首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing world demand for fuels makes it necessary to exploit the largest reserve of extra-heavy crude oil (EHCO) of the Orinoco Oil Belt from Venezuela. We propose the use of extracellular oxidative enzymes, in particular, lignin-degrading enzyme systems (LDS) of fungi, for enzymatic improvement of EHCO. Autochthonous non-white rot fungal strains able to use EHCO, and several polycyclic aromatic hydrocarbons (PAHs) as sole carbon source and energy, were isolated from EHCO-polluted soils and identified as belonging to the genera Fusarium, Penicillium, Trichoderma, Aspergillus, Neosartorya, Pseudallescheria, Cladosporium, Pestalotiopsis, Phoma and Paecillomyces. Phenotypic and biochemical assays revealed the ability of these filamentous fungi to synthesize extracellular oxidative enzymes, and suggested a relationship between the LDS and EHCO bioconversion. This work reports, for the first time, the use of o-phenylenediamine dihydrochloride (OPD) as substrate to measure extracellular ligninolytic peroxidases (ELP) in culture broths of filamentous fungi (Fusarium solani HP-1), and constitutes the first formal study of the fungal community associated with the EHCO of the Orinoco Oil Belt.  相似文献   

2.
Large amount of drilling waste associated with the expansion of the Orinoco Oil Belt (OOB), the biggest proven reserve of extra-heavy crude oil (EHCO) worldwide, is usually impregnated with EHCO and highly salinized water-based drilling fluids. Oxidative exoenzymes (OE) of the lignin-degrading enzyme system (LDS) of fungi catalyse the oxidation of a wide range of toxic pollutants. However, very little evidences on fungal degradation or biotransformation of EHCO have been reported, which contain high amounts of asphaltenes and its biodegradation rate is very limited. The aims of this work were to study the ability of Pestalotiopsis palmarum BM-04 to synthesize OE, its potential to biotransform EHCO and to survive in extreme environmental conditions. Enzymatic studies of the LDS showed the ability of this fungus to overproduce high amounts of laccase (LACp) in presence of wheat bran or lignin peroxidase (LIPp) with EHCO as sole carbon and energy source (1300 U mgP−1 in both cases). FT-IR spectroscopy with Attenuated Total Reflectance (ATR) analysis showed the enzymatic oxidation of carbon and sulfur atoms in both maltenes and asphaltenes fractions of biotreated EHCO catalysed by cell-free laccase-enriched OE using wheat bran as inducer. UV-visible spectrophotometry analysis revealed the oxidation of the petroporphyrins in the asphaltenes fraction of biotreated EHCO. Tolerance assays showed the ability of this fungus to grow up to 50 000 p.p.m. of EHCO and 2000 mM of NaCl. These results suggest that P. palmarum BM-04 is a hopeful alternative to be used in remediation processes in extreme environmental conditions of salinity and EHCO contamination, such as the drilling waste from the OOB.  相似文献   

3.
The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on our planet. Bioconversion of lignocellulosic residues is initiated primarily by microorganisms such as fungi and bacteria which are capable of degrading lignocellulolytic materials. Fungi such as Trichoderma reesei and Aspergillus niger produce large amounts of extracellular cellulolytic enzymes, whereas bacterial and a few anaerobic fungal strains mostly produce cellulolytic enzymes in a complex called cellulosome, which is associated with the cell wall. In filamentous fungi, cellulolytic enzymes including endoglucanases, cellobiohydrolases (exoglucanases) and β-glucosidases work efficiently on cellulolytic residues in a synergistic manner. In addition to cellulolytic/hemicellulolytic activities, higher fungi such as basidiomycetes (e.g. Phanerochaete chrysosporium) have unique oxidative systems which together with ligninolytic enzymes are responsible for lignocellulose degradation. This review gives an overview of different fungal lignocellulolytic enzymatic systems including extracellular and cellulosome-associated in aerobic and anaerobic fungi, respectively. In addition, oxidative lignocellulose-degradation mechanisms of higher fungi are discussed. Moreover, this paper reviews the current status of the technology for bioconversion of biomass by fungi, with focus on mutagenesis, co-culturing and heterologous gene expression attempts to improve fungal lignocellulolytic activities to create robust fungal strains.  相似文献   

4.
Filamentous fungi and yeast from the genera Saccharomyces, Penicillium, Aspergillus, and Fusarium are well known for their impact on our life as pathogens, involved in food spoilage by degradation or toxin contamination, and also for their wide use in biotechnology for the production of beverages, chemicals, pharmaceuticals, and enzymes. The genomes of these eukaryotic micro-organisms range from about 6000 genes in yeasts (S. cerevisiae) to more than 10,000 genes in filamentous fungi (Aspergillus sp.). Yeast and filamentous fungi are expected to share much of their primary metabolism; therefore much understanding of the central metabolism and regulation in less-studied filamentous fungi can be learned from comparative metabolite profiling and metabolomics of yeast and filamentous fungi. Filamentous fungi also have a very active and diverse secondary metabolism in which many of the additional genes present in fungi, compared with yeast, are likely to be involved. Although the 'blueprint' of a given organism is represented by the genome, its behaviour is expressed as its phenotype, i.e. growth characteristics, cell differentiation, response to the environment, the production of secondary metabolites and enzymes. Therefore the profile of (secondary) metabolites--fungal chemodiversity--is important for functional genomics and in the search for new compounds that may serve as biotechnology products. Fungal chemodiversity is, however, equally efficient for identification and classification of fungi, and hence a powerful tool in fungal taxonomy. In this paper, the use of metabolite profiling is discussed for the identification and classification of yeasts and filamentous fungi, functional analysis or discovery by integration of high performance analytical methodology, efficient data handling techniques and core concepts of species, and intelligent screening. One very efficient approach is direct infusion Mass Spectrometry (diMS) integrated with automated data handling, but a full metabolic picture requires the combination of several different analytical techniques.  相似文献   

5.
During litter decay, different fungal decomposer genera reach their highest relative abundance at different times. We tested the long-standinghypothesis that this “peak decay stage” of fungi is related to the activity of their fungal extracellular enzymes that break down various plant biopolymers and related as well to the growth rate of fungi. Using 50 decomposer fungal species, spanning a range of peak decay stages, we measured (1) the activity of four polysaccharidases and two oxidases generated by each species, and (2) fungal species’ growth rates. We found that the activity of cellobiohydrolase and growth rate were negatively correlated with peak time point for filamentous fungi; fungi peaking early had greatest cellobiohydrolase activity and fastest growth. No relationships were found between peak decay stage and enzymes or growth for yeasts. These data suggest growth and resource use are important factors shaping succession during decay by the main fungal decomposers, but as-yetuninvestigated traits may explain the remainder of the variation in succession.  相似文献   

6.
The screening for extracellular oxidases and peroxidases from autochthonous filamentous fungi isolated from different substrates is an important step towards the detection of extracellular fungal oxidative systems. Thirty-one autochthonous fungal strains from Argentina, belonging to different ecophysiological and taxonomic groups, were plate-screened for their ability to produce extracellular oxidoreductases. Modified Kirk solid medium containing the chromogen 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) was used to determine the presence of this extracellular activity. The fungi tested were grouped according to the colour intensity of the modified Kirk medium in: a) species without extracellular ABTS-oxidizing activity; b) species with low extracellular ABTS-oxidizing activity; c) species with moderate extracellular ABTS-oxidizing activity; d) species with high extracellular ABTS-oxidizing activity. The assay revealed extracellular ABTS-oxidizing activity in 90% of the strains tested. All species of Basidiomycetes used exhibited ABTS-oxidizing activity, except Laeticorticium roseum. Aspergillus terreus and Epicoccum purpurascens (Deuteromycetes) did not show extracellular oxidative activity on ABTS. Agrocybe aegerita, Amauroderma boleticeum, Cladosporium cladosporioides, Coriolopsis rigida, Grammothele subargentea, Graphium putredinis, Hexagona hydnoides, Hexagona papyraceae, Loweporus lividus, Peniophora albobadia, Phellinus everhartii, Phellinus gilvus; Phellinus linteus; Pleurotus laciniatocrenatus, Pycnoporus sanguineus, Rigidoporus ulmarius, Steccherinum rawakense, Talaromyces helicus, Trametes elegans, Trametes pavonia, Trametes villosa and Trichaptum sector are reported here for the first time as species capable of producing ABTS-oxidizing extracellular oxidorreductases.  相似文献   

7.
Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum and Fusarium solani cultivated on agar plates, in shaking liquid culture or on glass beads was compared. Agar plate culture and glass bead cultivation yielded comparable results while liquid culture had lower production of secondary metabolites. RNA extraction from glass beads and liquid cultures was easier than from agar plates and the quality was superior. The system allows simple control of nutrient availability throughout fungal cultivation. This combined with the ease of extraction of nucleic acids and metabolites makes the system highly suitable for the study of gene regulation in response to specific nutrient factors.  相似文献   

8.
AIMS: To purify and characterize the chitinolytic activity of Penicillium janthinellum P9 and to evaluate possible uses of the purified enzymes in the control of fungal growth and spore germination. METHODS AND RESULTS: The chitinolytic activity of P. janthinellum P9 was associated to two beta-N-acetyl-hexosaminidases (CHI1 and CHI2) that were purified by preparative isoelectric focusing and preparative electrophoresis and partially characterized. Treatment of test fungi with purified enzyme solutions caused reduced spore germination, reduction of hyphal length and mycelial damage. The combined action of the two enzymes and a systemic fungicide completely inactivated pests and food-spoiling moulds such as Fusarium solanii, P. canescens and Cladosporium cladosporioides. Treatment with the two enzymes increased germination of freeze-dried fungal spores. CONCLUSION: The chitinolytic activity of P. janthinellum P9 is associated with two extracellular beta-N-acetyl-hexosaminidases that can cause damage to the cell walls of other fungi. SIGNIFICANCE AND IMPACT OF THE STUDY: This appears to be the first report on the characterization of extracellular chitinolytic enzymes produced by a Penicillium strain. The results of this study might have some impact in the applied research field.  相似文献   

9.
Filamentous fungi are native secretors of lignocellulolytic enzymes and are used as protein‐producing factories in the industrial biotechnology sector. Despite the importance of these organisms in industry, relatively little is known about the filamentous fungal secretory pathway or how it might be manipulated for improved protein production. Here, we use Neurospora crassa as a model filamentous fungus to interrogate the requirements for trafficking of cellulase enzymes from the endoplasmic reticulum to the Golgi. We characterized the localization and interaction properties of the p24 and ERV‐29 cargo adaptors, as well as their role in cellulase enzyme trafficking. We find that the two most abundantly secreted cellulases, CBH‐1 and CBH‐2, depend on distinct ER cargo adaptors for efficient exit from the ER. CBH‐1 depends on the p24 proteins, whereas CBH‐2 depends on the N. crassa homolog of yeast Erv29p. This study provides a first step in characterizing distinct trafficking pathways of lignocellulolytic enzymes in filamentous fungi.  相似文献   

10.
Invasive fungal infections caused by filamentous fungi are devastating diseases that occur in patients with a variety of immunosuppressive conditions. This review focuses on the pathogenesis of the most important invasive mycosis in the human being caused by the filamentous fungi Aspergillus, Fusarium, Scedosporium and mucorales. The first contact between the mould and the patient, the host defense to different fungi, including the role of mucosa in the innate immune system, the whole innate immune recognition receptors, and the pathways connecting innate and adaptive immunity, as well as the virulence factors of fungi, are discussed in this paper.  相似文献   

11.
As part of an investigation of the cell wall structure of plant pathogenic, filamentous fungi, we set out to characterize covalently bound cell wall glycoproteins (CWPs) of the tomato pathogen Fusarium oxysporum. N-terminal sequencing of an abundant 60-kDa CWP led to the cloning of the corresponding gene, which we have designated FEM1 (Fusarium extracellular matrix protein). The gene contains an ORF encoding a primary translation product of 212 amino acids, including an N-terminal 17-amino acid secretion signal sequence. Furthermore, FEM1p contains two potential N-glycosylation sites, and is rich in serine and threonine residues (29%) that could serve as O-glycosyl addition sites. At its C-terminus the protein contains a 22-amino acid sequence with the characteristics of a glycosyl-phosphatidylinositol (GPI) anchor addition signal. A mutant FEM1 protein lacking this GPI anchor addition signal is not retained in the fungal cell wall but released into the culture medium, indicating that in the wild-type protein this sequence functions to anchor the protein to the extracellular matrix. Southern analysis shows that FEM1 is present as a single-copy gene in all formae speciales of F. oxysporum tested and in F. solani. Database searches show that FEM1p homologous sequences are present in other filamentous fungi as well.  相似文献   

12.
Filamentous fungi are arguably the most industrially important group of microorganisms. Production processes involving these simple eukaryotes are often highly aerobic in nature, which implies these cultures are routinely subject to oxidative stress. Despite this, little is known about how filamentous fungi cope with high levels of oxidative stress as experienced in fermenter systems. More surprisingly, much of our knowledge of oxidative stress responses in fungi comes from environmental or medical studies. Here, the current understanding of oxidative stress effects and cellular responses in filamentous fungi is critically discussed. In particular the role of alternative respiration is evaluated, and the contributions of the alternative oxidase and alternative dehydrogenases in defence against oxidative stress, and their profound influence on fungal metabolism is critically examined. Finally, the importance of further research which would underpin a less empirical approach to optimising fungal strains for the fermenter environment is emphasised.  相似文献   

13.
The production of penicillin G and penicillin V amidohydrolases or acylases (E.C.3.5.1.11) was studied during the autolysis of filamentous fungi in a mineral medium, and in the same medium with phenoxyacetic acid as inducer. In all the studied fungi, enzymes showing penicillin G and penicillin V amidohydrolase activities were found. Generally, an increase of these activities during fungal autolysis was observed. The presence of phenoxyacetic acid in the medium did not increase these activities. The activities found in the culture fluids were generally higher than that found in the mycelial extracts. Under these conditions, beta-lactamases (penicillinases) were not found. The fungi Alternaria alternata, Fusarium culmorum, Penicillium oxalicum, and the species Penicillium 222 were chosen to study penicillin G and penicillin V acylases. The enzymes were precipitated with tannic acid from the culture fluid of their autolyzed cultures. Some kinetic constants of these activities were determined.  相似文献   

14.
The airways of patients with cystic fibrosis (CF) are frequently colonized by various filamentous fungi, mainly Aspergillus fumigatus and Scedosporium species. To establish within the respiratory tract and cause an infection, these opportunistic fungi express pathogenic factors allowing adherence to the host tissues, uptake of extracellular iron, or evasion to the host immune response. During the colonization process, inhaled conidia and the subsequent hyphae are exposed to reactive oxygen species (ROS) and reactive nitrogen species (RNS) released by phagocytic cells, which cause in the fungal cells an oxidative stress and a nitrosative stress, respectively. To cope with these constraints, fungal pathogens have developed various mechanisms that protect the fungus against ROS and RNS, including enzymatic antioxidant systems. In this review, we summarize the different works performed on ROS- and RNS-detoxifying enzymes in fungi commonly encountered in the airways of CF patients and highlight their role in pathogenesis of the airway colonization or respiratory infections. The potential of these enzymes as serodiagnostic tools is also emphasized. In addition, taking advantage of the recent availability of the whole genome sequence of S. apiospermum, we identified the various genes encoding ROS- and RNS-detoxifying enzymes, which pave the way for future investigations on the role of these enzymes in pathogenesis of these emerging species since they may constitute new therapeutics targets.  相似文献   

15.
The mycoparasitic fungus Trichoderma harzianum CECT 2413 produces at least three extracellular beta-1,3-glucanases. The most basic of these extracellular enzymes, named BGN13.1, was expressed when either fungal cell wall polymers or autoclaved mycelia from different fungi were used as the carbon source. BGN13.1 was purified to electrophoretic homogeneity and was biochemically characterized. The enzyme was specific for beta-1,3 linkages and has an endolytic mode of action. A synthetic oligonucleotide primer based on the sequence of an internal peptide was designed to clone the cDNA corresponding to BGN13.1. The deduced amino acid sequence predicted a molecular mass of 78 kDa for the mature protein. Analysis of the amino acid sequence indicates that the enzyme contains three regions, one N-terminal leader sequence; another, nondefined sequence; and one cysteine-rich C-terminal sequence. Sequence comparison shows that this beta-1,3-glucanase, first described for filamentous fungi, belongs to a family different from that of its previously described bacterial, yeast, and plant counterparts. Enzymatic-activity, protein, and mRNA data indicated that bgn13.1 is repressed by glucose and induced by either fungal cell wall polymers or autoclaved yeast cells and mycelia. Finally, experimental evidence showed that the enzyme hydrolyzes yeast and fungal cell walls.  相似文献   

16.
H2O2 has been found to be required for the activity of the main microbial enzymes responsible for lignin oxidative cleavage, peroxidases. Along with other small radicals, it is implicated in the early attack of plant biomass by fungi. Among the few extracellular H2O2-generating enzymes known are the glyoxal oxidases (GLOX). GLOX is a copper-containing enzyme, sharing high similarity at the level of active site structure and chemistry with galactose oxidase. Genes encoding GLOX enzymes are widely distributed among wood-degrading fungi especially white-rot degraders, plant pathogenic and symbiotic fungi. GLOX has also been identified in plants. Although widely distributed, only few examples of characterized GLOX exist. The first characterized fungal GLOX was isolated from Phanerochaete chrysosporium. The GLOX from Utilago maydis has a role in filamentous growth and pathogenicity. More recently, two other glyoxal oxidases from the fungus Pycnoporus cinnabarinus were also characterized. In plants, GLOX from Vitis pseudoreticulata was found to be implicated in grapevine defence mechanisms. Fungal GLOX were found to be activated by peroxidases in vitro suggesting a synergistic and regulatory relationship between these enzymes. The substrates oxidized by GLOX are mainly aldehydes generated during lignin and carbohydrates degradation. The reactions catalysed by this enzyme such as the oxidation of toxic molecules and the production of valuable compounds (organic acids) makes GLOX a promising target for biotechnological applications. This aspect on GLOX remains new and needs to be investigated.  相似文献   

17.
Filamentous fungi have long been used for the production of metabolites and enzymes. With developments in genetic engineering and molecular biology, filamentous fungi have also achieved increased attention as hosts for recombinant DNA. However, the production levels of non-fungal proteins are usually low. Despite the achievements obtained using molecular tools, the heterologous protein loss caused by extracellular fungal protease degradation persists. This review provides an overview of the potential bioprocessing strategies that can be applied to inhibit protease activity thereby enhancing heterologous protein production.  相似文献   

18.
Two filamentous fungi, the white-rot fungus Trametes versicolor and the soil fungus and potential biocontrol organism Trichoderma harzianum, have been grown in pure and mixed cultures on low-N (0.4 mM) and high-N (4 mM) defined synthetic media to determine the activities of selected wood-degrading enzymes such as cellobiase, cellulase, laccase, and peroxidases. Growth characteristics and enzyme activities were examined for potential correlations. Such correlations would allow the use of simple enzyme assays for measuring biomass development and would facilitate predictions about competitiveness of species in mixed fungal cultures. Our results show that while laccase and Poly Red-478 peroxidase activities indicate survival of the decay fungus, none of the monitored extracellular enzymes can serve as a quantitative indicator for biomass accumulation. As expected, the level of available nitrogen affected the production of the enzymes monitored: in low-N media, specific cellobiase, specific cellulase, and peroxidase activities were enhanced, while laccase activities were reduced. Most importantly, laccase activities of Trametes versicolor, and to a smaller extent, cellobiase activities of both fungi, were significantly induced in mixed cultures of Trametes versicolor and Trichoderma harzianum.  相似文献   

19.
A survey of the filamentous fungi other than the symbiotic one found in association with Atta sexdens rubropilosa colonies was carried out. Different fungal species (27 taxa) were isolated a few days after treating the workers with toxic baits (sulfluramid; Mirex-S), from 40 laboratory and 20 field nests. Syncephalastrum racemosum (54%) and Escovopsis weberi (21%), Trichoderma harzianum (38%) and Fusarium oxysporum (23%) were the prevalent species in laboratory and field nests, respectively. Acremonium kiliense, Acremonium strictum, E. weberi, F. oxysporum, Fusarium solani, Moniliella suaveolens and T. harzianum were found in both nests' groups. We revealed that many filamentous fungi can co-exist in a dormant state inside the nests of these insects and some of them appear to be tightly associated with this environment.  相似文献   

20.
Nitrous oxide (N(2)O) production by filamentous fungi has been demonstrated in pure culture and has been estimated indirectly in soils. However, it is unknown whether ectomycorrhizal fungi can also produce N(2)O. We demonstrate for the first time the ability of nitrogen (N)-tolerant ectomycorrhizal fungi (Paxillus involutus and Tylospora fibrillosa), found in forest soils under moderate to high rates of N deposition, to produce N(2)O from nitrate reduction. The N(2)O concentrations from the ectomycorrhizal fungal treatments after a 10-day pure culture experiment were 0.0117±0.00015 (P. involutus) and 0.0114±0.0003 (T. fibrillosa), and 0.0114±0.00043 μmol N(2)O L(-1) from a known fungal denitrifier (Fusarium lichenicola). No N(2)O was detected in the control treatment. Our results indicate the potential for these two N-tolerant ectomycorrhizal fungi to contribute to N(2)O production. Given that these species are abundant in many forest soils, the strength and regulation of fungal N(2)O production should now be verified in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号