首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The G-banded karyotype of the creeping vole, Microtus oregoni, prepared from animals trapped in Oregon and Washington, is presented. The two populations had similar autosomal banding patterns but exhibited striking differences in their sex chromosomes. The X chromosome of voles captured in Oregon was 39% longer than that of voles trapped in Washington. The length difference was primarily due to an increase in size of light G-bands, which, in both populations, comprised large segments of the X chromosome. On C-banding, the X chromosome exhibited major blocks of constitutive heterochromatin corresponding to the light G-bands. In contrast, the Y chromosome of the Oregon voles was 24% shorter than that of the Washington voles and lacked the short arm and some terminal bands present in the Washington voles.  相似文献   

2.
Flow cytometric sperm sorting based on X and Y sperm DNA difference has been established as the only effective method for sexing the spermatozoa of mammals. The standard method for verifying the purity of sorted X and Y spermatozoa has been to reanalyze sorted sperm aliquots. We verified the purity of flow-sorted porcine X and Y spermatozoa and accuracy of DNA reanalysis by fluorescence in situ hybridization (FISH) using chromosome Y and 1 DNA probe. Eight ejaculates from 4 boars were sorted according to the Beltsville Sperm Sexing method. Porcine chromosome Y- and chromosome 1-specific DNA probes were used on sorted sperm populations in combination with FISH. Aliquots of the sorted sperm samples were reanalyzed for DNA content by flow cytometry. The purity of the sorted X-bearing spermatozoa was 87.4% for FISH and 87.0% for flow cytometric reanalysis; purity for the sorted Y-bearing spermatozoa was 85.9% for FISH and 84.8% for flow cytometric reanalysis. A total of 4,424 X sperm cells and 4,256 Y sperm cells was examined by FISH across the 8 ejaculates. For flow cytometry, 5,000 sorted X spermatozoa and 5,000 Y spermatozoa were reanalyzed for DNA content for each ejaculate. These results confirm the high purity of flow sorted porcine X and Y sperm cells and the validity of reanalysis of DNA in determining the proportions of X- and Y-sorted spermatozoa from viewing thousands of individual sperm chromosomes directly using FISH.  相似文献   

3.
The field vole (Microtus agrestis) is characterised by extremely large blocks of heterochromatin on both the X and Y chromosome. Some other Microtus also have blocks of heterochromatin on their sex chromosomes but not as extensive and always of independent origin from the heterochromatic expansion found in M. agrestis. Coupled with evidence of geographic variation in large heterochromatic blocks within other species (e.g. in the western hedgehog Erinaceus europaeus), it might be expected that field voles would show substantial variation in size and disposition of the sex chromosome heterochromatin. In fact, only minor variation has been described up to now. Those studies conducted previously were largely on field voles from central and northern Europe. Here, we describe the karyotype of field voles from Portugal, of interest because recent molecular studies have shown field voles from western Iberia to be a separate evolutionary unit that might be considered a cryptic species, distinct from populations further to the east. The two Portuguese field voles (one female, one male) that we examined also had essentially the same karyotype as seen in other field voles, including the giant sex chromosomes, but with small differences in the structure of the Y chromosome from that described previously. The finding that field voles throughout Europe show relatively little variation in their giant sex chromosomes is consistent with molecular data which suggest a recent origin for this complex of species/near-species.  相似文献   

4.
Zhu B  Gao H  Wang H  Gao J  Zhang Y  Dong Y  Hou J  Nan X 《Hereditas》2003,139(2):90-95
Here we describe our comparative studies on two types of X chromosomes, namely X(M) and X(SM,) of the mandarin vole (Microtus mandarinus). By chromosome G- and C-banding analysis, we have found that two different types of X chromosomes exist in mandarin voles. The two types of X chromosomes present two different G- and C-banding patterns: the X(M) chromosome is a longer metacentric X chromosome which is C-band negative; and the X(SM) is a shorter submetacentric X chromosome which has one C-band at the centromere and another one at the middle part of the short arm. The X(SM) has 6 G-bands including one on the kinetochore, one in the middle of the short arm, and four on the long arm. The X(M) has 7 G-bands including one on the kinetochore, two on the short arm, and four on the long arm. We have further found that female voles can be grouped into three types based on the composition of the X chromosome but the male voles have only one type. The three female groups are: (1) female voles (X(M)X(SM)), in which the two X chromosomes are different, the longer one is metacentric and the shorter is submetacentric; (2) female vole (X(SM)X(SM)), in which the two X chromosomes are both submetacentric; (3) female vole (X(M)O), in which there is only one X chromosome that is metacentric. Surprisingly, we have never found female voles with X(M)X(M), females with X(SM)O or males with X(M)Y. We hypothesize that the X(SM) chromosome is derived from the X(M) through its breakage and re-joining. The paper also discusses the formation of X(M)O females.  相似文献   

5.
The only known and measurable difference between X- and Y-chromosome bearing spermatozoa is the small difference in their DNA content. The X sperm in the human carry 2.8% more DNA than the Y sperm, while in domestic livestock this difference ranges from 3.0 to 4.2%. The only successful sperm separation method, flow cytometric sorting, is based on this difference in DNA content. Using this technique, X and Y sperm populations with purities greater than 90% can be obtained. The number of spermatozoa that can be sorted in a given time period, however, is too low for application of this technique in routine artificial insemination. Therefore, the search for a marker other than DNA to differentiate between X and Y sperm remains of interest in order to develop a method for large scale X and Y sperm separation. The aim of the present study was to investigate whether porcine X and Y sperm contain some difference in their plasma membrane proteins. The flow cytometric sorting of sperm enabled a direct comparison of the proteins of the X and Y sperm populations High resolution two-dimensional (2-D) electrophoresis was used; however, adaptations were needed to enable its use for analysis of proteins of flow cytometrically sorted sperm, both in the sorting procedure, membrane protein solubilization, and in the 2-D electrophoresis. Up to 1,000 protein spots per gel could be detected and quantified. Comparison of the 2-D protein patterns revealed differences in protein spots between sperm of two individual boars. However, no differences in protein spots between the X and Y sperm fractions were found. These results provide additional support for the view that X- and Y-chromosome bearing spermatozoa are phenotypically identical, and cast doubt on the likelihood that a surface marker can provide a base for X and Y sperm separation. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Studies designed to answer the question whether or not H-Y antigen is preferentially expressed on Y chromosome bearing sperm have resulted in conflicting results. This is probably due to the absence of reliable methods for estimating the percentage of X and Y chromosome bearing sperm in fractions, enriched or depleted for H-Y antigen positive sperm. In recent years a reliable method for separating X and Y chromosome bearing sperm has been published. With this method, separation is achieved by using a flow cytometer/cell sorter, which detects differences in DNA content. This technique provided the first opportunity for testing anti-H-Y antibody binding to fractions enriched for X and Y chromosme bearing sperm, directly. A total of 7 anti-H-Y monoclonal antibodies were tested using sorted porcine sperm and in one experiment also sorted bovine sperm. All monoclonal antibodies bound only a fraction of the sperm (20 to 50%). However, no difference in binding to the X and Y sperm enriched fractions was found. Therefore, the present experiments do not yield evidence that H-Y antigen is preferentially expressed in Y chromosome bearing sperm. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Neuropeptide Y (NPY) has been implicated as a modulator of social behavior, often in a species-specific manner. Comparative studies of closely related vole species are particularly useful for identifying neural systems involved in social behaviors in both voles and humans. In the present study, immunohistochemistry was performed to compare NPY-like immunoreactivity (-ir) in brain tissue of the socially monogamous prairie vole and non-monogamous meadow vole. Species differences in NPY-ir were observed in a number of regions including the cortex, extended amygdala, septal area, suprachiasmatic nucleus, and intergeniculate leaf. Meadow voles had higher NPY-ir in all these regions as compared to prairie voles. No differences were observed in the striatum or hippocampus. The extended amygdala and lateral septum are regions that play a key role in regulation of monogamous behaviors such as pair bonding and paternal care. The present study suggests NPY in these regions may be an additional modulator of these species-specific social behaviors. Meadow voles had moderately higher NPY-ir in a number of hypothalamic regions, especially in the suprachiasmatic nucleus. Meadow voles also had much higher levels of NPY-ir in the intergeniculate leaflet, another key region in the regulation of circadian rhythms. Overall, species differences in NPY-ir were observed in a number of brain regions implicated in emotion, stress, circadian, and social behaviors. These findings provide additional support for a role for the NPY system in species-typical social behaviors.  相似文献   

8.
The objective of this study was to examine preimplantation development and sperm aster characteristics of bovine male and female embryos produced by using spermatozoa sorted for the X or Y chromosome. In vitro matured oocytes were inseminated at 24 h of maturation with sorted X or Y chromosome-bearing spermatozoa, using either fresh or frozen-thawed semen. Samples were taken from each sperm group 12 h post insemination (hpi), fixed, and immunostained for the microtubule cytoskeleton. Confocal microscopy enabled visualization of sperm aster formation and microtubule characteristics of each zygote during early fertilization. Cultured embryos were checked for cleavage at 30, 35, 40 and 45 hpi, embryo development was examined daily until Day 8 of culture. Blastocyst cell numbers were determined at the end of the experiments. Reanalysis of the sorted sperm cells for DNA content showed purity rates of 90.1 and 92.1% for X and Y chromosome-bearing spermatozoa, respectively. Reduced fertilization and development rates were observed when sorted spermatozoa were used compared with fresh and frozen-thawed spermatozoa. Penetration rates at 12 hpi were 39.5, 44.7, 55.9 and 79.0%, while blastocyst formation rates at Day 8 were 26.7, 26.5, 31.7 and 40.7% for X and Y chromosome-bearing spermatozoa, using fresh and frozen-thawed semen groups, respectively. Sperm aster size was larger in males than females, while the size of pronuclei and subjective grade of sperm aster quality showed no differences between sexes. In this study, a greater cleavage rate and sperm aster size in male embryos indicated a dimorphic pattern of development in male and female embryos during fertilization and first cleavage.  相似文献   

9.
This article presents data on the genetic variability of the northern red-backed vole and the bank vole that live sympatrically in West Siberia. The two species of voles have comparable, relatively high indices of genetic variability of inter simple sequences repeats DNA. The proportion of polymorphic DNA markers is 95–98%, and the Nei’s genetic diversity index is 0.33–0.35. A total of 47–58% of allozyme loci in the voles are polymorphic, and the average heterozygosity per locus is 0.058 in the northern red-backed vole and 0.054 in the bank vole. Interpopulation differentiation is less pronounced in the red-backed vole (F ST 0.293) compared to the bank vole (F ST 0.475). Individuals of the hybrid line of the bank vole with the mitochondrial haplotype of the red-backed vole have been found by PCR typing of cytochrome b gene fragment of mtDNA. The distribution boundary of the hybrid line of bank voles goes farther to the northeast than was shown in earlier works. The proportion of hybrid specimens range from 2 to 34%. The indices of genetic variability in the hybrid line of the bank vole are lower than those of the parental species.  相似文献   

10.
We tested the hypothesis that dispersal and philopatry are components of a mixed evolutionarily stable strategy (ESS). The hypothesis predicts that fitness of dispersers should be equal to that of philopatric individuals. Alternatively, fitness of dispersers could be lower (the resident fitness hypothesis) or greater (the cost of dispersal hypothesis) than that of philopatric individuals. We compared fitness of individuals that moved to new habitats (emigrants) and those that remained within habitat boundaries (residents) in populations of the prairie vole, Microtus ochrogaster, and the meadow vole, M. pennsylvanicus. We established vole populations in four enclosures (). Within each enclosure, voles were free to move between four types of habitats that varied in the availability of supplemental food and the amount of vegetative cover. We analysed two fitness components: the survival rates of all individuals, and pregnancy rates of females. Our study showed that emigrants generally had greater fitness than residents and that the difference in fitness was habitat dependent (i.e. was greater when individuals were emigrating from low-quality habitats than from high-quality habitats). High-food, high-cover habitats were the only habitat types for which fitness of emigrants was lower than that of residents. Similar patterns occurred in both prairie voles and meadow voles. Our results support the cost of dispersal hypothesis.  相似文献   

11.
1. Two species of voles were fed high fibre (barnyard grass) and low fibre (alfalfa) diets to test the integrated processing response (IPR) hypothesis. This hypothesis states that many herbivores are able to maintain their required intake of digestible nutrients and energy on diets with very different fibre content because of compensatory changes in intake of food, size of gastro-intestinal (GI) tract, passage rates of fibre and absorptive capacity of the GI tract.
2. As predicted by the IPR hypothesis, each species of vole maintained a similar intake of digestible dry matter on the two different diets. Both species also had greater intake, larger GI size, shorter mean retention times and greater GI mass (an indicator of epithelial mass and absorptive capacity) when fed grass than when fed alfalfa.
3. The two species differed in that meadow voles, the more active species, had greater total intake and obtained a greater amount of digestible dry matter from either diet than did prairie voles. Meadow voles also consume more grass in the field than do prairie voles, and they digested grass better than did prairie voles. Prairie voles, which consume more dicots in the field, digested alfalfa better than did meadow voles.
4. Meadow voles had longer GI tracts, particularly small intestines, than did prairie voles, which may be linked to their greater ability to digest grass. However, meadow voles did not have larger caeca than prairie voles, even though caecal size increased on grass diets for both species. The GI size of prairie voles fed grass increased more than did the GI size of meadow voles, and this may have enabled prairie voles to utilize a grass diet, though they prefer to eat dicots. Greater selection of leaves, which have less fibre than stems, and longer mean retention times of food may account for better digestion of alfalfa by prairie voles.  相似文献   

12.
We have investigated the karyotype relationships of two oriental voles, i.e. the Yulong vole (Eothenomys proditor, 2n = 32) and the large oriental vole (Eothenomys miletus, 2n = 56) as well as the Clarke's vole (Microtus clarkei, 2n = 52), by a combined approach of cross-species chromosome painting and high-resolution G-banding comparison. Chromosome-specific painting probes were generated from flow-sorted chromosomes of E. proditor and hybridized onto metaphases of E. proditor, E. miletus and M. clarkei, leading to the establishment of genome-wide comparative chromosome maps. Our results demonstrate that Robertsonian translocations (centric fusions) have played a major role in the karyotype evolution of oriental voles with no obvious evidence for the involvement of tandem fusions as proposed previously and that the genome organizations of vole species are highly conserved. The comparative chromosome maps of these three vole species belonging to two phylogenetically distinct genera provide a framework for future studies on the karyotype evolution in voles.  相似文献   

13.
In many parts of the global range, voles form an important part of the diet of Hen Harriers Circus cyaneus , and breeding numbers are correlated with the abundance of these small mammals. In Scotland, however, little information is available on harrier diet in the spring and our understanding of causes of variation in harrier breeding density is complicated by human interference. In this paper we explore the relationship between Field Vole Microtus agrestis abundance and harrier spring diet, density and productivity in southern Scotland. Over three years, voles occurred on average in 67% of pellets, and 79% in years of high and intermediate vole abundance. From 1992, the number of breeding harriers increased following protection from illegal persecution. After accounting for this trend, harrier numbers correlated strongly with vole abundance. Harrier clutch size was also correlated with vole abundance. Although fledging success tended to be greater in years of vole increase than in years of vole decline, fledging success was not significantly correlated with the relative abundance of voles, or with the abundance of Meadow Pipits or Red Grouse chicks.  相似文献   

14.
Low levels of nucleotide diversity in mammalian Y chromosomes   总被引:10,自引:0,他引:10  
Sex chromosomes provide a useful context for the study of the relative importance of evolutionary forces affecting genetic diversity. The human Y chromosome shows levels of nucleotide diversity 20% that of autosomes, which is significantly less than expected when differences in effective population size and sex-specific mutation rates are taken into account. To study the generality of low levels of Y chromosome variability in mammalian genomes, we investigated nucleotide diversity in intron sequences of X (1.1-3.0 kb) and Y (0.7-3.5 kb) chromosome genes of five mammals: lynx, wolf, reindeer, cattle, and field vole. For all species, nucleotide diversity was found to be lower on Y than on X, with no segregating site observed in Y-linked sequences of lynx, reindeer, and cattle. For X chromosome sequences, nucleotide diversity was in the range of 1.6 x 10(-4) (lynx) to 8.0 x 10(-4) (field vole). When differences in effective population size and the extent of the male mutation bias were taken into account, all five species showed evidence of reduced levels of Y chromosome variability. Reduced levels of Y chromosome variability have also been observed in Drosophila and in plants, as well as in the female-specific W chromosome of birds. Among the different factors proposed to explain low levels of genetic variability in the sex-limited chromosome (Y/W), we note that selection is the only factor that is broadly applicable irrespective of mode of reproduction and whether there is male or female heterogamety.  相似文献   

15.
Cyclic changes in population growth rate are caused by changes in survival and/or reproductive rate. To find out whether cyclic changes in reproduction are an important part of the mechanism causing cyclic fluctuations in small mammal populations, we studied changes in the population structure and reproduction of field voles ( Microtus agrestis ), sibling voles ( M. rossiaemeridionalis ), bank voles ( Clethrionomys glareolus ), and common shrews ( Sorex araneus ) in western Finland during 1984–1992, in an area with 3-yr vole cycles. We also modelled the population growth of voles using parameter values from this study. The animals studied were collected by snap trapping in April, May, June, August, September, and, during 1986–1990, also in October. We found several phase-related differences in the population structure (age structure, sex ratio, proportion of mature individuals) and reproduction (litter size, length of the breeding season) of voles. In non-cyclic common shrews, the only significant phase-related difference was a lower proportion of overwintered individuals in the increase phase. According to the analyses and the vole model, phase-related changes in litter size had only a minor impact on population growth rate. The same was true for winter breeding in the increase phase. The length and intensity of the summer breeding season had an effect on yearly population growth but this impact was relatively weak compared to the effect of cyclic changes in survival. The population increase rates of Microtus were delayed dependent on density (8–12-month time lag). Our results indicate that cyclic changes in reproduction are not an important part of the mechanism driving cyclic fluctuations in vole populations. Low survival of young individuals appeared to play an important role in the shift from the peak to the decline phase in late summer and early autumn.  相似文献   

16.
The human Y chromosome carries 2000 copies of a tandemly repeated sequence, 2.47 kb long, which constitutes about 20% of the DNA of this chromosome. These sequences are localised on the tip of the long arm of the Y chromosome. Related sequences are present in DNA of females with a related but distinguishable restriction pattern. These autosomal sequences are distributed in tandem arrays on a number of autosomes. Related sequences are also present in gorilla and chimpanzee. In gorilla they resemble the human sequences in their restriction map but are not found on the Y chromosome whereas in chimpanzee the related sequences behave as a dispersed repeat. Changes in the level of methylation of this sequence in different tissues of human males can be detected with the lowest levels found in sperm and placental DNA.  相似文献   

17.
In previous investigations on small mammals in Finland (Rislakki & al 1954, Rislakki & Salminen 1955, Salminen 1956), the Leptospira icterohaemorrhagiae-frequency in rats (Rattus norvegicus) was rather high (43.1 %). Leptospira-positive cases were also found in house mice (L. sejroe 23.3 %), harvest mice (L. hataviae 9.0 %), yellow necked field mice (L. poi 12.5 %), common voles (L. sejroe and L. bataviae together 12.1 %), field voles (L. sejroe and L. bataviae together 10.7 %) and in common shrews (L. poi 1.2 %). Specimens of other species sent in for investigation (Norway rat, common red backed vole, large tooth backed vole, northern red backed vole, root vole, water vole, wood lemming, Laxmann's shrew, lesser shrew and water shrew) gave negative results.  相似文献   

18.
Summary We studied responses of stoats and least weasels to fluctuating vole abundances during seven winters in western Finland. Density indices of mustelids were derived from snow-tracking, diet composition from scat samples, and vole abundances from snap-trapping. Predation rate was estimated by the ratio of voles to mustelids and by the vole kill rate by predators (density of predator x percentage of voles in the diet). We tested the following four predictions of the hypothesis that small mustelids cause the low phase of the microtine cycle. (1) The densities of predators should lag well behind the prey abundances, as time lags tend to have destabilizing effects. The densities of stoats fluctuated in accordance with the vole abundances, whereas the spring densities of least weasels tracked the vole abundances with a half-year lag and the autumn densities with a 1-year lag. (2) Predators should not shift to alternative prey with declining vole densities. The yearly proportion of Microtus voles (the staple prey) in the diet of stoats varied widely (range 16–82%) and was positively correlated with the winter abundance of these voles. In contrast, the same proportion in the food of least weasels was independent of the vole abundance. (3) The ratio of voles to small mustelids should be smallest in poor vole years and largest in good ones. This was also observed. (4) Vole densities from autumn to spring should decrease more in those winters when vole kill rates are high than when they are low. The data on least weasels agreed with this prediction. Our results from least weasels were consistent with the predictions of the hypothesis, but stoats behaved like semi-generalist predators. Accordingly, declines and lows in the microtine cycle may be due to least weasel predation, but other extrinsic factors may also contribute to crashes.  相似文献   

19.
Summary In western Finland, yearly median laying dates of Tengmalm's owls varied from 14 March to 27 April during 1973–1989 and were negatively correlated with the winter densities of voles. Yearly mean clutch sizes varied from 4.0 to 6.7 and were more closely related to the spring than to the winter densities of voles. The yearly mean clutch size decreased with yearly median laying date. The 3-year vole population cycle is typical of the study area. The start of egg-laying was earliest in the peak phase of the cycle (median laying date 22 March), when vole numbers are high during egg-laying, but decline rapidly to low numbers in the next autumn or winter. In the increase phase (1 April) vole abundances are moderate at the time of laying, but increase to a peak in the next autumn or winter. In the low phase (15 April) voles are scarce in spring and in the preceding winter, starting to increase in late summer. Clutch size and female body mass were independent of laying date in the low phase, decreased slowly but significantly in the increase phase, and declined abruptly in the peak phase. These trends also held when the effects of territory quality, female age and male age were ruled out. When comparing the same laying periods, clutch sizes were significantly larger in the increase than in other phases of the cycle, but there was no difference between the peak and low phases. Supplementary feeding prior to and during egg-laying increased clutch size independent of laying date. These results agreed with the income model (the rate of energy supply during laying determines clutch size). Tengmalm's owls invest most in a clutch in the increase phase, as the reproductive value of eggs is largest because of high survival of yearlings. A high reproductive effort may be adaptive during this phase, because the availability of voles is predictable during the laying period.  相似文献   

20.
橙腹田鼠(Microtus ochrogaster)和草原田鼠(M. pennsylvanicus)是两种亲缘关系很近,但有着完全不同交配体制的田鼠。本文试图通过他们头骨的形态学比较来验证幼体生长发育(paedomorphosis)可以印证单配制交配体制进化的假说。通过几种头骨的测量,我们发现草原田鼠头骨的长与宽比例大于橙腹田鼠,说明前者具有相对狭长的头骨。进一步的测量发现,这种不同是由于草原田鼠具有相对较长的鼻骨造成的。最后,我们对同种内成年和幼年的头骨进行了比较,发现单配制的橙腹田鼠相对于多配制的草原田鼠,其成年的头骨与幼年的头骨更相似。这些测量结果说明与多配制的田鼠相比,单配制的田鼠在形态及行为上保留更多的幼年状态,而这种行为很可能与其交配体制有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号