首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 525 毫秒
1.
L. Shi  L. Liu  Z. Ma  X. Lv  C. Li  L. Xu  B. Han  Y. Li  F. Zhao  Y. Yang  D. Sun 《Animal genetics》2019,50(5):430-438
Our previous genome‐wide association study identified 83 genome‐wide significant SNPs and 20 novel promising candidate genes for milk fatty acids in Chinese Holstein. Among them, the enoyl‐CoA hydratase, short chain 1 (ECHS1) and enoyl‐CoA hydratase and 3‐hydroxyacyl CoA dehydrogenase (EHHADH) genes were located near two SNPs and one SNP respectively, and they play important roles in fatty acid metabolism pathways. We herein validated whether the two genes have genetic effects on milk fatty acid traits in dairy cattle. By re‐sequencing the full‐length coding region, partially adjacent introns and 3000 bp up/downstream flanking sequences, we identified 12 SNPs in ECHS1: two in exons, four in the 3′ flanking region and six in introns. The g.25858322C>T SNP results in an amino acid replacement from leucine to phenylalanine and changes the secondary structure of the ECHS1 protein, and single‐locus association analysis showed that it was significantly associated with three milk fatty acids (= 0.0002–0.0013). The remaining 11 SNPs were found to be significantly associated with at least one milk fatty acid (= <0.0001–0.0040). Also, we found that two haplotype blocks, consisting of nine and two SNPs respectively, were significantly associated with eight milk fatty acids (= <0.0001–0.0125). However, none of polymorphisms was observed in the EHHADH gene. In conclusion, our findings are the first to indicate that the ECHS1 gene has a significant genetic impact on long‐chain unsaturated and medium‐chain saturated fatty acid traits in dairy cattle, although the biological mechanism is still undetermined and requires further in‐depth validation.  相似文献   

2.
The objective of this study was to validate the association of significant SNPs identified from a previous genome‐wide association study with carcass weight (CWT) in a commercial Hanwoo population. We genotyped 13 SNPs located on BTA14 in 867 steers from Korea Hanwoo feedlot bulls. Of these 13 SNPs, five SNPs, namely rs29021868, rs110061498, rs109546980, rs42404006 and rs42303720, were found to be significantly associated (< 0.001) with CWT. These five significant markers spanned the 24.3 to 29.4 Mb region of BTA14. The most significant marker (rs29021868) for CWT in this study had a 13.07 kg allele substitution effect and accounted for 2.4% of the additive genetic variance in the commercial Hanwoo population. The SNP marker rs109546980 was found to be significantly associated with both CWT (< 0.001) and eye muscle area (< 0.001) and could potentially be exploited for marker‐assisted selection in Hanwoo cattle. We also genotyped the ss319607402 variation, which maps to intron2 of PLAG1 gene and which is already reported to be associated with height, to identify any significant association with carcass weight; however, no such association was observed in this Hanwoo commercial population.  相似文献   

3.
The porcine major histocompatibility complex (MHC) harbors the highly polymorphic swine leukocyte antigen (SLA) class I and II gene clusters encoding glycoproteins that present antigenic peptides to T cells in the adaptive immune response. In Austria, the majority of commercial pigs are F 2 descendants of F 1 Large White/Landrace hybrids paired with Pietrain boars. Therefore, the repertoire of SLA alleles and haplotypes present in Pietrain pigs has an important influence on that of their descendants. In this study, we characterized the SLA class I ( SLA‐1 , SLA‐2 , SLA‐3 ) and class II ( SLA‐DRB1 , SLA‐DQB1 , SLA‐DQA ) genes of 27 purebred Pietrain pigs using a combination of the high‐resolution sequence‐based typing (SBT) method and a low‐resolution (Lr) PCR‐based method using allele‐group, sequence‐specific primers (PCR‐SSP). A total of 15 class I and 13 class II haplotypes were identified in the studied cohort. The most common SLA class I haplotype Lr‐43.0 ( SLA‐1 *11XX– SLA‐3 *04XX– SLA‐2 *04XX) was identified in 11 animals with a frequency of 20%. For SLA class II, the most prevalent haplotype, Lr‐0.14 [ SLA‐DRB1 *0901– SLA‐DQB1 *0801– SLA‐DQA *03XX], was found in 14 animals with a frequency of 26%. Two class II haplotypes, tentatively designated as Lr‐Pie‐0.1 [ SLA‐DRB1 *01XX/be01/ha04– SLA‐DQB1 *05XX– SLA DQA*blank] and Lr‐Pie‐0.2 [ SLA‐DRB1 *06XX– SLA‐DQB1 *03XX– SLA‐DQA *03XX], appeared to be novel and have never been reported so far in other pig populations. We showed that SLA genotyping using PCR‐SSP‐based assays represents a rapid and cost‐effective way to study SLA diversity in outbred commercial pigs and may facilitate the development of more effective vaccines or identification of disease‐resistant pigs in the context of SLA antigens to improve overall swine health.  相似文献   

4.
KIT mutations have been detected in different cancer subtypes, including melanoma. The gene also has been extensively studied in farm animals for its prominent role in coat color. The present work aimed at detecting KIT variants in a porcine model of cutaneous melanoma, the melanoblastoma‐bearing Libechov Minipig (MeLiM). By sequencing exons and intron borders, 36 SNPs and one indel were identified. Of 10 coding SNPs, three were non‐synonymous mutations, likely to affect the protein conformation. A promising variant, located in exon 19 (p.Val870Ala), was genotyped in a MeLiM × Duroc cross, and an association analysis was conducted on several melanoma‐related traits. This variant showed a significant association with melanoma development, tumor ulceration and cutaneous invasion. In conclusion, although the KIT gene would not be a major causal gene for melanoma development in pig, its genetic variation could be influencing this trait.  相似文献   

5.
Nations throughout the Indo‐Pacific region use pyrethroid insecticides to control Aedes aegypti, the mosquito vector of dengue, often without knowledge of pyrethroid resistance status of the pest or origin of resistance. Two mutations (V1016G + F1534C) in the sodium channel gene (Vssc) of Ae. aegypti modify ion channel function and cause target‐site resistance to pyrethroid insecticides, with a third mutation (S989P) having a potential additive effect. Of 27 possible genotypes involving these mutations, some allelic combinations are never seen whereas others predominate. Here, five allelic combinations common in Ae. aegypti from the Indo‐Pacific region are described and their geographical distributions investigated using genome‐wide SNP markers. We tested the hypothesis that resistance allele combinations evolved de novo in populations versus the alternative that dispersal of Ae. aegypti between populations facilitated genetic invasions of allele combinations. We used latent factor mixed‐models to detect SNPs throughout the genome that showed structuring in line with resistance allele combinations and compared variation at SNPs within the Vssc gene with genome‐wide variation. Mixed‐models detected an array of SNPs linked to resistance allele combinations, all located within or in close proximity to the Vssc gene. Variation at SNPs within the Vssc gene was structured by resistance profile, whereas genome‐wide SNPs were structured by population. These results demonstrate that alleles near to resistance mutations have been transferred between populations via linked selection. This indicates that genetic invasions have contributed to the widespread occurrence of Vssc allele combinations in Ae. aegypti in the Indo‐Pacific region, pointing to undocumented mosquito invasions between countries.  相似文献   

6.
Flight speed is a predictive indicator of cattle temperament and is associated with feed efficiency phenotypes. Genetic markers associated with both traits may assist with selection of calmer animals with improved economic value. A preliminary genome‐wide association study determined chromosomal regions on BTA9, and 17 were associated with flight speed. The genes quaking (QKI), glutamate receptor, ionotropic, AMPA 2 (GRIA2) and glycine receptor β (GLRB) were identified in these regions as potential functional candidates. Beef steers (= 1057) were genotyped with SNPs located within and flanking these genes. One SNP located near QKI and one near GRIA2 were nominally associated with flight speed ( 0.05) although neither was significant after Bonferroni correction. Several studies have shown a correlation between flight speed and feed intake or gain; therefore, we also analyzed SNPs on BTA6:38–39 Mb known to be associated with average daily gain (ADG) and average daily feed intake (ADFI) for association with flight speed. Several SNPs on BTA6 were associated with flight speed ( 0.005), and three were significant after Bonferroni correction. These results suggest that the genes tested are unlikely to contribute to flight speed variation for our cattle population, but SNPs on BTA6 associated with ADG and ADFI may influence temperament. Use of these markers to select for economically important feed efficiency phenotypes may produce cattle with more desirable temperaments.  相似文献   

7.
Whole genome resequencing of 51 Populus nigra (L.) individuals from across Western Europe was performed using Illumina platforms. A total number of 1 878 727 SNPs distributed along the P. nigra reference sequence were identified. The SNP calling accuracy was validated with Sanger sequencing. SNPs were selected within 14 previously identified QTL regions, 2916 expressional candidate genes related to rust resistance, wood properties, water‐use efficiency and bud phenology and 1732 genes randomly spread across the genome. Over 10 000 SNPs were selected for the construction of a 12k Infinium Bead‐Chip array dedicated to association mapping. The SNP genotyping assay was performed with 888 P. nigra individuals. The genotyping success rate was 91%. Our high success rate was due to the discovery panel design and the stringent parameters applied for SNP calling and selection. In the same set of P. nigra genotypes, linkage disequilibrium throughout the genome decayed on average within 5–7 kb to half of its maximum value. As an application test, ADMIXTURE analysis was performed with a selection of 600 SNPs spread throughout the genome and 706 individuals collected along 12 river basins. The admixture pattern was consistent with genetic diversity revealed by neutral markers and the geographical distribution of the populations. These newly developed SNP resources and genotyping array provide a valuable tool for population genetic studies and identification of QTLs through natural‐population based genetic association studies in P. nigra.  相似文献   

8.
Our previous genome‐wide association study in sheep revealed that OAR3‐84073899.1 (SNP31) in intron 8 of the CAMKMT gene was significantly associated with post‐weaning gain at the genomic level. Herein, we performed a replication study to investigate single nucleotide polymorphisms (SNPs) within the CAMKMT gene exons, and 1000 bp of the 5′‐ and 3′‐intranslated regions (UTRs) and their associations with growth traits in Ujumqin sheep. Five SNPs were identified through DNA pool sequencing technology: SNP26 in the 5′‐UTR, SNP06 in exon 5, SNP07 in exon 8 and SNP27 and SNP28 in the 3′‐UTR. Six SNPs, including SNP31 in intron 8, were genotyped in the validation group of 343 Ujumqin sheep, and each SNP was classified into three genotypes. The chi‐square test suggested that all the variations were in Hardy–Weinberg equilibrium (> 0.05) except for SNP28 and SNP31. Linkage disequilibrium analysis showed that SNP07 and SNP31 were strongly linked. An association analysis suggested that SNP06 was significantly associated with chest girth at 6 months of age (< 0.05). SNP07 exhibited significant correlation with body weight and chest girth at 4 months of age and with body weight, chest girth and chest width at 6 months of age (< 0.05). SNP27 was highly associated with body weight and chest girth at 4 months of age (< 0.05), and SNP28 was extremely significantly associated with body weight and chest girth at 4 months of age and with chest girth at 6 months of age (< 0.01). SNP31 was significantly associated with body weight and shin circumference at 4 months of age and with post‐weaning gain (< 0.05). Association analysis of the combined effect of SNP07 and SNP31 showed significant correlation with body weight and chest girth at four of months of age (< 0.05) and with body weight and chest girth at 6 months of age (< 0.05). These results indicate that the SNPs could be used as meritorious and available genetic markers in growth traits breeding and that the CAMKMT gene may be one of the key candidate genes that affect Ujumqin economic traits.  相似文献   

9.
Colostrum intake is critical to a piglet's survival and can be measured by precipitating out the γ‐immunoglobulins from serum with ammonium sulfate (immunocrit). Genetic analysis of immunocrits on 5312 piglets indicated that the heritabilities (se) for direct and maternal effects were 0.13 (0.06) and 0.53 (0.08) respectively. To identify QTL for direct genetic effects, piglets with the highest and lowest immunocrits from 470 litters were selected. Six sets of DNA pools were created based on sire of the litter. These 12 DNA pools were applied to Illumina Porcine SNP60 BeadChips. Normalized X and Y values were analyzed. Three different SNP selection methods were used: deviation of the mean from high vs. low pools, the deviation adjusted for variance based on binomial theory and ANOVA. The 25 highest ranking SNPs were selected from each evaluation for further study along with 12 regions selected based on a five‐SNP window approach. Selected SNPs were individually genotyped in the 988 piglets included in pools as well as in 524 piglets that had intermediate immunocrits. Association analyses were conducted fitting an animal model using the estimated genetic parameters. Nineteen SNPs were nominally associated (< 0.01) with immunocrit values, of which nine remained significant (< 0.05) after Bonferroni correction, located in 16 genomic regions on 13 chromosomes. In conclusion, the pooling strategy reduced the cost to scan the genome by more than 80% and identified genomic regions associated with a piglet's ability to acquire γ‐immunoglobulin from colostrum. Each method to rank SNPs from the pooled analyses contributed unique validated markers, suggesting that multiple analyses will reveal more QTL than a single analysis.  相似文献   

10.
Milk production traits, such as 305‐day milk yield (305MY), have been under direct selection to improve production in dairy cows. Over the past 50 years, the average milk yield has nearly doubled, and over 56% of the increase is attributable to genetic improvement. As such, additional improvements in milk yield are still possible as new loci are identified. The objectives of this study were to detect SNPs and gene sets associated with 305MY in order to identify new candidate genes contributing to variation in milk production. A population of 781 primiparous Holstein cows from six central Washington dairies with records of 305MY and energy corrected milk were used to perform a genome‐wide association analysis (GWAA) using the Illumina BovineHD BeadChip (777 962 SNPs) to identify QTL associated with 305MY (< 1.0 × 10?5). A gene set enrichment analysis with SNP data (GSEA‐SNP) was performed to identify gene sets (normalized enrichment score > 3.0) and leading edge genes (LEGs) influencing 305MY. The GWAA identified three QTL comprising 34 SNPs and 30 positional candidate genes. In the GSEA‐SNP, five gene sets with 58 unique and 24 shared LEGs contributed to 305MY. Identification of QTL and LEGs associated with 305MY can provide additional targets for genomic selection to continue to improve 305MY in dairy cattle.  相似文献   

11.
Single nucleotide polymorphisms of Interleukin‐1β (IL‐1β) have been reported as markers for susceptibility to infectious diseases in humans and livestock. The present study was to determine the genetic variation of this cytokine in six carp strains. Among the sampled individuals, a total of 13 SNPs, including eight in introns and five in coding regions, were identified at intron 5, exon 6, intron 6 and exon 7. Three positions of 1700, 1733 and 1934 resulted in variable amino acid changes with Phe to Tyr, Pro to Leu and Lys to Asn, respectively. Five positions with minor allele frequency (MAF) were larger than 0.05. Among 13 SNPs, eight positions of allele frequency and ten positions of genotypic frequency showed significant differences between some populations. The genotype distributions of the 13 SNPs were consistent with the assumption of the Hardy‐Weinberg equilibrium, with the exception of two positions in the Yibu and bighead carp (P < 0.05), so as to supply the genetic information for research on infectious diseases.  相似文献   

12.
Modern plant breeding can benefit from the allelic variation that exists in natural populations of crop wild relatives that evolved under natural selection in varying pedoclimatic conditions. In this study, next‐generation sequencing was used to generate 1.3 million genome‐wide single nucleotide polymorphisms (SNPs) on ex situ collections of Triticum urartu L., the wild donor of the Au subgenome of modern wheat. A set of 75 511 high‐quality SNPs were retained to describe 298 T. urartu accessions collected throughout the Fertile Crescent. Triticum urartu showed a complex pattern of genetic diversity, with two main genetic groups distributed sequentially from west to east. The incorporation of geographical information on sampling points showed that genetic diversity was correlated to the geographical distance (R2 = 0.19) separating samples from Jordan and Lebanon, from Syria and southern Turkey, and from eastern Turkey, Iran and Iraq. The wild emmer genome was used to derive the physical positions of SNPs on the seven chromosomes of the Au subgenome, allowing us to describe a relatively slow decay of linkage disequilibrium in the collection. Outlier loci were described on the basis of the geographic distribution of the T. urartu accessions, identifying a hotspot of directional selection on chromosome 4A. Bioclimatic variation was derived from grid data and related to allelic variation using a genome‐wide association approach, identifying several marker–environment associations (MEAs). Fifty‐seven MEAs were associated with altitude and temperature measures while 358 were associated with rainfall measures. The most significant MEAs and outlier loci were used to identify genomic loci with adaptive potential (some already reported in wheat), including dormancy and frost resistance loci. We advocate the application of genomics and landscape genomics on ex situ collections of crop wild relatives to efficiently identify promising alleles and genetic materials for incorporation into modern crop breeding.  相似文献   

13.
J. L. Li 《Animal genetics》2013,44(6):693-702
Extracellular superoxide dismutase (SOD3) is a major antioxidant enzyme that protects organs from damage by reactive oxygen species (ROS). In this study, the SOD3 gene was identified and characterized from the freshwater mussel Hyriopsis cumingii (Hc‐SOD3). The cDNA sequence consists of 763 bp, encoding a protein of 208 amino acids. The amino acid sequence possesses two CuZnSOD signature sequences, and amino acids required for binding of Cu (His‐93, ‐95, ‐110 and ‐169) and Zn (His‐110, ‐118, ‐129 and Asp‐132) were conserved in Hc‐SOD3. The Hc‐SOD3 genomic sequence was 9165 bp in length, containing four exons and three introns. Eighteen single nucleotide polymorphisms were detected in the Hc‐SOD3 gene from resistant stock (RS) and susceptible stock (SS) of H. cumingii to Aeromonas hydrophila. The genotype and allele distribution were examined in resistant and susceptible stocks. Among them, a C/G substitution at the g.7994C>G locus and G/C substitution at the g.8087G>C locus were significantly associated with resistance/susceptibility of H. cumingii to A. hydrophila, both in genotype (= 0.017, = 0.004 respectively) and allele frequency (= 0.021, = 0.006 respectively). Linkage disequilibrium analysis revealed that g.7994C>G, g.8001A>G, g.8035G>A, g.8087G>C and g.8191T>A were in linkage disequilibrium. The results suggest that the two polymorphic loci, g.7994C>G and g.8087G>C, could be potential genetic markers for future molecular selection of strains that are resistant to diseases.  相似文献   

14.
Miscanthus lutarioriparius is an endemic species that grows along the middle and lower reaches of the Yangtze River and is a valuable source of germplasm for the development of second‐generation energy crops. The plant that propagates via seeds, stem nodes, and rhizomes shows high phenotypic variation and strong local adaptation. Here, we examined the magnitude and spatial distribution of genetic variation in M. lutarioriparius across its entire distributional range and tested underlying factors that shaped its genetic variation. Population genetic analyses were conducted on 644 individuals from 25 populations using 16 microsatellite markers. M. lutarioriparius exhibited a high level of genetic variation (HE = 0.682–0.786; A= 4.74–8.06) and a low differentiation (FST = 0.063; Dest = 0.153). Of the total genetic variation, 10% was attributed to the differences among populations (df = 24, < 0.0001), whereas 90% was attributed to the differences among individuals (df = 619, ≤ 0.0001). Genetic diversity did not differ significantly across longitudes and did not increase in the populations growing downstream of the Yangtze River. However, significant associations were found between genetic differentiation and spatial distance. Six genetic discontinuities were identified, which mostly distributed among downstream populations. We conclude that anthropogenic factors and landscape features both contributed to shaping the pattern of gene flow in M. lutarioriparius, including long‐distance bidirectional dispersal. Our results explain the genetic basis of the high degree of adaptability in M. lutarioriparius and identify potential sources of new germplasm for the domestication of this potential second‐generation energy crop.  相似文献   

15.
In perennial woody plants, the coordinated increase of stem height and diameter during juvenile growth improves competitiveness (i.e. access to light); however, the factors underlying variation in stem growth remain unknown in trees. Here, we used linkage‐linkage disequilibrium (linkage‐LD) mapping to decipher the genetic architecture underlying three growth traits during juvenile stem growth. We used two Populus populations: a linkage mapping population comprising a full‐sib family of 1,200 progeny and an association mapping panel comprising 435 unrelated individuals from nearly the entire natural range of Populus tomentosa. We mapped 311 quantitative trait loci (QTL) for three growth traits at 12 timepoints to 42 regions in 17 linkage groups. Of these, 28 regions encompassing 233 QTL were annotated as 27 segmental homology regions (SHRs). Using SNPs identified by whole‐genome re‐sequencing of the 435‐member association mapping panel, we identified significant SNPs ( 9.4 × 10?7) within 27 SHRs that affect stem growth at nine timepoints with diverse additive and dominance patterns, and these SNPs exhibited complex allelic epistasis over the juvenile growth period. Nineteen genes linked to potential causative alleles that have time‐specific or pleiotropic effects, and mostly overlapped with significant signatures of selection within SHRs between climatic regions represented by the association mapping panel. Five genes with potential time‐specific effects showed species‐specific temporal expression profiles during the juvenile stages of stem growth in five representative Populus species. Our observations revealed the importance of considering temporal genetic basis of complex traits, which will facilitate the molecular design of tree ideotypes.  相似文献   

16.
17.
18.
19.
Understanding the processes that drive divergence within and among species is a long‐standing goal in evolutionary biology. Traditional approaches to assessing differentiation rely on phenotypes to identify intra‐ and interspecific variation, but many species express subtle morphological gradients in which boundaries among forms are unclear. This intraspecific variation may be driven by differential adaptation to local conditions and may thereby reflect the evolutionary potential within a species. Here, we combine genetic and morphological data to evaluate intraspecific variation within the Nelson's (Ammodramus nelsoni) and salt marsh (Ammodramus caudacutus) sparrow complex, a group with populations that span considerable geographic distributions and a habitat gradient. We evaluated genetic structure among and within five putative subspecies of A. nelsoni and A. caudacutus using a reduced‐representation sequencing approach to generate a panel of 1929 SNPs among 69 individuals. Although we detected morphological differences among some groups, individuals sorted along a continuous phenotypic gradient. In contrast, the genetic data identified three distinct clusters corresponding to populations that inhabit coastal salt marsh, interior freshwater marsh and coastal brackish–water marsh habitats. These patterns support the current species‐level recognition but do not match the subspecies‐level taxonomy within each species—a finding which may have important conservation implications. We identified loci exhibiting patterns of elevated divergence among and within these species, indicating a role for local selective pressures in driving patterns of differentiation across the complex. We conclude that this evidence for adaptive variation among subspecies warrants the consideration of evolutionary potential and genetic novelty when identifying conservation units for this group.  相似文献   

20.
Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost‐effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre‐ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号