in sediment cores to which acetylene was added to the overlying water and injected laterally into the sediment. The vertical distribution of the rate of denitrification supported by nitrate uptake from the overlying water was then derived from the time series N(2)O concentration profiles. The rates obtained for the core incubations were compared to the rates predicted by a forward reactive transport model, which included rate expression for denitrification calibrated with potential rate measurements obtained in flowthrough reactors containing undisturbed, 1-cm-thick sediment slices. The two approaches yielded comparable rate profiles, with a near-surface, 2- to 3-mm narrow zone of denitrification and maximum in situ rates on the order of 200 to 300 nmol cm(-3) h(-1). The maximum in situ rates were about twofold lower than the maximum potential rate for the 0- to 1-cm depth interval of the sediment, indicating that in situ denitrification was nitrate limited. The experimentally and model-derived rates of denitrification implied that there was nitrate uptake by the sediment at a rate that was on the order of 50 (+/- 10) nmol cm(-2) h(-1), which agreed well with direct nitrate flux measurements for core incubations. Reactive transport model calculations showed that benthic uptake of nitrate at the site is particularly sensitive to the nitrate concentration in the overlying water and the maximum potential rate of denitrification in the sediment.  相似文献   

9.
The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns: the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment-water interface.  相似文献   

10.
Microelectrode oxygen profiles were measured in intertidal sediments from Ria Formosa (S. Portugal), a very productive shallow coastal lagoon. Four intertidal sampling sites were selected according to different sediment characteristics. Individual profiles revealed a high degree of lateral variability on a centimeter spatial scale. Nevertheless, consistent differences were observed between oxygen profiles measured in atmosphere-exposed and inundated intertidal sediments: in organically poor sand oxygen-penetration depth varied from 3 mm in inundated cores to more than 7 mm in exposed ones, while in organically rich muddy sand and mud it remained between 0.5–2.0 mm. The oxygen input from inundated to exposed conditions was estimated for each sampling site. Semi-diurnal tidal fluctuation, leading to periodical atmospheric exposure of sediments plays a major role in the oxygenation process of intertidal zones of Ria Formosa.  相似文献   

11.
Internal waves (seiches) are well-studied physical processes in stratified lakes, but their effects on sediment porewater chemistry and microbiology are still largely unexplored. Due to pycnocline oscillations, sediments are exposed to recurrent changes between epilimnetic and hypolimnetic water. This results in strong differences of environmental conditions, which should be reflected in the responses of redox-sensitive biogeochemical processes at both, the sediment–water interface and deeper sediment layers. We tested in a series of mesocosm experiments the influence of seiche-induced redox changes on porewater chemistry and bacterial activity in the sediments under well controlled conditions. Thereby, we excluded effects of changes in current and temperature regimes. For a period of 10 days, intact sediment cores from oligotrophic Lake Stechlin were incubated under constant (either oxic or anoxic) or alternating redox conditions. Solute concentrations were measured as porewater profiles in the sediment, while microbial activity was determined in the upper 0.5 cm of sediment. Oxic and alternating redox conditions resulted in similar ammonium, phosphate, and methane porewater concentrations, while concentrations of each analyte were considerably higher in anoxic cores. Microbial activity was clearly lower in the anoxic cores than in the oxic and the alternating cores. In conclusion, cores with intermittent anoxic phases of up to 24 hours do not differ in biogeochemistry and microbial activities from static oxic sediments. However, due to various physical processes seiches cause oxygen to penetrate deeper into sediment layers, which affects sediment redox gradients and increase microbial activity in seiche-influenced sediments.  相似文献   

12.
Amano  Koji  Fukushima  Takehiko  Nakasugi  Osami 《Hydrobiologia》1992,235(1):491-499
Linear alkylbenzenesulfonate (LAS) was detected in a 0–30 cm deep sediment column collected in Lake Teganuma (one of the most polluted lakes in Japan). The range of the LAS concentration in sediments was between 0.1 and 500 µg g–1 (C11-C14 homologs per dry solid) and its vertical profile showed a seasonal variation. A mathematical model, which includes a diffusion term and a biodegradation term, was used to simulate the temporal variation of LAS in the sediment column and to calculate the diffusive flux rate of LAS across the sediment/water interface. An averaged diffusion coefficient of 2.4 × 10–5 cm2 s–1 for the sediment interstitial water was obtained from sediment core samples located in Lake Teganuma. The biodegradation rate constant (0.002 d–1) of LAS in the sediment obtained from the model analysis was considerably less than that reported for LAS in anaerobic waters. These results confirm that a model describing diffusive transport and biodegradation of LAS in the sediments can simulate the temporal variation of LAS in near surface sediments. The diffusive flux rate from overlying water to bottom sediment was calculated to be between –0.20 and 0.52 (C11-C14 LAS) mg m–2 h–1 and the annual net flux rate was 0.7 g m–2 y–1.  相似文献   

13.
Sorption of phosphate by sediments as a result of enhanced external loading   总被引:3,自引:3,他引:0  
In artificial test ditches, originally poor in nutrients, the effects of enhanced external loading with phosphorus were studied. An important term in the mass balance of phosphorus is retention by sediment. Parameters concerning the uptake of phosphorus by the sandy sediment of a ditch have been measured or were obtained from curve-fitting and were used in a mathematical model to describe diffusion into the sediment and subsequent sorption by soil particles.On a time scale of hours uptake of phosphorus from the overlying water by intact sediment cores could be simulated well with a simple diffusion-adsorption model. Mixing of the overlying water resulted in an enhanced uptake rate caused by an increased effective diffusion coefficient in the top layer of the sediment.Laboratory experiments revealed that after a fast initial adsorption, a slow uptake process followed that continued for a period of at least several months. This slow sorption can immobilize a substantial part of the phosphorus added. It may physically be described as an intraparticular diffusion process, in which the adsorbed phosphate penetrates into metaloxides, probably present as sand grain coating, and thereby reaches sorption sites not immediately accessible otherwise.The total sorption capacity of the soil particles is ca. 3.3 times the maximum instantaneous surficial adsorption capacity.  相似文献   

14.
In this paper we describe a sediment microcosm system consisting of 20 undisturbed, layered sediment cores with overlying site water which are incubated under identical conditions of temperature, light, stirring rate of overlying water, and water exchange rate. Ecosystem parameters (nutrient level, photosynthetic potential, community structure of heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients) of the laboratory microcosms and the source ecosystem were compared and shown to be indistinguishable for the first 2 weeks. In weeks 3 and 4, small differences were detectable in the nutrient level, community structure of heterotrophic bacteria, and thymidine incorporation rate. However, the photosynthetic potential, depth profiles of heterotrophic bacterial community structure, and oxygen microgradients were maintained throughout the incubation period and did not differ between laboratory microcosms and the source ecosystem. The microcosm system described here would thus appear to be a valid model of aquatic sediments for up to 4 weeks; the actual period would depend on the sediment source and incubation temperature. The validated systems were used with Rhine river sediment to assess possible effects on ecosystem parameters of Pseudomonas sp. strain B13 FR1(pFRC20P), a genetically engineered microorganism (GEM) that had been constructed to degrade mixtures of halo- and alkylbenzoates and -phenols. The GEM survived in the surface sediment at densities of 5 x 10(4) to 5 x 10(5)/g (dry weight) for 4 weeks and degraded added chloro- and methylaromatics. The GEM did not measurably influence ecosystem parameters such as photosynthesis, densities of selected heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients. Thus, the microcosm system described here would seem to be useful for the study of the ecology of biodegradation and the fate and effect of microorganisms introduced into the environment.  相似文献   

15.
Microelectrodes were used to measure oxygen profiles and local mass transfer coefficient profiles in biofilm clusters and interstitial voids. Both profiles were measured at the same location in the biofilm. From the oxygen profile, the effective diffusive boundary layer thickness (DBL) was determined. The local mass transfer coefficient profiles provided information about the nature of mass transport near and within the biofilm. All profiles were measured at three different average flow velocities, 0.62, 1.53, and 2.60 cm sec-1, to determine the influence of flow velocity on mass transport. Convective mass transport was active near the biofilm/liquid interface and in the upper layers of the biofilm, independent of biofilm thickness and flow velocity. The DBL varied strongly between locations for the same flow velocities. Oxygen and local mass transfer coefficient profiles collected through a 70 micrometer thick cluster revealed that a cluster of that thickness did not present any significant mass transport resistance. In a 350 micrometer thick biofilm cluster, however, the local mass transfer coefficient decreased gradually to very low values near the substratum. This was hypothetically attributed to the decreasing effective diffusivity in deeper layers of biofilms. Interstitial voids between clusters did not seem to influence the local mass transfer coefficients significantly for flow velocities of 1.53 and 2.60 cm sec-1. At a flow velocity of 0.62 cm sec-1, interstitial voids visibly decreased the local mass transfer coefficient near the bottom.  相似文献   

16.
In this paper we describe a sediment microcosm system consisting of 20 undisturbed, layered sediment cores with overlying site water which are incubated under identical conditions of temperature, light, stirring rate of overlying water, and water exchange rate. Ecosystem parameters (nutrient level, photosynthetic potential, community structure of heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients) of the laboratory microcosms and the source ecosystem were compared and shown to be indistinguishable for the first 2 weeks. In weeks 3 and 4, small differences were detectable in the nutrient level, community structure of heterotrophic bacteria, and thymidine incorporation rate. However, the photosynthetic potential, depth profiles of heterotrophic bacterial community structure, and oxygen microgradients were maintained throughout the incubation period and did not differ between laboratory microcosms and the source ecosystem. The microcosm system described here would thus appear to be a valid model of aquatic sediments for up to 4 weeks; the actual period would depend on the sediment source and incubation temperature. The validated systems were used with Rhine river sediment to assess possible effects on ecosystem parameters of Pseudomonas sp. strain B13 FR1(pFRC20P), a genetically engineered microorganism (GEM) that had been constructed to degrade mixtures of halo- and alkylbenzoates and -phenols. The GEM survived in the surface sediment at densities of 5 x 10(4) to 5 x 10(5)/g (dry weight) for 4 weeks and degraded added chloro- and methylaromatics. The GEM did not measurably influence ecosystem parameters such as photosynthesis, densities of selected heterotrophic bacteria, thymidine incorporation rate, and oxygen microgradients. Thus, the microcosm system described here would seem to be useful for the study of the ecology of biodegradation and the fate and effect of microorganisms introduced into the environment.  相似文献   

17.
华尔  李佳  董洁  徐风风  张志南 《生态学报》2012,32(13):3975-3986
以青岛砂质潮间带自由生活海洋线虫为研究对象,建立微型受控生态系,研究缺氧对海洋线虫群落结构和垂直分布的影响,以及环境复氧后海洋线虫群落的恢复能力。研究结果显示,海洋线虫是耐低氧的小型底栖动物类群,可通过垂直迁移来耐受缺氧造成的不利条件。但是,海洋线虫通过主动迁出而耐受缺氧条件的特性具有种的区别。研究中Pseudosteineria sp1、Rhynchonema sp1等海洋线虫通过向有氧环境的主动迁移耐受缺氧条件;Thalassironus sp1却可通过自身耐受机制抵御缺氧条件,在缺氧生境中仍能保持较高的丰度。此外,研究结果显示,当表层海洋线虫暴露于缺氧环境时,其总丰度显著降低,种类组成发生改变。Pseudosteineria sp1对缺氧环境较为敏感,可暂时性地离开沉积物进入水层;而沉积物溶解氧恢复正常后,该种可以重新回到沉积物中。Daptonema sp1成熟个体及其幼龄个体对缺氧均具有较高的耐受性,是缺氧群落的绝对优势种。D.sp3则表现出对缺氧环境较高的敏感性。环境恢复正常,线虫群落丰度及多样性增加,Neochromadora sp1和Spilophorella sp1等具有机会种的特点,首先表现出丰度和繁殖能力的增加。但是线虫群落种类组成在受测时间内并未能完全恢复,群落结构的恢复需要更长的时间。  相似文献   

18.
Large areas of the Baltic Sea bottoms suffer from low oxygen conditions and anoxia, impoverishing the benthic macrofauna. The important macrofaunal function bioturbation, which improves the transport of oxygen into the sediment does not occur in an absence of benthic macrofauna. The objective of this study was to investigate if a semi-pelagic species, like the mysid crustacean Mysis relicta, is able to improve the oxygen conditions of the sediment and thereby acts as a facilitator for re-colonization of azoic sediments by benthic species. We also wanted to study the potential of M. relicta in breaking the diffusive boundary layer under varying degrees of oxygen deficiency. Three types of sediment qualities were used to mimic the severity of oxygen deficiency. Under normoxia, moderate hypoxia (40% O2) and hypoxia, (20% O2) M. relicta's bioturbation activity was studied by recording oxygen profiles in sediments with and without mysids. In normoxia the mysids were able to oxygenize the sediment independent of sediment quality. The results show that mysids are able to bioturbate the sediment to some extent in hypoxia independent of the sediment quality. In all treatments with mysids the diffusive boundary layer was more or less completely broken down. In normoxia treatment with sediment of very low quality the mysids prevented growth of the sulphur bacteria Beggiatoa spp. which usually occurs on anoxic bottoms. The ability of this semi-pelagic species to improve benthic oxygen conditions can be seen as an important first step in re-colonization by real benthic species.  相似文献   

19.
Excluded salt accumulated at mangrove roots must be transported away from the root zone by diffusive processes, due to the low permeability of most mangrove soils. The diffusion coefficient for salt in mangrove soils determines the rate of this diffusive transport but has not been determined experimentally before. In this work we used a 12-month long-time series of salt concentration profiles measured in a sediment core over which fresh water was continuously circulated, to determine the diffusion coefficient for salt in the soil. Salt concentrations were measured using an electrical conductivity probe that was developed for use in hypersaline (salt concentration up to and in excess of 120g/l) conditions. A modified formula was experimentally determined to relate electrical conductivity to salt concentration and temperature, applicable up to a salt concentration of 200g/l. This was done because standard formulae relating these variables do not apply in the hypersaline conditions often encountered in salt flat sediments. The salt concentration profiles were used in a simple mathematical model to determine a sediment diffusion coefficient for salt in a salt flat sediment. This value of D=(4.6±0.2) ×10–5m2/day was approximately half that calculated theoretically.  相似文献   

20.
Shelf sediments play a vital role in global biogeochemical cycling and are particularly important areas of oxygen consumption and carbon mineralisation. Total benthic oxygen uptake, the sum of diffusive and faunal mediated uptake, is a robust proxy to quantify carbon mineralisation. However, oxygen uptake rates are dynamic, due to the diagenetic processes within the sediment, and can be spatially and temporally variable. Four benthic sites in the Celtic Sea, encompassing gradients of cohesive to permeable sediments, were sampled over four cruises to capture seasonal and spatial changes in oxygen dynamics. Total oxygen uptake (TOU) rates were measured through a suite of incubation experiments and oxygen microelectrode profiles were taken across all four benthic sites to provide the oxygen penetration depth and diffusive oxygen uptake (DOU) rates. The difference between TOU and DOU allowed for quantification of the fauna mediated oxygen uptake and diffusive uptake. High resolution measurements showed clear seasonal and spatial trends, with higher oxygen uptake rates measured in cohesive sediments compared to the permeable sediment. The significant differences in oxygen dynamics between the sediment types were consistent between seasons, with increasing oxygen consumption during and after the phytoplankton bloom. Carbon mineralisation in shelf sediments is strongly influenced by sediment type and seasonality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号