首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
首次报导了在白浆土和砂壤土上使用氢醌(HQ)抑制土壤脲酶活性,有效地缓解尿素分解产物及其随后的氧化产物对大豆结瘤和固氮活性的抑制效应,结果表明:1.HQ浓度在40PPM以内对大豆幼苗生长及初生结瘤表现促进作用;进一步提高HQ浓度将使大豆根系生长受阻变态而阻止结瘤。2.HQ(10—50PPM)提高了离体活性大豆根瘤类苗体悬液的耗氧量(79.4—86.1%)和琥珀酸脱氢酶活性(124.7—138.4%)。3.盆栽和田间试验证实,由于HQ缓解了尿素的分解,从而颇大减轻了尿素对大豆结瘤和固氮(乙炔还原活性)的抑制效应;通过大豆木质部中溶质氮形态(酰胺、酰脲和硝酸盐)的分析进一步证实了,大豆植株从根部向地上部运输的氮素形态同土壤氮转化强度和根瘤固氮强度(酰脲相对丰度)之间的紧密联系。4.由于麦秸还田土壤脲酶活性提高,故应提高HQ剂量;与此同时,通过麦秸的“氮因子效应”便能完全解除尿素对大豆结瘤固氮的抑制,并为大豆籽实发育提供了丰富的土壤氮源。  相似文献   

2.
去叶对不同生长习性大豆固氮作用的影响   总被引:2,自引:0,他引:2  
生殖生长期开始去叶后 ,(1)有限型、亚有限型和无限型 3种类型的大豆根瘤固氮酶活性都降低 ,而根瘤中酰脲含量则不同程度地增加 ;(2 )有限型大豆幼茎中酰脲含量明显增加 ,但亚有限型和无限型大豆变化不大 ;(3) 3种类型大豆幼茎中硝态氮含量增加明显  相似文献   

3.
土壤干旱条件下氮素营养对玉米内源激素含量影响   总被引:14,自引:6,他引:8  
张岁岐  山仑 《应用生态学报》2003,14(9):1503-1506
在田间持水量分别保持于35%、55%和75%±5%的土壤水分条件下,利用盆栽实验研究了土壤干旱和氮素营养对玉米内源激素和气孔导度的影响.结果表明,土壤干旱下氮素营养明显降低了玉米根系木质部汁液ABA浓度,而正常供水下施氮处理间则无显著差异(施氮处理仍较低),同时测定的叶片ABA浓度则呈相反的变化趋势,表现为干旱下施氮处理要高于不施氮处理;施氮处理木质部汁液中ZRs浓度应低于相应的不施氮处理,在调控气孔行为方面并未表现拮抗ABA作用;3种土壤水分条件下,施氮玉米叶片的气孔导度均高于不施氮处理,与木质部汁液ABA浓度呈负相关,说明施氮处理较低的根源ABA浓度是导致其气孔导度较大的主要原因.  相似文献   

4.
干旱胁迫下根系与地上部分之间的信息传递可使植物叶片及时感知土壤水势变化,从而使植物在没有真正受到干旱伤害时即可做出主动、快速的抗旱应答反应,而在这一过程中,脱落酸(abscisic acid,ABA)和pH起着关键的作用。本研究表明。干旱胁迫下鸭趾草(Commelina communis L.)、番茄(Lycopersicon esculentum Mill.)和向日葵(Helianthus annuus L.)木质部汁液中pH的变化很不相同,且该pH变化和木质部汁液中硝态氮离子浓度的变化没有直接的关系;然而,饲喂实验表明,无论对于何种植物,蒸腾流中硝态氮离子浓度的增加都可有效地增加气孔对ABA的敏感度;分根实验进一步表明,土壤中硝态氮营养的增加可明显提高气孔对根信号的敏感度。以上结果说明,氮素营养可以和根信号相互作用共同操纵气孔运动。  相似文献   

5.
植物组织粗汁液中的番木瓜环斑病毒的ELISA检测技术   总被引:14,自引:0,他引:14  
本研究建立和改进了检测番木瓜和西葫芦组织粗汁液里的番木瓜环斑病毒(PRV)的DAC-ELISA法和Dot-ELISA法。用不同的ELISA方法来检测不同寄主植物粗汁液里的PRV,其所用的合适的制备粗汁液的缓冲液是不同的。用DAC-ELISA法检测西葫芦粗汁液时,以0.5mol/L磷酸盐缓冲液(pH7.5,内含0.1mol/L乙二胺四乙酸二钠)为宜;而检测番木瓜粗汁液时,则还要加入0.25mol/L脲。用Dot-ELISA法检测时,在上述磷酸盐缓冲液中加入2%聚乙烯吡咯烷铜能提高对西葫芦粗汁液的检测效果。应用合适的制备粗汁液的缓冲液,DAC-ELISA法和Dot-ELISA法的灵敏度分别提高到1/4096和1/1024(稀释度)。本研究还表明,影响DAC-ELISA法的定过测定的主要因素是粗汁液的稀释度和包被液(0.05mol/L碳酸盐缓冲液,pH9.6)的用过。在较高粗汁液稀释度和包被液的用量相同时,粗汁液里的病毒含量与DAC-ELISA法的OD492nm值呈真实的线性关系。  相似文献   

6.
杨梅、沙棘和赤杨三种放线菌结瘤植物根瘤、根部有机氮化物的组分中,都含有占总有机氮化物50%以上的尿囊酸,说明在它们的根瘤中合成了大量的酰脲;同时,三种植物结瘤植株的茎木质部提取物中也含有大量的尿囊酸,表明根瘤将其合成的酰脲向植物地上部位运送。三种植物的根瘤还将其合成的特定的氨基酸及酰胺向地上部位转运,其中杨梅根瘤将固定的氮素以Asn和Gln的形式输出,而根部则以Arg的形式向上转运;沙棘根瘤以Ash,Gln及Ser,赤杨根瘤以Cit的形式合成并转运固定的氮素;后两种植物的无根瘤植株,以NH_4~+为氮源时,在转运的氨基酸组分中Arg的比例明显提高。  相似文献   

7.
大豆(Glycine m ax (L.) Merr.)Bragg 及它的突变体, 超结瘤大豆nts 382 和不结瘤大豆Nod 49 的叶片提取物中含有抑制iNR活性、c1NR活性和C2NR活性的抑制成分。300 μE·m - 2·s- 1照度和接种根瘤菌strain USDA110 是形成抑制成分的重要条件。在两种条件下,Nod 49 中的抑制活性最强, nts 382 的最弱, Bragg 的居中。Bragg 的接种根提取物对3 种NR活性的抑制作用基本同于其叶片提取物; nts 382 的接种根提取物也同于其叶片提取物,基本不抑制NR的活性, 但Nod 49 的接种根提取物只抑制叶片的c2NR活性, 不同于其叶片提取物抑制3 种NR活性的作用。结果说明叶片与根两种提取物在抑制叶片NR活性的成分上相关  相似文献   

8.
野生大豆种子蛋白含量差异的生理及结构基础的探讨   总被引:1,自引:0,他引:1  
利用SDS-聚丙烯酰胺凝胶电泳、电子显微镜、蛋白及酰脲含量测定等技术,对高蛋白含量(50.7% )的50359 和低蛋白含量(40.8% )的50305 两个野生大豆在种子发育过程中贮藏蛋白积累的速率、蛋白组分合成的起始时间、蛋白体发育的进程以及幼茎的酰脲含量进行了比较研究。结果表明:野生大豆50359的高蛋白含量是与其种子发育过程中较高的植株酰脲含量、较早较快的贮藏蛋白合成及积累速率,液泡中高效的蛋白贮藏方式以及蛋白体在子叶细胞中占有较大体积相联系的  相似文献   

9.
树木树液上升机理研究进展   总被引:8,自引:0,他引:8  
何春霞  李吉跃  郭明 《生态学报》2007,27(1):329-337
水分在植物体内的运输一直是很多植物生理生态学家所关注的一个重要问题。介绍了内聚力学说的基本假设和其存在争议,总结了近年来这一研究领域的几个热点问题,主要包括:(1)木质部栓塞及其恢复机理;(2)木质部压力探针和压力室法测定的木质部张力值不一致的现象及其可能原因;(3)补偿压学说;(4)不同界面层张力以及输水管道的毛细作用力、薄壁细胞膨压和木质部渗透压、逆向蒸腾等在树木汁液上升中的贡献;(5)最近发现的存在于木质部导管伴胞和韧皮部薄壁细胞等质膜中的水孔蛋白在植物水分运输中的调控作用等。这些方面在解释树木的树液上升中都起着重要的作用。  相似文献   

10.
超结瘤大豆(Glycine m ax (L.) Merr.) nts 382 和不结瘤大豆Nod 49 的叶和根组织水提取物经Sephadex G25 过滤、洗脱,再根据洗脱物对硝酸还原酶(NR)活性的影响可划分为4 个组分(fraction)样品,即nts 382(Nod 49) F1、nts 382(Nod 49) F2、nts 382(Nod 49) F3 和nts 382(Nod 49) F4。其中, nts382 F2 和F4 抑制NR 活性作用在接种USDA110 后明显下降, 但接种的nts 382 F2 却能提高大豆Bragg 的结瘤数达一倍, 而接种的nts 382 F3 和F4 的作用不明显。NR 活性抑制因子不是刺激结瘤的因子, 刺激结瘤的因子主要分布在接种的nts382 F2 部分中。与这一现象相反, Nod 49 F2 和F4 抑制NR活性的作用在接种后更强, 且也抑制大豆nts 382 的结瘤, 其中Nod 49 F4 抑制结瘤的作用基本不能逆转。抑制结瘤因子主要分布在接过种的Nod 49 F4 部分中  相似文献   

11.
Nodulated and denodulated roots of adzuki bean (Vigna angularis), soybean (Glycine max), and alfalfa (Medicago sativa) were exposed to 14CO2 to investigate the contribution of nodule CO2 fixation to assimilation and transport of fixed nitrogen. The distribution of radioactivity in xylem sap and partitioning of carbon fixed by nodules to the whole plant were measured. Radioactivity in the xylem sap of nodulated soybean and adzuki bean was located primarily (70 to 87%) in the acid fraction while the basic (amino acid) fraction contained 10 to 22%. In contrast, radioactivity in the xylem sap of nodulated alfalfa was primarily in amino acids with about 20% in organic acids. Total ureide concentration was 8.1, 4.7, and 0.0 micromoles per milliliter xylem sap for soybean, adzuki bean, and alfalfa, respectively. While the major nitrogen transport products in soybeans and adzuki beans are ureides, this class of metabolites contained less than 20% of the total radioactivity. When nodules of plants were removed, radioactivity in xylem sap decreased by 90% or more. Pulse-chase experiments indicated that CO2 fixed by nodules was rapidly transported to shoots and incorporated into acid stable constituents. The data are consistent with a role for nodule CO2 fixation providing carbon for the assimilation and transport of fixed nitrogen in amide-based legumes. In contrast, CO2 fixation by nodules of ureide transporting legumes appears to contribute little to assimilation and transport of fixed nitrogen.  相似文献   

12.
Transport of nitrogen in the xylem of soybean plants   总被引:54,自引:37,他引:17       下载免费PDF全文
Experiments were conducted to characterize the distribution of N compounds in the xylem sap of nodulated and nonnodulated soybean plants through development and to determine the effects of exogenous N on the distribution of N compounds in the xylem. Xylem sap was collected from nodulated and nonnodulated greenhouse-grown soybean plants (Glycine max [L.] Merr. “Ransom”) from the vegetative phase to the pod-filling phase. The sum of the nitrogen in the amino acid, nitrate, ureide (allantoic acid and allantoin), and ammonium fractions of the sap from both types of plants agreed closely with total N as assayed by a Kjeldahl technique. Sap from nodulated plants supplied with N-free nutrient solution contained seasonal averages of 78 and 20% of the total N as ureide-N and amino acid-N, respectively. Sap from nonnodulated plants supplied with a 20 millimolar KNO3 nutrient solution contained seasonal averages of 6, 36, and 58% of total N as ureide-N, amino acid-N, and nitrate-N, respectively. Allantoic acid was the predominant ureide in the xylem sap and asparagine was the predominant amino acid. When well nodulated plants were supplied with 20 millimolar KNO3, beginning at 65 days, C2H2 reduction (N2 fixation) decreased relative to nontreated plants and there was a concomitant decrease in the ureide content of the sap. A positive correlation (r = 0.89) was found between the ureide levels in xylem sap and nodule dry weights when either exogenous nitrate-N or urea-N was supplied at 10 and 20 millimolar concentrations to inoculated plants. The results demonstrate that ureides play a dominant role in N transport in nodulated soybeans and that the synthesis of ureides is largely dependent upon nodulation and N2 fixation.  相似文献   

13.

Background

Plant systemic signaling characterized by the long distance transport of molecules across plant organs involves the xylem and phloem conduits. Root-microbe interactions generate systemic signals that are transported to aerial organs via the xylem sap. We analyzed the xylem sap proteome of soybean seedlings in response to pathogenic and symbiotic interactions to identify systemic signaling proteins and other differentially expressed proteins.

Results

We observed the increase of a serine protease and peroxidase in the xylem sap in response to Phytophthora sojae elicitor treatment. The high molecular weight fraction of soybean xylem sap was found to promote the growth of Neurospora crassa in vitro at lower concentrations and inhibit growth at higher concentrations. Sap from soybean plants treated with a P. sojae elicitor had a significantly higher inhibitory effect than sap from control soybean plants. When soybean seedlings were inoculated with the symbiont Bradyrhizobium japonicum, the abundance of a xyloglucan transendoglycosyl transferase protein increased in the xylem sap. However, RNAi-mediated silencing of the corresponding gene did not significantly affect nodulation in soybean hairy root composite plants.

Conclusion

Our study identified a number of sap proteins from soybean that are differentially induced in response to B. japonicum and P. sojae elicitor treatments and a majority of them were secreted proteins.  相似文献   

14.
The principal forms of amino nitrogen transported in xylem were studied in nodulated and non-nodulated peanut (Arachis hypogaea L.). In symbiotic plants, asparagine and the nonprotein amino acid, 4-methyleneglutamine, were identified as the major components of xylem exudate collected from root systems decapitated below the lowest nodule or above the nodulated zone. Sap bleeding from detached nodules carried 80% of its nitrogen as asparagine and less than 1% as 4-methyleneglutamine. Pulse-feeding nodulated roots with 15N2 gas showed asparagine to be the principal nitrogen product exported from N2-fixing nodules. Maintaining root systems in an N2-deficient (argon:oxygen, 80:20, v/v) atmosphere for 3 days greatly depleted asparagine levels in nodules. 4-Methyleneglutamine represented 73% of the total amino nitrogen in the xylem sap of non-nodulated plants grown on nitrogen-free nutrients, but relative levels of this compound decreased and asparagine increased when nitrate was supplied. The presence of 4-methyleneglutamine in xylem exudate did not appear to be associated with either N2 fixation or nitrate assimilation, and an origin from cotyledon nitrogen was suggested from study of changes in amount of the compound in tissue amino acid pools and in root bleeding xylem sap following germination. Changes in xylem sap composition were studied in nodulated plants receiving a range of levels of 15N-nitrate, and a 15N dilution technique was used to determine the proportions of accumulated plant nitrogen derived from N2 or fed nitrate. The abundance of asparagine in xylem sap and the ratio of asparagine:nitrate fell, while the ratio of nitrate:total amino acid rose as plants derived less of their organic nitrogen from N2. Assays based on xylem sap composition are suggested as a means of determining the relative extents to which N2 and nitrate are being used in peanuts.  相似文献   

15.
16.
There are conflicting reports in the literature of the possible role of the ureides, allantoin and allantoic acid, in the nitrogen economy of Arachis species. Therefore, xylem sap composition in food peanut ( Arachis hypogaea L.), and two forage peanuts ( A. pintoi L. and A. glabrata Benth.) has been studied in detail. Xylem saps were collected from peanuts grown under different nutritional regimes and environmental conditions in the glasshouse and field in Australia, Malaysia and Indonesia, and the N-containing solutes analysed. The relative amounts and concentrations of ureides in these peanut exudates were compared with those of soybean ( Glycine max [L.] Merr.) – a species known to export ureides in its xylem stream as the major product of N2 fixation.
Xylem concentrations of ureides in soybean were high in N2-fixing plants (2.9 to 3.7 μmol ml−1), representing 60 to 88% of xylem solute nitrogen, but it contributed only 9% (0.7 μmol ml−1) if plants were unnodulated and supplied nitrate. In all species of peanut, concentrations of ureides measured in xylem sap were generally much smaller (0.02 to 0.37 μmol ml−1; 1–7% of xylem nitrogen) and were unaffected by peanut species or cultivar, rhizobial strain, plant size, growth rate, or stage of development, and were not related to N2 fixation (less than 0.1% of currently fixed nitrogen exported as ureides) or the assimilation of nitrate. Apparently high levels of ureides in sap from some field-grown plants were shown to be due to interference with the ureide colorimetric assay by some contaminating compound rather than represent increased ureides per se.  相似文献   

17.
In higher plants, the xylem vessels functionally connect the roots with the above-ground organs. The xylem sap transports various organic compounds, such as proteins and amino acids. We examined drought and rewatering-inducible changes in the amino acid composition of root xylem sap collected from Cucurbita maxima roots. The major free amino acids in C . maxima root xylem sap were methylglycine (MeGly; sarcosine) and glutamine (Gln), but MeGly was not detected in the xylem sap of cucumber. MeGly is an intermediate compound in the metabolism of trimethylglycine (TMG; betaine), but its physiological effects in plants are unknown. Drought and rewatering treatment resulted in an increase in the concentration of MeGly in root xylem sap to 2.5 m M . After flowering, the MeGly concentration in the xylem sap dropped significantly, whereas the concentration of Gln decreased only after fruit ripening. One milli molar MeGly inhibited the formation of adventitious roots and their elongation in C . maxima , but glycine, dimethylglycine, or TMG had no effect. Similar effects and the inhibition of stem elongation were observed in shoot cuttings of cucumber and Phaseolus angularis . These observations seem to imply a possible involvement of xylem sap MeGly in the physiological responses of C . maxima plants to drought stress.  相似文献   

18.
Cytokinins (CKs) coming from the roots via the xylem are known to delay leaf senescence, and their decline may be important in the senescence of soybean (Glycine max) plants during pod development (monocarpic senescence). Therefore, using radioimmunoassay of highly purified CKs, we quantified the zeatin (Z), zeatin riboside (ZR), the dihydro derivatives (DZ, DZR), the O-glucosides, and DZ nucleotide in xylem sap collected from root stocks under pressure at various stages of pod development. Z, ZR, DZ, and DZR dropped sharply during early pod development to levels below those expected to retard senescence. Pod removal at full extension, which delayed leaf senescence, caused an increase in xylem sap CKs (particularly ZR and DZR), while depodding at late podfill, which did not delay senescence, likewise did not increase the CK levels greatly. The levels of the O-glucosides and the DZ nucleotide were relatively low, and they showed less change with senescence or depodding. The differences in the responses of individual CKs to senescence and depodding suggest differences in their metabolism. Judging from their activity, concentrations and response to depodding, DZR and ZR may be the most important senescence retardants in soybean xylem sap. These data also suggest that the pods can depress CK production by the roots at an early stage and this decrease in CK production is required for monocarpic senescence in soybean.  相似文献   

19.
Transfer of nodulated and non-nodulated plants grown in vermiculite to hydroponic culture without soil was used to study waterlogging and nitrogen transport in the xylem of soybean. Non-aeration, aeration or aeration with nitrogen gas were used to obtain different levels of oxygen in the culture solutions. Ureides, the principal form of nitrogen transport in nodulated plants, were considerably reduced in waterlogged plants or after transfer to water-culture, especially when not aerated or aerated with nitrogen gas. Aeration of the water-culture following a period of non-aeration allowed some recovery of ureides, as did the return of plants to drained vermiculite. Although smaller changes in the total amino acid fraction were observed for the different treatments, marked changes occurred in the composition depending on the treatment imposed. A high proportion of asparagine and low glutamine characterised non-nodulated plants grown on nitrate, or nodulated plants subsequently fed nitrate. A higher level of glutamine and lower level of asparagine characterised nodulated plants dependent on nitrogen fixation. High levels of aspartic acid characterised plants transferred to water-culture with aeration, especially in N-deficient solution, while alanine and serine were very prominent in non-aerated or hypoxic water-culture. These changes also occurred in non-nodulated plants and plants kept in vermiculite in a flooded condition. Some of the changes in transport were accompanied by similar changes in the free amino acid fraction of the roots. It is suggested that an alteration in asparagine metabolism may underlie the changes in amino acid transport in the xylem associated with waterlogging.  相似文献   

20.
Xylella fastidiosa (Xf) is a fastidious bacterium that grows exclusively in the xylem of several important crop species, including grape and sweet orange (Citrus sinensis L. Osb.) causing Pierce disease and citrus variegated chlorosis (CVC), respectively. The aim of this work was to study the nitrogen metabolism of a highly susceptible variety of sweet orange cv. 'Pêra' (C. sinensis L. Osbeck) infected with Xf. Plants were artificially infected and maintained in the greenhouse until they have developed clear disease symptoms. The content of nitrogen compounds and enzymes of the nitrogen metabolism and proteases in the xylem sap and leaves of diseased (DP) and uninfected healthy (HP) plants was studied. The activity of nitrate reductase in leaves did not change in DP, however, the activity of glutamine synthetase was significantly higher in these leaves. Although amino acid concentration was slightly higher in the xylem sap of DP, the level dropped drastically in the leaves. The protein contents were lower in the sap and in leaves of DP. DP and HP showed the same amino acid profiles, but different proportions were observed among them, mainly for asparagine, glutamine, and arginine. The polyamine putrescine was found in high concentrations only in DP. Protease activity was higher in leaves of DP while, in the xylem sap, activity was detected only in DP. Bidimensional electrophoresis showed a marked change in the protein pattern in DP. Five differentially expressed proteins were identified (2 from HP and 3 from DP), but none showed similarity with the genomic (translated) and proteomic database of Xf, but do show similarity with the proteins thaumatin, mucin, peroxidase, ABC-transporter, and strictosidine synthase. These results showed that significant changes take place in the nitrogen metabolism of DP, probably as a response to the alterations in the absorption, assimilation and distribution of N in the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号