首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrio spp. are associated with water and seafood-related outbreaks worldwide. They are naturally present in aquatic environments such as seawater, brackish water and freshwater environments. These aquatic environments serve as the main reservoirs of antimicrobial-resistant genes and promote the transfer of antimicrobial-resistant bacterial species to aquatic animals and humans through the aquatic food chain. Vibrio spp. are known as etiological agents of cholera and non-cholera Vibrio infections in humans and animals. Antimicrobial-resistant Vibrio species have become a huge threat in regard to treating Vibrio infections in aquaculture and public health. Most of the Vibrio spp. possess resistance towards the commonly used antimicrobials, including β-lactams, aminoglycosides, tetracyclines, sulphonamides, quinolones and macrolides. The aim of this review is to summarize the antimicrobial resistance properties of Vibrio spp. isolated from aquatic environments to provide awareness about potential health risks related to Vibrio infections in aquaculture and public health.  相似文献   

2.
The aim of the work is to investigate the effect of marine bacterial culture supernatants on biofilm formation of Vibrio spp., a major menace in aquaculture industries. Vibrio spp. biofilm cause life-threatening infections in humans and animals. Forty-three marine bacterial culture supernatants were screened against the hydrophobicity index, initial attachment and biofilm formation in Vibrio spp. Twelve culture supernatants showed antibiofilm activity. The bacterial culture supernatants S8-07 (Bacillus pumilus) and S6-01 (B. indicus) inhibited the initial attachment, biofilm formation and dispersed the mature biofilm at 5% v/v concentration without inhibiting the growth. Analysis by light microscopy and confocal laser scanning microscopy showed that the architecture of the biofilm was destroyed by bacterial supernatants when compared to the control. The bacterial supernatants also reduce the surface hydrophobicity of Vibrio spp. which is one of the important requirements for biofilm formation. Further characterization of antibiofilm activity in S8-07 culture supernatant confirmed that it is an enzymatic activity and the size is more than 10 kDa and in S6-01, it is a heat-stable, non-protein compound. Furthermore, both the supernatants failed to show any biosurfactant activity. The culture supernatants of S8-07 and S6-01 with promising antibiofilm property have potential for application in medicine and marine aquaculture.  相似文献   

3.
Several species of Vibrio are the causative agent of gastroenteritis in humans. In aquaculture, Vibrio harveyi (Vh) and V. parahaemolyticus (Vp) have long been considered as shrimp pathogens in freshwater, brackish and marine environments. Here we show by using scanning electron microscopy (SEM) that Penaeus monodon orally inoculated with each of these two pathogens via an Artemia diet had numerous bacteria attached randomly across the stomach surface, in single and in large biofilm-like clusters 6 h post-infection. A subsequent marked proliferation in the number of V. harveyi within the biofilm-like formations resulted in the development of infections in the stomach, the upper and middle midgut, but neither in the posterior midgut nor the hindgut. SEM also revealed the induced production of peritrichous pili-like structures by the Vp attaching to the stomach lining, whilst only a single polar fibre was seen forming an apparent physical bridge between Vh and the host’s epithelium. In contrast to these observations, no such adherences or linkages were seen when trials were conducted with non-pathogenic Vibrio spp. or with Micrococcus luteus, with no obvious resultant changes to the host’s gut surface. In naive shrimp, the hindgut was found to be a favorable site for bacteria notably curved, short-rod shaped bacteria which probably belong to Vibrio spp. Data from the current study suggests that pathogens of P. monodon must be able to colonize the digestive tract, particularly the stomach, where chitin is present, and then they use an array of virulent factors and enzymes to infect their host resulting in disease. Oral infection is a better way of mimicking natural routes of infection; investigating the host-bacteria interactions occurring in the digestive tract may lead to new strategies for the prevention or control of bacterial infections in penaeids.  相似文献   

4.
Vibrios are among the most common bacteria that inhabit surface waters throughout the world and are responsible for a number of severe infections both in humans and animals. Several reports recently showed that human Vibrio illnesses are increasing worldwide including fatal acute diarrheal diseases, such as cholera, gastroenteritis, wound infections, and septicemia. Many scientists believe this increase may be associated with global warming and rise in sea surface temperature (SST), although not enough evidence is available to support a causal link between emergence of Vibrio infections and climate warming. The effect of increased SST in promoting spread of vibrios in coastal and brackish waters is considered a causal factor explaining this trend. Field and laboratory studies carried out over the past 40 years supported this hypothesis, clearly showing temperature promotes Vibrio growth and persistence in the aquatic environment. Most recently, a long-term retrospective microbiological study carried out in the coastal waters of the southern North Sea provided the first experimental evidence for a positive and significant relationship between SST and Vibrio occurrence over a multidecadal time scale. As a future challenge, macroecological studies of the effects of ocean warming on Vibrio persistence and spread in the aquatic environment over large spatial and temporal scales would conclusively support evidence acquired to date combined with studies of the impact of global warming on epidemiologically relevant variables, such as host susceptibility and exposure. Assessing a causal link between ongoing climate change and enhanced growth and spread of vibrios and related illness is expected to improve forecast and mitigate future outbreaks associated with these pathogens.  相似文献   

5.
One hypothesis for the success of invasive species is reduced pathogen burden, resulting from a release from infections or high immunological fitness of invaders. Despite strong selection exerted on the host, the evolutionary response of invaders to newly acquired pathogens has rarely been considered. The two independent and genetically distinct invasions of the Pacific oyster Crassostrea gigas into the North Sea represent an ideal model system to study fast evolutionary responses of invasive populations. By exposing both invasion sources to ubiquitous and phylogenetically diverse pathogens (Vibrio spp.), we demonstrate that within a few generations hosts adapted to newly encountered pathogen communities. However, local adaptation only became apparent in selective environments, i.e. at elevated temperatures reflecting patterns of disease outbreaks in natural populations. Resistance against sympatric and allopatric Vibrio spp. strains was dominantly inherited in crosses between both invasion sources, resulting in an overall higher resistance of admixed individuals than pure lines. Therefore, we suggest that a simple genetic resistance mechanism of the host is matched to a common virulence mechanism shared by local Vibrio strains. This combination might have facilitated a fast evolutionary response that can explain another dimension of why invasive species can be so successful in newly invaded ranges.  相似文献   

6.
Food producing animals harbouring bacteria carrying drug resistance genes especially the metallo-beta-lactamase (MBL) pose high risk for the human population. In addition, formation of biofilm by these drug resistant pathogens represents major threat to food safety and public health. In this study, metallo-β-lactamases (MβLs) producing Pseudomonas spp. from camel meat were isolated and assessed for their biofilm formation. Further, in vitro and in silico studies were performed to study the effect of flavone naringin on biofilm formation against isolated Pseudomonas spp. A total of 55% isolates were found to produce metallo-β-lactamase enzyme. Naringin mitigated biofilm formation of Pseudomonas isolates up to 57%. Disturbed biofilm architecture and reduced the colonization of bacteria on glass was observed under scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM). The biofilm related traits such as exopolysaccharides (EPS) and alginate production was also reduced remarkably in the presence of naringin. Eradication of preformed biofilms (32–60%) was also observed at the respective 0.50 × MICs. Molecular docking revealed that naringin showed strong affinity towards docked proteins with binding energy ranging from −8.6 to −8.8 kcal mol−1. Presence of metallo-β-lactamase producers indicates that camel meat could be possible reservoir of drug-resistant Pseudomonas species of clinical importance. Naringin was successful in inhibiting biofilm formation as well as eradicating the preformed biofilms and demonstrated strong binding affinity towards biofilm associated protein. Thus, it is envisaged that naringin could be exploited as food preservative especially against the biofilm forming food-borne Pseudomonas species and is a promising prospect for the treatment of biofilm based infections.  相似文献   

7.
Effects of seawater ozonation on biofilm development in aquaculture tanks   总被引:3,自引:0,他引:3  
Microbial biofilms developing in aquaculture tanks represent a reservoir for opportunistic bacterial pathogens, and procedures to control formation and bacterial composition of biofilms are important for the development of commercially viable aquaculture industries. This study investigated the effects of seawater ozonation on biofilm development on microscope glass slides placed in small-scale aquaculture tanks containing the live feed organism Artemia. Fluorescence in situ hybridization (FISH) demonstrated that ozonation accelerated the biofilm formation cycle, while it delayed the establishment of filamentous bacteria. Gammaproteobacteria and Alphaproteobacteria were the most abundant bacterial groups in the biofilm for both water types, but ozonation influenced their dynamics. With ozonation, the bacterial community structure was relatively stable and dominated by Gammaproteobacteria throughout the experiment (21–66% of total bacteria). Without ozonation, the community showed larger fluctuations, and Alphaproteobacteria emerged as dominant after 18 days (up to 54% of total bacteria). Ozonation of seawater also affected the dynamics of less abundant populations in the biofilm such as Betaproteobacteria, Planctomycetales and the Cytophaga/Flavobacterium branch of phylum Bacteroidetes. The abundance of Thiothrix, a bacterial genus capable of filamentous growth and fouling of larvae, increased with time for both water types, while no temporal trend could be detected for the genus Vibrio. Denaturing gradient gel electrophoresis (DGGE) demonstrated temporal changes in the dominant bacterial populations for both water types. Sequencing of DGGE bands confirmed the FISH data, and sequences were related to bacterial groups commonly found in biofilms of aquaculture systems. Several populations were closely related to organisms involved in sulfur cycling. Improved Artemia survival rates in tanks receiving ozonated water suggested a positive effect of ozonation on animal health. Although the used ozonation protocol did not hinder biofilm formation, the results suggest ozonation as a promising approach for manipulation of bacterial populations in aquaculture systems, which can prove beneficial for cultured animals.  相似文献   

8.
Use of formic acid to control vibriosis in shrimp aquaculture   总被引:1,自引:0,他引:1  
Derek Adams  Raj Boopathy 《Biologia》2013,68(6):1017-1021
Luminous vibriosis is a shrimp disease that causes major economic losses in shrimp industry as a result of massive shrimp kills due to bacterial infection caused by Vibrio species. Use of antibiotics to control Vibrio in shrimp aquaculture is not allowed in the United States and so it is necessary to develop an alternative pathogen control method for shrimp production. Short-chain fatty acids have been used as food preservatives for a long time. Organic acids are commonly added in feeds in animal production, such as chicken, pig, and cattle. In this study, growth inhibition effects of formic acid on five selected Vibrio species, namely Vibrio alginolyticus, Vibrio cholerae, Vibrio harveyi, Vibrio parahaemolyticus and Vibrio vulnificus were studied. The Vibrio bacteria were grown on both solid and liquid media using Muller-Hinton agar and alkaline peptone water, respectively, with various concentrations of formic acid. Bacterial growth was monitored in the liquid media using optical density method. The results showed significant inhibition of growth of all five Vibrio species by formic acid at low concentration. The effective concentration (EC50) values were calculated for all five Vibrio species, which were less than 0.039% of formic acid. The results are encouraging to supplement formic acid in the shrimp feed as a control mechanism to reduce Vibrio outbreak in shrimp aquaculture system.  相似文献   

9.
Bacterial diseases of crabs: a review   总被引:1,自引:0,他引:1  
Bacterial diseases of crabs are manifested as bacteremias caused by organisms such as Vibrio, Aeromonas, and a Rhodobacteriales-like organism or tissue and organ tropic organisms such as chitinoclastic bacteria, Rickettsia intracellular organisms, Chlamydia-like organism, and Spiroplasma. This paper provides general information about bacterial diseases of both marine and freshwater crabs. Some bacteria pathogens such as Vibrio cholerae and Vibrio vulnificus occur commonly in blue crab haemolymph and should be paid much attention to because they may represent potential health hazards to human beings because they can cause serious diseases when the crab is consumed as raw sea food. With the development of aquaculture, new diseases associated with novel pathogens such as spiroplasmas and Rhodobacteriales-like organisms have appeared in commercially exploited crab species in recent years. Many potential approaches to control bacterial diseases of crab will be helpful and practicable in aquaculture.  相似文献   

10.
Biofilms pose a serious public health hazard with a significant economic impact on the food industry. The present scoping review is designed to analyse the literature published during 2001–2020 on biofilm formation of microbes, their detection methods, and association with antimicrobial resistance (if any). The peer-reviewed articles retrieved from 04 electronic databases were assessed using PRISMA-ScR guidelines. From the 978 preliminary search results, a total of 88 publications were included in the study. On analysis, the commonly isolated pathogens were Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli, Bacillus spp., Vibrio spp., Campylobacter jejuni and Clostridium perfringens. The biofilm-forming ability of microbes was found to be influenced by various factors such as attachment surfaces, temperature, presence of other species, nutrient availability etc. A total of 18 studies characterized the biofilm-forming genes, particularly for S. aureus, Salmonella spp., and E. coli. In most studies, polystyrene plate and/or stainless-steel coupons were used for biofilm formation, and the detection was carried out by crystal violet assays and/or by plate counting method. The strain-specific significant differences in biofilm formation were observed in many studies, and few studies carried out analysis of multi-species biofilms. The association between biofilm formation and antimicrobial resistance was not clearly defined. Further, viable but non-culturable form of the foodborne pathogens is posing an unseen (by conventional cultivation techniques) but potent threat to the food safety. The present review recommends the need for carrying out systematic surveys and risk analysis of biofilms in food chain to highlight the evidence-based public health concerns, especially in regions where microbiological food hazards are quite prevalent.  相似文献   

11.
Flavobacterium spp. isolates have been identified in diverse biofilm structures, but the mechanism of adherence has not been elucidated. The absence of conventional biofilm-associated structures such as fimbriae, pili, and flagella suggest that surface hydrophobicity, and/or autoaggregation and coaggregation may play an important role in adherence and biofilm formation. The biofilm-forming capacity of 29 Flavobacterium johnsoniae-like isolates obtained from South African aquaculture systems was assessed using microtiter plate assays. The role of hydrophobicity [salting aggregation test (SAT) and bacterial adherence to hydrocarbons (BATH) assays], autoaggregation, and coaggregation on biofilm formation by Flavobacterium spp. was also investigated, while biofilm structure was examined using flow cells and microscopy. All isolates displayed a hydrophilic nature, but showed varying levels of adherence in microtiter assays. Significant negative correlations were observed between adherence and biofilm-forming capacity in nutrient-poor medium at 26°C and BATH hydrophobicity and motility, respectively. Isolates displayed strain-to-strain variation in their autoaggregation indices and their abilities to coaggregate with various Gram-negative and Gram-positive organisms. Microcolony and/or biofilm development were observed microscopically, and flavobacterial isolates displayed stronger biofilm structures and interaction with a Vibrio spp. isolate than with an Aeromonas hydrophila isolate. The role of extracellular polysaccharides and specific outer membrane proteins will have to be examined to reveal mechanisms of adherence and coaggregation employed by biofilm-forming F. johnsoniae-like strains.  相似文献   

12.
Small abalone (Haliotis diversicolor supertexta) is a high value-added shellfish. It however has been suffering Vibrio alginolyticus infections, which cause mass death of small abalone and thus great economic losses, particularly in artificial aquaculture. In this study, we attempted to treat small abalone with anti-Vibrio IgY to elicit a passive immunity directly against V. alginolyticus infections. Anti-Vibrio IgY was alginate encapsulated in egg powders as feed, which may avoid antibody inactivation in the gastrointestinal tract of small abalone. The feed was tested for the stability of anti-Vibrio IgY in a gastrointestinal mimic environment. The result showed anti-Vibrio IgY retained activity as high as 90% after 4 h exposure to pancreatic enzymes. Addition of 0, 5 or 10% anti-Vibrio IgY-encapsulated egg powders into a basal diet to form abalone diet formulae. Small abalones fed with the anti-Vibrio IgY formulae showed a relatively high respiratory burst activity than those without anti-Vibrio IgY treatments. The survival rates of small abalones fed with 5 or 10% anti-Vibrio IgY egg powders were in the range of 65–70% 14 days post-V. alginolyticus challenge (1 × 106 c.f.u.), which was significantly higher than 0% of those fed without anti-Vibrio IgY. The anti-Vibrio IgY-encapsulated formulae were thus concluded to be an effective means to prevent small abalone from V. alginolyticus infection, and may be practical in use in abalone aquaculture.  相似文献   

13.
Purpose

The aquaculture sector is a major contributor to the economic and nutritional security for a number of countries. India’s total seafood exports for the year 2017–2018 accounted for US$ Million 7082. One of the major setbacks in this sector is the frequent outbreaks of diseases often due to bacterial pathogens. Vibriosis is one of the major diseases caused by bacteria of Vibrio spp., causing significant economic loss to the aquaculture sector. The objective of this study was to understand the genetic composition of Vibrio spp.

Methods

Thirty-five complete genomes were downloaded from GenBank comprising seven vibrio species, namely, Vibrio alginolyticus, V. anguillarum, V. campbellii, V. harveyi, V. furnissii, V. parahaemolyticus, and V. vulnificus. Pan-genome analysis was carried out with coding sequences (CDS) generated from all the Vibrio genomes. In addition, genomes were mined for genes coding for toxin-antitoxin systems, antibiotic resistance, genomic islands, and virulence factors.

Results

Results revealed an open pan-genome comprising of 2004 core, 8249 accessory, and 6780 unique genes. Downstream analysis of genomes and the identified unique genes resulted in 312 antibiotic resistance genes, 430 genes coding for toxin and antitoxin systems along with 4802, and 4825 putative virulent genes from genomic island regions and unique gene sets, respectively.

Conclusion

Pan-genome and other downstream analytical procedures followed in this study have the potential to predict strain-specific genes and their association with habitat and pathogenicity.

  相似文献   

14.
BackgroundThe ability of many bacteria to adhere on the host surfaces and forming biofilms has major implications in a wide variety of industries including the food industry, where biofilms may create a persistent source of contamination. In the same environmental condition, the multiple bacterial species can closely interact with each other and may easily enhance their drug resistance capability, which finally increases the multi-drug resistant (MDR) attribute of the species.ObjectiveThe present study examined whether the mixed-species biofilm possesses any impact on the enhancement of the antibiotic resistance of the planktonic or single-cell bacterial isolates present in the fish samples.MethodsIn this regard, Cyprinus rubrofuscus (Koi), Heteropneustes fossilis (Shing) and Mystus vittatus (Tengra) fishes were collected and subjected to form an in vitro biofilm by shaking condition into the wise bath. The drug-resistant pattern was determined by the Kirby Bauer technique.ResultsAll the samples exhibited a huge array (up to 107 cfu/ml or g) of bacteria such as E. coli, Klebsiella spp., Vibrio spp., Salmonella spp., Proteus spp. and Staphylococcus spp. The isolates from both the bulk samples and their corresponding biofilms were subjected to antibiogram assay using antibiotics such as Ampicillin (10 µg), Erythromycin (15 μg), Streptomycin (STP 10 μg), Oxacillin (10 µg), Nalidixic acid (30 µg). Before biofilm formation, few of the isolates were found to be sensitive and few were resistant against the antibiotics. But when the species were isolated from the biofilm the sensitive one acquired drug resistance and resistant strain unveiled more resistance towards the same antibiotics. The present study revealed extensive bacterial contamination in fish samples among those some were resistant against the supplied drugs.ConclusionAfter the formation of multi-species biofilm, the isolates became more resistant against the same drugs that is alarming for consumers and major obstacles to maintain sustainable health.  相似文献   

15.
Emerging fungal and oomycete pathogens are increasingly threatening animals and plants globally. Amongst oomycetes, Saprolegnia species adversely affect wild and cultivated populations of amphibians and fish, leading to substantial reductions in biodiversity and food productivity. With the ban of several chemical control measures, new sustainable methods are needed to mitigate Saprolegnia infections in aquaculture. Here, PhyloChip-based community analyses showed that the Pseudomonadales, particularly Pseudomonas species, represent one of the largest bacterial orders associated with salmon eggs from a commercial hatchery. Among the Pseudomonas species isolated from salmon eggs, significantly more biosurfactant producers were retrieved from healthy salmon eggs than from Saprolegnia-infected eggs. Subsequent in vivo activity bioassays showed that Pseudomonas isolate H6 significantly reduced salmon egg mortality caused by Saprolegnia diclina. Live colony mass spectrometry showed that strain H6 produces a viscosin-like lipopeptide surfactant. This biosurfactant inhibited growth of Saprolegnia in vitro, but no significant protection of salmon eggs against Saprolegniosis was observed. These results indicate that live inocula of aquatic Pseudomonas strains, instead of their bioactive compound, can provide new (micro)biological and sustainable means to mitigate oomycete diseases in aquaculture.  相似文献   

16.
Saprolegnia species are destructive pathogens to many aquatic organisms and are found in most parts of the world. Reports based on phylogenetic analysis suggest that Saprolegnia strains isolated from aquatic animals such as crustaceans and frogs are close to Saprolegnia strains isolated from infected fish or fish eggs and vice versa. However, it has often been assumed that host specificity occurs for each individual isolate or strain. Here we demonstrate that Saprolegnia spp. can have multiple hosts and are thus capable of infecting different aquatic organisms. Saprolegnia delica, Saprolegnia hypogyna, and 2 strains of Saprolegnia diclina were isolated from aquatic insects and amphipods while S. delica, Saprolegnia ferax, Pythium pachycaule, and a Pythium sp. were isolated from the water of a medium to fast flowing river. The ITS region of the rRNA gene was sequenced for all isolates. In challenge experiments, all four isolates from insects were found to be highly pathogenic to eggs of Atlantic salmon (Salmo salar) and embryos of the African clawed frog (Xenopus laevis). We found that Saprolegnia spp. isolated from salmon eggs were also able to successfully establish infection in nymphs of stonefly (Perla bipunctata) and embryos of X. laevis). These results suggest that Saprolegnia spp. are capable of infecting multiple hosts, which may give them an advantage during seasonal variation in their natural environments.  相似文献   

17.
The biofilm formation on abiotic surfaces in food and medical sectors constitutes a great public health concerns. In fact, biofilms present a persistent source for pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which lead to severe infections such as foodborne and nosocomial infections. Such biofilms are also a source of material deterioration and failure. The environmental conditions, commonly met in food and medical area, seem also to enhance the biofilm formation and their resistance to disinfectant agents. In this regard, this review highlights the effect of environmental conditions on bacterial adhesion and biofilm formation on abiotic surfaces in the context of food and medical environment. It also describes the current and emergent strategies used to study the biofilm formation and its eradication. The mechanisms of biofilm resistance to commercialized disinfectants are also discussed, since this phenomenon remains unclear to date.  相似文献   

18.
Bleaching of Oculina patagonica has been extensively studied in the Eastern Mediterranean Sea, although no studies have been carried out in the Western basin. In 1996 Vibrio mediterranei was reported as the causative agent of bleaching in O. patagonica but it has not been related to bleached or healthy corals since 2003, suggesting that it was no longer involved in bleaching of O. patagonica. In an attempt to clarify the relationship between Vibrio spp., seawater temperature and coral diseases, as well as to investigate the putative differences between Eastern and Western Mediterranean basins, we have analysed the seasonal patterns of the culturable Vibrio spp. assemblages associated with healthy and diseased O. patagonica colonies. Two sampling points located in the Spanish Mediterranean coast were chosen for this study: Alicante Harbour and the Marine Reserve of Tabarca. A complex and dynamic assemblage of Vibrio spp. was present in O. patagonica along the whole year and under different environmental conditions and coral health status. While some Vibrio spp. were detected all year around in corals, the known pathogens V. mediteranei and V. coralliilyticus were only present in diseased specimens. The pathogenic potential of these bacteria was studied by experimental infection under laboratory conditions. Both vibrios caused diseased signs from 24 °C, being higher and faster at 28 °C. Unexpectedly, the co-inoculation of these two Vibrio species seemed to have a synergistic pathogenic effect over O. patagonica, as disease signs were readily observed at temperatures at which bleaching is not normally observed.  相似文献   

19.
Fungal and bacterial pathogens infect a diverse range of hosts including various plant and animal species. Fungal and bacterial diseases, especially of plants and aquatic animals, such as fish, lead to significant damage to crops and aquaculture, respectively, worldwide. The present study was conducted to isolate and characterize potent Bacillus strains with significant antagonistic activity against the major plant and fish pathogenic fungi and bacteria. We randomly collected 22 isolates of Bacillus from the soil, rhizosphere, and sediment from different parts of Bangladesh. Initial characterization, based on in vitro antagonistic activity on the culture plate, resulted in the selection of four gram-positive Bacillus sp. isolates. Among these, the isolate BC01, obtained from soil demonstrated the highest broad-spectrum anti-bacterial and anti-fungal activities. We confirmed the genus of BC01 to be Bacillus by morphological and biochemical tests as well as using molecular data analysis tools, including the study of 16s rDNA, phylogenetic relationship, and evolutionary divergence scores. The isolate significantly inhibited the mycelial growth of the plant pathogen, Penicillium digitatum and fish pathogen, Aphanomyces invadans in vitro. The anti-bacterial effect of the isolate was also evaluated against Pseudomonas spp. and Xanthomonas spp., the two deadliest plant pathogens, and Aeromonas veronii, Pseudomonas fluorescens, and Streptococcus iniae, three major fish pathogens that are primarily responsible for global aquaculture loss. The results of the present study could pave the way for developing potent drugs to combat microbial infection of plants and fish.  相似文献   

20.
Eating raw oysters can come with serious health risks, as oysters can potentially contain bacteria of the Vibrio genus that cause food-borne infections. Vibrio bacteria are concentrated by oysters and, when consumed, infections can result with severe symptoms such as diarrhoea, lesions on the extremities, or even death. Vibrio spp. concentrations are strongly affected by season, location, and other factors such as temperature and salinity. Previous research in North Carolina oysters has been conducted on wild and farmed oysters but not at the same time. Farmed, or aquaculture raised, oysters are considerably different from wild oysters and could possibly pose different health risks. Farmed oysters are handled, raised from seed, and often grown using suspended grow-out systems called ‘floating cages’. Therefore, farmed oysters can be grown at the surface of the estuary, while wild oysters typically grow at the bottom of the water column. This project compared the concentrations of Vibrio spp. in suspended, farm-grown oysters and wild oysters at three sites, using a paired approach with farmed and wild oysters sampled in proximity. An important part of this comparison was identifying pathogenicity of the bacteria isolated from the samples. Distinction was made between off- and on-bottom farming. Interestingly, on-bottom oysters had more pathogenic V. vulnificus than off-bottom oysters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号