首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Resistance to carbosulfan, a carbamate insecticide, was detected in field populations of the malaria vector mosquito Anopheles gambiae Giles (Diptera: Culicidae) from two ecologically contrasted localities near Bouaké, Ivory Coast: rural M'bé with predominantly M form of An. gambiae susceptible to pyrethroids; suburban Yaokoffikro with predominantly S form of An. gambiae highly resistant to pyrethroids (96% kdr). The discriminating concentration of 0.4% carbosulfan (i.e. double the LC100) was determined from bioassays with the susceptible An. gambiae Kisumu strain. Following exposure to the diagnostic dosage (0.4% carbosulfan for 1 h), mortality rates of female An. gambiae adults (reared from larvae collected from ricefields) were 62% and 29% of those from M'bé and Yaokoffikro, respectively, 24 h post-exposure. Exposure for 3 min to netting impregnated with the operational dosage of carbosulfan 200 mg/m2 gave mortality rates of 88% of those from M'bé and only 12.2% for Yaokoffikro. In each case the control untreated mortality rate was insignificant. Biochemical assays to detect possible resistance mechanism(s) revealed the presence of insensitive AChE in populations of An. gambiae at both localities, more prevalent in the S form at Yaokoffikro than in M form at M'bé, as expected from bioassays results. Our study demonstrates the need to monitor carbamate resistance among populations of the An. gambiae complex in Africa, to determine its spread and anticipate vector control failure if these insecticides are employed.  相似文献   

2.
We investigated the role of monooxygenases in resistance to synthetic pyrethroids (SPs) in the cattle tick, Boophilus microplus. We found that monooxygenases play only a minor role in resistance to SPs in both resistant and susceptible strains of B. microplus. We blocked the monooxygenases with piperonyl butoxide (PBO) and simultaneously applied the SPs, flumethrin and cypermethrin to larval B. microplus. PBO increased the effect of flumethrin (synergism ratios 2.7–8.9) more than it increased the effect of cypermethrin (synergism ratios 1.9–3.1). Of the four strains tested, Parkhurst, which is resistant to SPs, was the least affected by the addition of PBO (synergism ratios after cypermethrin was applied 1.9; after flumethrin 2.7) whereas N.R.F.S., the strain susceptible to SPs, was the most affected by synergism between PBO and SPs (synergism ratio after cypermethrin was applied 3.1; after flumethrin 8.9). We hypothesize that B. microplus lacks monooxygenases capable of conferring resistance to SPs because it and its recent ancestors were blood-feeders rather than herbivores.  相似文献   

3.
昆虫钠通道的结构和与击倒抗性有关的基因突变   总被引:13,自引:3,他引:10  
击倒抗性(kdr)是指昆虫和其他节肢动物由于它们的神经系统对DDT和拟除虫菊酯类杀虫剂的敏感性降低而引起的抗性。电压敏感的钠通道是DDT和拟除虫菊酯类杀虫剂的主要靶标。已知拟除虫菊酯是通过改变位于神经膜上的这类通道而发挥其杀虫效果的,钠通道基因的点突变是产生kdr抗性的主要原因。40年来kdr抗性一直是重要的研究课题,但近10年来在kdr分子生物学方面取得了很大进展。本文主要综述了1996年以来所取得的新进展,着重于钠通道的结构、在14种害虫中与kdr抗性相关的钠通道基因突变及其氨基酸序列的多态性。这些结果有助于对拟除虫菊酯改变钠通道的功能及其机理作进一步探究。  相似文献   

4.
Samples of the dengue vector mosquito Aedes aegypti (L.) (Diptera: Culicidae) were collected from 13 localities between 1995 and 1998. Two laboratory strains, Bora (French Polynesia) and AEAE, were both susceptible to DDT and permethrin; all other strains, except Larentuka (Indonesia) and Bouaké (Ivory Coast), contained individual fourth-instar larvae resistant to permethrin. Ten strains were subjected to a range of biochemical assays. Many strains had elevated carboxylesterase activity compared to the Bora strain; this was particularly high in the Indonesian strains Salatiga and Semarang, and in the Guyane strain (Cayenne). Monooxygenase levels were increased in the Salatiga and Paea (Polynesia) strains, and reduced in the two Thai strains (Mae Kaza, Mae Kud) and the Larentuka strain. Glutathione S-transferase activity was elevated in the Guyane strain. All other enzyme profiles were similar to the susceptible strain. The presence of both DDT and pyrethroid resistance in the Semarang, Belem (Brazil) and Long Hoa (Vietnam) strains suggested the presence of a knock-down resistant (kdr)-type resistance mechanism. Part of the S6 hydrophobic segment of domain II of the voltage-gated sodium channel gene was obtained by RT-PCR and sequenced from several insects from all 13 field strains. Four novel mutations were identified. Three strains contained identical amino acid substitutions at two positions, two strains shared a different substitution, and one strain was homozygous for a fourth alteration. The leucine to phenylalanine substitution that confers nerve insensitivity to pyrethroids in a range of other resistant insects was absent. Direct neurophysiological assays on individual larvae from three strains with these mutations demonstrated reduced nerve sensitivity to permethrin or lambda cyhalothrin inhibition compared to the susceptible strains.  相似文献   

5.
A bioassay was used to detect active site insensitivity (knock-down resistance [kdr]) in pyrethroid resistant larvae of the horn fly, Haematobia irritans (L.). The larvae of the resistant population had KD50's 42.0-, 28.1- and 29.2-fold greater to permethrin, fenvalerate and lambda-cyhalothrin, respectively, compared with the susceptible population. In filter paper bioassays, resistant adult horn flies were 17 to 39.1 times less susceptible to the pyrethroids than susceptible adults at LC50. These results further document active site insensitivity as the major mechanism of pyrethroid resistance in the horn fly.  相似文献   

6.
7.
Pyrethroid-impregnated bednets and curtains are widely employed to reduce the risk of malaria transmission, but pyrethroid-resistance is becoming more prevalent among malaria vector Anopheles mosquitoes (Diptera: Culicidae). As an alternative treatment for curtains, we assessed carbosulfan (a carbamate insecticide) in comparison with permethrin as the standard pyrethroid, against endophilic female mosquitoes of the Anopheles gambiae Giles complex in a village near Ouagadougou, Burkina Faso. The main criterion evaluated was the impact of curtains (hung inside windows, eaves and doorways) on the number of An. gambiae s.l. females active indoors at night. Light-traps were operated overnight (21.00-06.00 hours beside occupied untreated bednets) to sample mosquitoes in houses fitted with net curtains treated with carbosulfan 0.2 g ai/m2 or permethrin 1 g ai/m2 or untreated, compared with houses without curtains. The treated and untreated curtains significantly reduced the numbers of mosquitoes collected indoors, compared with houses without curtains. Carbosulfan-treated curtains had a highly significantly greater effect than permethrin-treated or untreated curtains, the scale of the difference being estimated as three-fold. However, there was no significant difference between the impact of untreated and permethrin-treated curtains on densities of An. gambiae s.l. trapped indoors. Samples of the An. gambiae complex comprised An. arabiensis Patton and both the S- and M-forms of An. gambiae Giles s.s. Susceptibility tests revealed some resistance to DDT and low frequencies of permethrin-resistance, insufficient to explain the poor performance of permethrin on curtains. Among survivors from the diagnostic dosage of permethrin were some specimens of all three members of the An. gambiae complex, but the kdr resistance mechanism was detected only in the S-form of An. gambiae s.s. Questions arising for further investigation include clarification of resistance mechanisms in, and foraging behaviour of, each member of the An. gambiae complex in this situation and the need to decide whether carbosulfan-treated curtains are acceptably safe for use to reduce risks of malaria transmission.  相似文献   

8.
Five contemporary strains of the bollworm Helicoverpa armigera Hübner from China, Pakistan and India, all with high resistance to pyrethroids, were compared with a standard susceptible strain that originated from the Cote D'Ivoire in the 1970s ('SCD'). Two of the Chinese strains ('YGF' and 'YGFP') were derived by laboratory selection from a third, field collected strain ('YG'). The strain 'YG' exhibited 7-, 14- and 21-fold resistance to fenvalerate, cypermethrin and deltamethrin, respectively. After selection with fenvalerate for 14 generations ('YGF'), this increased to 1690-, 540- and 73-fold. Selection with a mixture of fenvalerate and piperonyl butoxide (PBO) for 14 generations ('YGFP') resulted in resistance ratios of 2510, 2920 and 286. The synergistic ratios to fenvalerate that resulted from pre-treatment of PBO were 5-, 462- and 12-fold in YG, YGF and YGFP strains, respectively. Resistance ratios for a Pakistani strain (PAK) were 2320-, 4100- and 223-fold to fenvalerate, cypermethrin and deltamethrin, respectively. The synergistic ratio of PBO to these pyrethroids was 450-, 950- and 11-fold. The strong synergism of pyrethroids by PBO implied that an oxidative metabolism could be involved in pyrethroid resistance in these resistant strains. The activities of cytochrome P450 monooxygenases from midguts of final instar larvae to p-nitroanisole (PNOD), ethoxycoumarin (ECOD), methoxyresorufin (MROD) significantly increased in all the resistant strains when compared with the susceptible strain. This further implies that cytochrome P450 monooxygenases are involved in pyrethroid resistance in Asian H. armigera. Comparative in vitro studies of the metabolism of 14C-deltamethrin by midgut microsomes of the resistant PAK and susceptible SCD strains showed that the resistant strain had a much greater capacity than the susceptible strain for the metabolic degradation of deltamethrin. This enhanced metabolic degradation occurred in the presence of NADPH which suggested an oxidative detoxification. In the resistant strains, minor increases in glutathione S-transferase activity (to the substrates CDNB and DCNB), and esterase activity (to the substrate alpha-naphthyl acetate) further suggested that, of the putative metabolic mechanisms, oxidases are the most important. This study provides the first evidence that cytochrome P450 monooxygenases are a major metabolic mechanism responsible for pyrethroid resistance in H. armigera from Asia.  相似文献   

9.
Resistance to pyrethroid insecticides and DDT caused by the kdr gene in the malaria vector Anopheles gambiae Giles s.s. (Diptera: Culicidae) has been reported in several West African countries. To test for pyrethroid resistance in two more countries, we sampled populations of the An. gambiae complex from south-western Ghana and from urban and rural localities in Ogun State, south-west Nigeria. Adult mosquitoes, reared from field-collected larvae, were exposed to the WHO-recommended discriminating dosage of exposure for 1 h to DDT 4%, deltamethrin 0.05% or permethrin 0.75% and mortality was recorded 24 h post-exposure. Susceptibility of An. gambiae s.l. to DDT was 94-100% in Ghana and 72-100% in Nigeria, indicating low levels of DDT resistance. Deltamethrin gave the highest mortality rates: 97-100% in Ghana, 95-100% in Nigeria. Ghanaian samples of An. gambiae s.l. were fully susceptible to permethrin, whereas some resistance to permethrin was detected at 4/5 Nigerian localities (percentage mortalities 75, 82, 88, 90 and 100%), with survivors including both An. arabiensis Patton and An. gambiae s.s. identified by PCR assay. Even so, the mean knockdown time was not significantly different from a susceptible reference strain, indicating absence or low frequency of kdr-type resistance. Such low levels of pyrethroid resistance are unlikely to impair the effectiveness of pyrethroid-impregnated bednets against malaria transmission. Among Nigerian samples of An. gambiae s.l., the majority from two urban localities were identified as An. arabiensis, whereas the majority from rural localities were An. gambiae s.s. These findings are consistent with those of M. Coluzzi et al. (1979). Differences of ecological distribution between molecular forms of An. gambiae s.s. were also found, with rural samples almost exclusively of the S-form, whereas the M-form predominated in urban samples. It is suggested that 'urban island' populations of An. arabiensis and of An. gambiae s.s. M-form in the rainforest belt of West Africa might be appropriate targets for elimination of these malaria vectors by the sterile insect technique.  相似文献   

10.
化学防治是控制蚊虫传播疾病的主要方法, 抗性监测表明我国蚊虫已对有机磷、 有机氯、 氨基甲酸酯和拟除虫菊酯类杀虫剂产生了不同程度的抗性。蚊虫抗药性的分子机制主要包括靶标抗性和三大解毒酶家族带来的代谢抗性。筛选对杀虫剂敏感的品系是抗性监测和抗性机理研究必不可少的材料。本研究通过从一个致倦库蚊Culex pipiens quinquefasciatus野生种群筛选无乙酰胆碱酯酶G119S突变且具有低活性羧酸酯酶、 P450单加氧酶和谷胱甘肽-S-转移酶的单雌系, 建立了一个对杀虫剂敏感的致倦库蚊品系。该品系的羧酸酯酶活性是敏感品系S-lab的2.5倍, P450单加氧酶和谷胱甘肽-S-转移酶的活性与S-lab相当。生物测定表明, 与S-lab相比, 该品系对有机磷杀虫剂有低于2倍的抗性, 对氨基甲酸酯和拟除虫菊酯类杀虫剂没有抗性, 可以作为相对敏感品系用于抗性监测。  相似文献   

11.
The toxicity of synergism of and resistance to insecticides in four strains of German cockroach, Blattella germanica (L.), were investigated. Toxicity of nine insecticides by topical application to the susceptible strain varied greater than 2,000-fold, with deltamethrin (LD50 = 0.004 micrograms per cockroach) and malathion (LD50 = 8.4 micrograms per cockroach) being the most and least toxic, respectively. Resistance to pyrethrins (9.5-fold) in the Kenly strain was unaffected by the synergists piperonyl butoxide (PBO) or S,S,S-tributylphosphorotrithioate (DEF), suggesting that the metabolism is not involved in this case. Malathion resistance in the Rutgers strain was suppressible with PBO, implicating oxidative metabolism as a resistance mechanism. The Ectiban-R strain was resistant to all the pyrethroids tested, and cypermethrin resistance was not suppressible with PBO or DEF. These findings support results of previous studies that indicated this train has a kdr-like mechanism. Bendiocarb resistance in both the Kenly and Rutgers strains was partially suppressed by either PBO or DEF, suggesting that oxidative and hydrolytic metabolism are involved in the resistance. Trends between the effects of the synergists on the susceptible versus resistant strains are discussed.  相似文献   

12.
Tan WL  Wang ZM  Li CX  Chu HL  Xu Y  Dong YD  Wang ZC  Chen DY  Liu H  Liu DP  Liu N  Sun J  Zhao T 《PloS one》2012,7(1):e29242
The increasing prevalence of insecticide resistance in Anopheles sinensis, a major vector of malaria in Jiangsu province in eastern China, threatens to compromise the successful use of insecticides in malaria control strategies. It is therefore vital to understand the insecticide resistance status of An. sinensis in the region. This study examined the nucleotide diversity of the para-sodium channel and knockdown resistance (kdr) in five field populations of adult An. sinensis mosquitoes collected in Jiangsu province, identifying the L1014F and L1014C substitutions for the first time. Competitive polymerase chain reaction (PCR) amplification of specific allele (cPASA) and polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) for resistance diagnosis were developed and validated. Comparing the results with direct sequencing revealed that the PCR-RFLP method was more sensitive and specific whereas the cPASA method was more convenient and suitable. The significant positive correlation between kdr allele frequency and bioassay-based resistance phenotype demonstrates that the frequency of L1014F and L1014C substitutions in the kdr gene provides a useful molecular marker for monitoring beta-cypermethrin resistance in natural populations of An. sinensis. Our results point to the L1014F substitution as the key mutation associated with beta-cypermethrin resistance. The high resistance and mutation frequency detected in the five populations also suggest cross-resistance with other pyrethroids may occur in An. sinensis, highlighting the need for further surveys to map insecticide resistance in China and the adoption of a rational management of insecticide application for resistance management and mosquito vector control.  相似文献   

13.
Malaria control, and that of other insect borne diseases such as dengue, is heavily dependent on our ability to control the mosquito populations that transmit these diseases. The major push over the last decade to reduce the global burden of malaria has been driven by the distribution of pyrethroid insecticide-treated bednets and an increase in coverage of indoor residual spraying (IRS). This has reduced malaria deaths by a third. Progress towards the goal of reducing this further is threatened by lack of funding and the selection of drug and insecticide resistance. When malaria control was initially scaled up, there was little pyrethroid resistance in the major vectors, today there is no country in Africa where the vectors remain fully susceptible to pyrethroids. The first pyrethroid resistance mechanisms to be selected produced low-level resistance which had little or no operational significance. More recently, metabolically based resistance has been selected, primarily in West Africa, which in some mosquito populations produces more than 1000-fold resistance. As this spreads the effectiveness of pyrethroid-based bednets and IRS will be compromised. New public health insecticides are not readily available. The pipeline of agrochemical insecticides that can be re-purposed for public health dried up 30 years ago when the target product profile for agricultural insecticides shifted from broad spectrum, stable, contact-acting insecticides to narrow spectrum stomach poisons that could be delivered through the plant. A public–private partnership, the Innovative Vector Control Consortium, was established in 2005 to stimulate the development of new public health pesticides. Nine potential new classes of chemistry are in the pipeline, with the intention of developing three into new insecticides. While this has been successfully achieved, it will still take 6–9 years for new insecticides to reach the market. Careful management of the resistance situation in the interim will be needed if current gains in malaria control are not to be reversed.  相似文献   

14.
Insecticide resistance in the codling moth, Cydia pomonella, partly results from increased metabolic detoxification. The aim of this study was to follow the age variations in larval susceptibility to deltamethrin and teflubenzuron in one susceptible (S) strain, and two resistant (Rv and Rt) ones selected for resistance to deltamethrin and diflubenzuron, respectively. The age variation of the activities of cytochrome P450-dependent monooxygenase (MFO), glutathione S-transferases (GST), and esterases in S and both resistant strains were simultaneously investigated. The highest levels of insecticide resistance were recorded in late instars in both resistant strains, although Rv neonates exhibited enhanced resistance to deltamethrin. The involvement of an additional deltamethrin-specific mechanism of resistance, which could be mainly expressed in early instars, was supported by previous demonstration of a kdr point mutation in the Rv strain. The cross-resistance between deltamethrin and teflubenzuron indicated the involvement of non-specific metabolic pathways in resistance to teflubenzuron, rather than target site modification. A positive correlation between enhanced GST activities and deltamethrin resistance suggested that this mechanism might take place into the adaptive response of C. pomonella to pyrethroids treatments. Enhanced MFO activity was recorded in each instar of the two resistant strains compared to the susceptible one. But these activities were not correlated to the responses to deltamethrin nor to teflubenzuron. In the light of these findings, studying age-dependence of responses to selection is central to the implementation of monitoring tests of resistances, especially if the target instars are difficult to collect in the field.  相似文献   

15.
Point mutations in the voltage-gated sodium channel gene involved in knockdown resistance to DDT and pyrethroid insecticides have been described in several insect species. In the malaria vector Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) two mutations have been identified. The first, consisting of a leucine-phenylalanine substitution at amino acid position 1014, is widespread in West Africa. The second, a leucine-serine substitution at the same position, has to date only been detected in western Kenya. Analysis of the kdr polymorphism in a sample of 106 An. gambiae s.s. of the rDNA S-form/Type I collected in Libreville (Gabon) surprisingly revealed the presence of both East and West African kdr mutations with frequencies of 63% and 37%, respectively. No wild-type alleles were detected and there was an excess of heterozygous genotypes (P = 0.04). In addition, an inconsistency was found during the kdr genotyping procedures by polymerase chain reaction, which could have lead to an underestimation of resistance alleles. The implications of these findings are discussed.  相似文献   

16.
In Kenya, insecticide-treated mosquito nets (ITNs) distributed to pregnant women and children under 5 years old through various programs have resulted in a significant reduction in malaria deaths. All of the World Health Organization-recommended insecticides for mosquito nets are pyrethroids, and vector mosquito resistance to these insecticides is one of the major obstacles to an effective malaria control program. Anopheles gambiae s.s. and Anopheles arabiensis are major malaria vectors that are widely distributed in Kenya. Two point mutations in the voltage-gated sodium channel (L1014F and L1014S) are associated with knockdown resistance (kdr) to DDT and pyrethroids in An. gambiae s.s. While the same point mutations have been reported to be rare in An. arabiensis, some evidence of metabolic resistance has been reported in this species. In order to determine the distribution of the point mutation L1014S in An. gambiae s.s. and An. arabiensis in southern and western Kenya, we collected larvae and screened for the mutation by DNA sequencing. We found high allelic and homozygous frequencies of the L1014S mutation in An. gambiae s.s. The L1014S mutation was also widely distributed in An. arabiensis, although the allelic frequency was lower than in An. gambiae s.s. The same intron sequence (length: 57 base) found in both species indicated that the mutation was introgressed by hybridization. The allelic frequency of L1014S was higher in both species in western regions, demonstrating the strong selection pressure imposed by long-lasting insecticide-treated nets (LLITN)/ITN on the An. gambiae s.s. and An. arabiensis populations in those areas. The present contribution of the L1014S mutation to pyrethroid resistance in An. arabiensis may be negligible. However, the homozygous frequency could increase with continuing selection pressure due to expanded LLITN coverage in the future.  相似文献   

17.
艾氏剂环氧化酶及细胞色素P-450对小菜蛾抗药性发展的影响   总被引:13,自引:1,他引:12  
陈言群  杨帆 《昆虫学报》1994,37(3):280-285
本文对室内长期饲养的小菜蛾(Plutella xylostella L.)敏感品系和田间采集的抗性种群体内的艾氏剂环氧化酶及细胞色素P-450进行了比较研究。结果证明,艾氏剂环氧化酶在感性和抗性小菜蛾间存在着量及质的差异。 抗性种群的艾氏剂环氧化酶的Vmax和Km值分别为感性品系的5.4倍和6.5倍。抗性种群的细胞色素P-450的含量是感性品系的1.1-1.3倍。艾氏剂环氧化酶在量上及质上的差异及细胞色素P-450含量的提高是导致小菜蛾抗药性发生与发展的重要机制之一。而且质的差异较之量的差异可能起着更为重要的作用,  相似文献   

18.
Malaria vector control relies on the use of insecticides for indoor residual spraying and long-lasting bed nets. However, insecticide resistance to pyrethroids among others, has escalated. Anopheles funestus, one of the major African malaria vectors, has attained significant levels of resistance to pyrethroids. Overexpressed P450 monooxygenases have been previously identified in pyrethroid resistant An. funestus. The escalating resistance against conventional insecticides signals an urgent need for identification of novel insecticides. Essential oils have gained recognition as promising sources of alternative natural insecticides. This study investigated six essential oil constituents, farnesol, (−)-α-bisabolol, cis-nerolidol, trans-nerolidol, methyleugenol, santalol (α and β isomers) and essential oil of sandalwood, for the adulticidal effects against pyrethroid-resistant An. funestus strain. The susceptibility against these terpenoids were evaluated on both pyrethroid-susceptible and resistant An. funestus. Furthermore, the presence of overexpressed monooxygenases in resistant An. funestus was confirmed. Results showed that both the pyrethroid-susceptible and resistant An. funestus were susceptible to three EOCs; cis-nerolidol, trans-nerolidol and methyleugenol. On the other hand, the pyrethroid-resistant An. funestus survived exposure to both farnesol and (−)-α-bisabolol. This study however does not show any direct association of the overexpressed Anopheles monooxygenases and the efficacy of farnesol and (−)-α-bisabolol. The enhanced activity of these terpenoids against resistant An. funestus that has been pre-exposed to a synergist, piperonyl butoxide, suggests their potential effectiveness in combination with monooxygenase inhibitors. This study proposes that cis-nerolidol, trans-nerolidol and methyleugenol are potential agents for further investigation as novel bioinsecticides against pyrethroid-resistant An. funestus strain.  相似文献   

19.
Helicoverpa armigera (Hübner) is the major insect pest of cotton in Africa, Turkey, Asia, India, Indonesia and Australia. Populations recently developed resistance to pyrethroids in West Africa via the overproduction of cytochrome P450 (oxidases) increasing pyrethroid metabolism. One way to overcome pyrethroid resistance is to use compounds that show negative cross-resistance to pyrethroids. Triazophos is one of these compounds: it is slightly more toxic against pyrethroid resistant larvae of H. armigera than against susceptible ones. Overproduced oxidases transform the non active triazophos into its active form, triazophos-oxon, since this form was significantly more often found in larvae from pyrethroid resistant strain (23%) than in susceptible strain (15%). This suggests that oxidases, which provide resistance by degradation of pyrethroids in the resistant individuals, also activate triazophos in its toxic oxon form resulting in a negative cross-resistance.  相似文献   

20.
《Journal of Asia》2020,23(2):277-284
The house fly, Musca domestica (Linnaeus) (Diptera: Muscidae), is a major pest for human and livestock health and is also resistant to different insecticides. Herein, six M. domestica populations were collected, five of them from industrial cattle farms and the Koohrang population from a remote area as a susceptible population. The resistance/susceptibility of populations to three pyrethroids was evaluated. High levels of permethrin resistance were observed in all field populations and the resistance ratios (RRs) were estimated to vary from 52- to 129-fold. Resistant populations also exhibited resistance to other pyrethroids (cypermethrin and deltamethrin), with RRs ranging between 45- and 180-fold. According to synergistic (piperonyl butoxide, diethyl maleate and triphenyl phosphate) and enzymatic assays, resistant populations exhibited multiple resistance phenotypes. Cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), and carboxylesterases (CarEs) were found to be involved in pyrethroid resistance in Isfahan population, P450s and GSTs in Mobarake population and CarEs detoxified pyrethroids in Natanz and Alavijeh populations. As substitution of Leucine (CTT) with Phenylalanine (TTT) at position 1014 of the voltage sensitive sodium channel (VSSC) gene is the most common mutation conferring resistance to pyrethroids in M. domestica, we sequenced a partial fragment of IIS6 and L1014F mutation was detected in all resistant populations. The present study provides valuable information for early detection of pyrethroid resistance and developing resistance management strategies in the house fly populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号