首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
Quantitative autoradiography was used to localize and characterize atrial natriuretic peptide (ANP) receptors in the rat brain and to study their regulation. Peptide receptors are selectively located to circumventricular organs outside the blood brain barrier, such as the subfornical organ, and to brain areas involved in fluid and cardiovascular regulation. Dehydration, either by water deprivation of normal rats, or chronic dehydration present in homozygous Brattleboro rats lacking vasopressin, results in large increases in ANP binding in receptor number in the subfornical organ. In the deoxycorticosterone acetate (DOCA)-salt hypertensive model, only salt treatment, but not DOCA alone or the combination of DOCA-salt, increased the ANP receptor number in the subfornical organ and the choroid plexus. Both young and adult genetically hypertensive rats have a greatly decreased ANP receptor number in the subfornical organ and the choroid plexus. Selective displacement with an inactive analog lacking the disulfide bond (ANP 111-126) suggests that genetically hypertensive rats may lack C (clearance) atrial natriuretic peptide receptors. Our results implicate brain atrial natriuretic peptide receptors in the central response to alterations in fluid regulation and blood pressure.  相似文献   

2.
We have studied the localization, kinetics, and regulation of receptors for the circulating form of the atrial natriuretic peptide (99-126) in the rat brain. Atrial natriuretic peptide receptors were discretely localized in the rat brain, with the highest concentrations in circumventricular organs, the choroid plexus, and selected hypothalamic nuclei involved in the production of the antidiuretic hormone vasopressin and in blood pressure control. Spontaneously (genetic) hypertensive rats showed much lower numbers of atrial natriuretic peptide receptors than normotensive controls in the subfornical organ, the area postrema, the nucleus of the solitary tract, and in the choroid plexus. These changes are in contrast with those observed for receptors of angiotensin II, another circulating peptide with actions opposite to those of the atrial natriuretic peptide. In acute dehydration after water deprivation, as well as in chronic dehydration such as that present in homozygous Brattleboro rats, there was an up-regulation of atrial natriuretic peptide receptors in the subfornical organ. Thus, circumventricular organs contain atrial natriuretic peptide receptors that could respond to variations in the concentration of circulating peptide. The localization of atrial natriuretic peptide receptors and the alterations in their regulation present in hypertensive and dehydrated rats indicate that these brain receptors are related to fluid regulation, including the secretion of vasopressin, and to cardiovascular function. Atrial natriuretic peptide receptors in the choroid plexus may be related to the formation of cerebrospinal fluid.  相似文献   

3.
The effects of atrial natriuretic peptide (ANP-28), brain natriuretic peptide (BNP-32) and C-type natriuretic peptide (CNP-22) on body temperature were investigated in rats. Intracerebroventricular administration of each peptide in doses of 400 or 1000 ng caused a dose-related elevation in colon temperature 30 and 60 min after injection. A 40 ng dose of ANP-28 was also hyperthermic at 60 min. An intramuscular (i.m.) injection of noraminophenazone (a cyclooxygenase inhibitor) abolished the natriuretic peptide-induced hyperthermia. The results show that natriuretic peptides may participate in thermoregulatory processes in the central nervous system, and that their hyperthermic effect may be mediated via a cyclooxygenase-involved pathway.  相似文献   

4.
High affinity binding sites for brain natriuretic peptide were characterized in the rat superior cervical ganglia by quantitative autoradiography. In addition, the peptide increased the formation of cyclic GMP in the ganglia in vitro. Brain natriuretic peptide displaced atrial natriuretic peptide from its binding sites. Our results suggest that brain natriuretic peptide and atrial natriuretic peptide may share physiologically active receptors in sympathetic ganglia. Brain natriuretic peptide may modulate the synaptic transmission in sympathetic ganglia, in addition or in conjunction with atrial natriuretic peptide.  相似文献   

5.
1. Recent data have clearly shown the existence of specific receptor binding sites for atrial natriuretic factors (ANF) or polypeptides in mammalian brain tissues. 2. Ligand selectivity pattern and coupling to cGMP production suggest that brain ANF sites are similar to high-affinity/low-capacity sites found in various peripheral tissues (kidney, adrenal gland, blood vessels). These brain ANF sites possibly are of the B-ANP subtype. 3. High densities of ANF binding sites are found especially in areas of the central nervous system associated with the control of various cardiovascular parameters (such as the subfornical organ and area postrema). However, high densities of sites are also present in other regions such as the hippocampus, cerebellum, and thalamus in the brain of certain mammalian species, suggesting that brain ANF could act as a neuromodulator of noncardiovascular functions. 4. The density of brain ANF binding sites is modified in certain animal models of cardiovascular disorders and during postnatal ontogeny, demonstrating the plasticity of these sites in the central nervous system (CNS). 5. Specific ANF binding sites are also found in various other CNS-associated tissues such as the eye, pituitary gland, and adrenal medulla. In these tissues ANF appears to act as a modulator of fluid production and hormone release. 6. Thus, ANF-like peptides and ANF receptor sites are present in brain and various peripheral tissues, demonstrating the existence of a family of brain/heart peptides.  相似文献   

6.
Atrial natriuretic peptide is a well-described peptide in cardiac Purkinje fibres and has been shown to interfere with the autonomic regulation in the heart of various species, including man. Recently, we detected immunoreactivity for the peptide in intracardial ganglionic cells and nerve fibre varicosities of bovine hearts, by the use of a modified immunostaining technique that induced an improved detection of natriuretic peptides. These findings raised the question as to whether natriuretic peptides are detectable in these tissues in man and other species. The conduction system from human, pig and sheep hearts was dissected and processed with antisera against atrial natriuretic peptide and the closely related brain natriuretic peptide. Immunostaining for the brain natriuretic peptide was detected in some Purkinje fibres in all of these species. Interestingly, in pig, sheep and human hearts, some ganglionic cells and nerve fibres showed atrial natriuretic peptide immunoreactivity, particularly in the soma of human ganglionic cells. This is the first study showing immunoreactivity for the atrial natriuretic peptide in nerve structures and for the brain natriuretic peptide in Purkinje fibres of the human heart. The results give a morphological correlate for the documented effects of atrial natriuretic peptide on the heart autonomic nervous system and for the presumable effects of brain natriuretic peptide in the conduction system of man  相似文献   

7.
Atrial natriuretic peptide is a well-described peptide in cardiac Purkinje fibres and has been shown to interfere with the autonomic regulation in the heart of various species, including man. Recently, we detected immunoreactivity for the peptide in intracardial ganglionic cells and nerve fibre varicosities of bovine hearts, by the use of a modified immunostaining technique that induced an improved detection of natriuretic peptides. These findings raised the question as to whether natriuretic peptides are detectable in these tissues in man and other species. The conduction system from human, pig and sheep hearts was dissected and processed with antisera against atrial natriuretic peptide and the closely related brain natriuretic peptide. Immunostaining for the brain natriuretic peptide was detected in some Purkinje fibres in all of these species. Interestingly, in pig, sheep and human hearts, some ganglionic cells and nerve fibres showed atrial natriuretic peptide immunoreactivity, particularly in the soma of human ganglionic cells. This is the first study showing immunoreactivity for the atrial natriuretic peptide in nerve structures and for the brain natriuretic peptide in Purkinje fibres of the human heart. The results give a morphological correlate for the documented effects of atrial natriuretic peptide on the heart autonomic nervous system and for the presumable effects of brain natriuretic peptide in the conduction system of man  相似文献   

8.
The amino acid sequence of rat brain natriuretic peptide (rBNP) precursor has recently been deduced by the cDNA cloning method (1). In the present study, a radioimmunoassay (RIA) system for rBNP was newly established, and regional distribution of rBNP in the central nervous system, heart and other peripheral tissue of rat was investigated. In heart, especially in cardiac atrium, a high concentration of immunoreactive (ir-) rBNP was detected and identified as rBNP-45 and gamma-rBNP. No significant amount of ir-rBNP was found in other tissues examined including the central nervous system. Especially in brain, no ir-rBNP was detected, while ir-rat atrial natriuretic peptide (rANP) was observed at a relatively high concentration. These results demonstrate a sharp contrast between rat and porcine brains in ir-BNP distribution.  相似文献   

9.
Pataki I  Adamik A  Telegdy G 《Peptides》2000,21(3):373-377
The effects of an endogenous indole, isatin (indole-2, 3-dione), on the hyperthermia induced by atrial natriuretic peptide (ANP-28), brain natriuretic peptide (BNP-32), and C-type natriuretic peptide (CNP-22) were investigated in rats. Intracerebroventricular administration of each peptide in a dose of 1 microg caused elevations in colon temperature 30 and 60 min after injection. An intraperitoneal (i.p.) injection of isatin (50 mg/kg) abolished the natriuretic peptide-induced hyperthermia. These data reinforce the possible involvement of natriuretic peptides in thermoregulatory processes in the central nervous system, and suggest that isatin might counteract their hyperthermic effect in vivo.  相似文献   

10.
Atrial natriuretic peptides exert actions on many key organs involved in blood pressure and water and electrolyte balance. Many of these actions result in a physiological antagonism of angiotensin. To investigate the morphological basis of this interaction, we have mapped the distribution of receptors for atrial natriuretic peptide and angiotensin II in a number of target organs, using 125I-labelled rat atrial natriuretic peptide (99-126) and 125I-labelled [Sar1,Ile8]angiotensin II. In the kidney both atrial natriuretic peptide and angiotensin II receptors were observed overlying glomeruli, vasa recta bundles (high densities), and the outer cortex (moderate density). In the other tissues studied, atrial natriuretic peptide and angiotensin II receptors were codistributed in the adrenal zona glomerulosa, cerebral circumventricular organs including the subfornical organ, organum vasculosum of the lamina terminalis and area postrema, and the external plexiform layer of the olfactory bulb. The concurrent distribution of specific receptors for both peptides at these sites provides the basis for atrial natriuretic peptide to exert a functional antagonism of the actions of angiotensin II on blood pressure and water and electrolyte homeostasis at multiple sites.  相似文献   

11.
Blood-brain barrier and atrial natriuretic factor   总被引:1,自引:0,他引:1  
In brain, binding sites for atrial natriuretic factor (ANF) have been characterized in areas such as circumventricular organs that lack the tight capillary endothelial junctions of the blood-brain barrier and therefore are exposed to circulating peptides. Since atrial natriuretic factor acts directly on vascular endothelium and has been proposed to be actively involved in blood pressure regulation and fluid homeostasis, it is interesting to know whether ANF receptors exist on brain capillaries that constitute the blood-brain barrier and participate in the constant fluid exchange between blood and brain. The present paper reports recent evidence of the presence of ANF receptors located on the structure. It assesses the specific binding of 125I-labelled ANF on bovine brain microvessel preparations and its coupling with a guanylate cyclase system. The potential physiological role of ANF on brain microcirculation and blood-brain barrier functions is discussed.  相似文献   

12.
Ku YH  Li YH 《Peptides》2004,25(4):615-620
In the central nervous system and the periphery, atrial natriuretic peptide (ANP) and angiotensinII(AngII) play important and opposite roles in regulating blood pressure and fluid electrolyte balance. Their central mechanisms are unclear. In the brain the anteroventral third ventricle region (AV3V) contains the most prominent collection of atriopeptin-like immunoreactive perikarya. Our previous studies show that: (1) AV3V stimulation by glutamate produces a fall in blood pressure; (2) there is an AngII pressor system composed of the lateral hypothalamus/perifornical region (LH/PF), subfornical organ (SFO), nucleus paraventricularis (NPV) and rostral ventrolateral medulla (RVL). The present study was to examine whether ANPergic projections from the AV3V could act on nuclei involved in the above-mentioned AngII pressor system. Here we demonstrate that: (1) Injection of atriopeptinIII into the LH/PF, SFO, NPV, or RVL induces a depressor response; whereas injection of normal saline has no effect. (2) Pre-injection of A 71915 (an atriopeptinIII antagonist) into the LH/PF, SFO, NPV, or RVL reverses the depressor response of the AV3V to glutamate (Glu). The results suggest that excitation of atriopeptinergic neurons in the AV3V by Glu produces an inhibitory effect on each nucleus in the LH/PF-SFO-NPV-RVL AngII pressor system.  相似文献   

13.
McGrath MF  de Bold AJ 《Peptides》2005,26(6):933-943
The cardiac natriuretic peptides (NP) atrial natriuretic factor or peptide (ANF or ANP) and brain natriuretic peptide (BNP) are polypeptide hormones synthesized, stored and secreted mainly by cardiac muscle cells (cardiocytes) of the atria of the heart. Both ANF and BNP are co-stored in storage granules referred to as specific atrial granules. The biological properties of NP include modulation of intrinsic renal mechanisms, the sympathetic nervous system, the rennin-angiotensin-aldosterone system (RAAS) and other determinants, of fluid volume, vascular tone and renal function. Studies on the control of baseline and stimulated ANF synthesis and secretion indicate at least two types of regulated secretory processes in atrial cardiocytes: one is stretch-stimulated and pertussis toxin (PTX) sensitive and the other is Gq-mediated and is PTX insensitive. Baseline ANF secretion is also PTX insensitive. In vivo, it is conceivable that the first process mediates stimulated ANF secretion brought about by changes in central venous return and subsequent atrial muscle stretch as observed in acute extracellular fluid volume expansion. The second type of stimulation is brought about by sustained hemodynamic and neuroendocrine stimuli such as those observed in congestive heart failure.  相似文献   

14.
The distribution and nature of 125I-atrial natriuretic peptide binding sites have been examined in the brain and pituitary gland of the toad, Bufo marinus, using tissue section autoradiography, affinity cross-linking and electrophoresis, guanylyl cyclase assays and molecular analysis of natriuretic peptide receptor C (NPR-C) and NPR-GC mRNA expression. The highest density of 125I-atrial natriuretic peptide binding sites occurred in the dorsal pallium, the habenular region, the torus semicircularis, the choroid plexus, and the pituitary gland. Less dense binding was observed in the medial pallium, the thalamic region, the hypothalamus, the optic tectum, and the interpeduncular nucleus. The natriuretic peptide receptor-C specific ligand, C-ANF, displaced the binding in all brain regions; however, some residual binding was observed in the habenular region, the hypothalamus, the choroid plexus, and the pituitary gland. In isolated brain membranes, 1 microM rat atrial natriuretic peptide increased cyclic guanosine monophosphate levels to 90% above basal. Affinity cross-linking followed by reducing electrophoresis showed that 125I-atrial natriuretic peptide bound to proteins of 65 kDa and 135 kDa respectively. Furthermore, molecular analysis demonstrated that natriuretic peptide receptor-C and guanylyl cyclase messenger ribonucleic acid are expressed in the brain. In combination with the autoradiography, the data indicated that atrial natriuretic peptide acting via specific receptors could be important in natriuretic peptide regulation of the brain.  相似文献   

15.
1. We studied the effects of selective chronic sodium depletion of chloride depletion on atrial natriuretic peptide receptor number in the subfornical organ and paraventricular nucleus of young rats.2. Sodium or chloride depletion decreased plasma levels of atrial natriuretic peptide, increased plasma renin activity, and induced extracellular fluid volume contraction. Chloride depletion induced more significant changes in extracellular fluid volume contraction than sodium depletion.3. In the subfornical organ, atrial natriuretic peptide receptor number significantly decreased (30%) after sodium depletion, while chloride depletion induced a smaller, not statistically significant decrease. Conversely, atrial natriuretic peptide receptors located in the paraventricular nucleus of young rats were not significantly affected by sodium or chloride depletion.4. Water deprivation reversed the decrease in atrial natriuretic peptide receptors produced by sodium depletion. Water-deprived sodium-depleted rats actually had higher numbers of atrial natriuretic peptide receptors in the subfornical organ than control rats. These changes were associated with severe extracellular fluid volume contraction and up regulation of brain vasopressin mRNA steady-state levels. Thus, the direction of change in the number of subfornical organ atrial natriuretic peptide receptors was dependent on the degree of extracellular fluid volume contraction.5. Our results suggest that atrial natriuretic peptide receptors located in the subfornical organ, and not in the paraventricular nucleus, are selectively regulated by sodium depletion and extracellular fluid volume contraction.  相似文献   

16.
Binding sites for rat atrial natriuretic peptide (6-33) (ANP) were quantitated in the subfornical organ of chronically dehydrated homozygous Brattleboro rats unable to synthesize vasopressin; heterozygous Brattleboro rats, their controls, Long Evans rats and Long Evans rats after 4 days of water deprivation. Brain sections were incubated in the presence of 125I-ANP and the results analyzed by autoradiography coupled to computerized microdensitometry and comparison to 125I-standards. Brattleboro rats and water deprived Long Evans rats presented a higher number of ANP binding sites than their normally hydrated controls. Our results suggest a role of ANP binding sites in the subfornical organ in the central regulation of fluid balance and vasopressin secretion.  相似文献   

17.
刘婷婷  葛漫丽  王继红  李庆伟  刘欣 《生物磁学》2014,(9):1766-1768,1800
中性肽内切酶(Neutral Endopeptidase,NEF),属于M13锌金属蛋白酶家族的一种Ⅱ型整合细胞膜糖蛋白,在许多组织中有广泛的表达。同时,NEP作为一种神经肽的降解酶,已经被发现广泛地存在于中枢神经系统以及外周各种组织中。NEP通过水解疏水性氨基酸侧链,使神经肽失活。而这些神经肽参与生命调节的多重代谢活动,对生命系统的正常有序运转有重要的作用。其中P物质为一种神经肽,是造血系统网络的成员之一,同时也可以诱发炎症反应,从而,NEP可以间接参与造血系统和呼吸系统的代谢活动。而心钠素是调节血压维护心肌功能的重要调节因子,NEP通过调节心钠素的浓度来调节血压,最终参与心血管系统的代谢。由于NEP具有广泛的组织特异性,决定了NEP在多个系统的调节中都具有重要意义。因此就NEP在造血系统,心血管系统和呼吸系统的功能做一综和评述。  相似文献   

18.
Summary The distribution of atrial natriuretic peptide binding sites on cells in dissociated culture preparations of neonatal rat superior cervical ganglia and in explant cultures of rat thoracic sympathetic chain ganglia has been studied. The autoradiographic visualisation of atrial natriuretic peptide binding sites has been combined with the use of specific immunocytochemical markers for glial cells (antiserum to S-100 protein), fibroblasts (antiserum to fibronectin) and neurones (antiserum to protein gene product 9.5) in order to achieve unambiguous identification of the cell types in culture. Specific binding sites for rat125I-atrial natriuretic peptide(1–28) were observed over subpopulations of fibronectin-like-immunoreactive fibroblasts and S-100-like-immunoreactive glia in the dissociated superior cervical ganglion cultures. However, only a subpopulation of fibronectin-like-immunoreactive fibroblasts possessed atrial natriuretic peptide binding sites in the explant culture preparations. No atrial natriuretic peptide-like-immunoreactive cells were present in either culture. The distribution of autoradiographic grains over individual cell surfaces in culture was uniform, but there were distinct differences in the density of labelling of single cells of the same type. This apparent variation in the number of binding sites on glial cells and fibroblasts in culture did not seem to be related to the morphology of the cells or the surrounding cell types. No sympathetic neurones were labelled with autoradiographic grains in either the dissociated or explant culture preparations. However, the presence of atrial natriuretic peptide binding sites on non-neuronal cells of sympathetic ganglia in culture may be linked to the relationship between atrial natriuretic peptide and the sympathetic nervous system.  相似文献   

19.
We have partially purified a thiol-dependent protease from bovine atrial tissue that cleaves the Arg98-Ser99 bond of rat natriuretic peptide (Gly96-Tyr126) to produce the natriuretic Ser99-Tyr126 peptide (cardionatrin I). This was the only hydrolytic product we detected. The existence of the atrial natriuretic peptide system implicates the mammalian heart as an endocrine organ which participates in the hormonal regulation of extracellular fluid volume, electrolyte balance and vascular tone. This enzyme appears to be part of that system. The atrial protease also hydrolyzes the Arg-2-Napthylamide bond of natriuretic peptide stand-in substrates; on the basis of relative Vmax/Km as a measure of substrate specificity, Bz-Leu-Arg-Arg-2-Napthylamide (NA) greater than Bz-Leu-Arg-2-NA greater than Arg-2-NA. There is little or no cleavage between the Arg-Arg pair of the first substrate. Since in the Gly96-Tyr126 peptide the Arg-Arg pair is not the principle cleavage site for this enzyme, it is very unlikely that it is a principle cleavage site for this enzyme in pro-atrial natriuretic factor. It is possible that it is a cleavage site for a different enzyme or the pair may serve as a signal for cleavage at Arg98.  相似文献   

20.
Previous studies of atrial natriuretic peptide (ANP) have indicated that its release from the heart and from discrete areas of the central nervous system evokes coordinated physiological and behavioral adjustments that mitigate the adverse hypertensive effects of volume overload and/or acute increases in sodium intake. Because the reflex activity initiated by arterial chemoreceptors of the carotid body directly contributes to the integrated regulation of systemic blood pressure, we have investigated the possibility that ANP has a significant role in the chemosensory process as well. Our immunocytochemical studies show that ANP-like immunoreactivity is present in the preneural chemosensitive type I cells in the cat carotid body. Furthermore we found that the biologically active ANP fragment atriopeptin III is a potent inhibitor of carotid sinus nerve activity evoked by hypoxia. Our findings suggest that circulating and/or endogenous ANP may modulate carotid body function as part of a coordinated response to changes in systemic volume and solute balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号