首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Vibrio anguillarum is an important pathogen in aquaculture, responsible for the disease vibriosis in many fish and invertebrate species. Disease control by antibiotics is a concern due to potential development and spread of antibiotic resistance. The use of bacteriophages to control the pathogen may offer a non-antibiotic-based approach to reduce vibriosis. A detailed understanding of the phage-host interaction is needed to evaluate the potential of phages to control the pathogen. In this study, we examined the diversity and interactions of 11 vibriophages, 24 V. anguillarum strains, and 13 Vibrio species strains. Together, the host ranges of the 11 phages covered all of the tested 37 Vibrio sp. host strains, which represented considerable temporal (20 years) and geographical (9 countries) differences in their origins of isolation. Thus, despite the occurrence of unique susceptibility patterns of the individual host isolates, key phenotypic properties related to phage susceptibility are distributed worldwide and maintained in the global Vibrio community for decades. The phage susceptibility pattern of the isolates did not show any relation to the physiological relationships obtained from Biolog GN2 profiles, demonstrating that similar phage susceptibility patterns occur across broad phylogenetic and physiological differences in Vibrio strains. Subsequent culture experiments with two phages and two V. anguillarum hosts demonstrated an initial strong lytic potential of the phages. However, rapid regrowth of both phage-resistant and phage-sensitive cells following the initial lysis suggested that several mechanisms of protection against phage infection had developed in the host populations.  相似文献   

2.
Aquaculture industries are the fastest food producing sector and are found globally to resolve the food demands of the fast growing human population. The aquaculture sector has typically been affected by the biofilm forming aquatic pathogens that lead to economic losses with seafood spoilage. Vibrio spp. are the most common and well known aquatic pathogens causing Vibriosis infections in aquatic animals. They are natural habitants of coastal and estuarine environments where they can be associated with aquatic animals. The biofilm forming Vibrio spp. pose increasing problems with the development of antibiotic resistance that causes severe threats in aquaculture. Although commercial antibiotics have been used for Vibrio spp., several natural and organic compounds have been reported against Vibrios biofilm infections. The specific structural genes and regulatory systems of the quorum sensing system mediate the biofilm formation in Vibrios.  相似文献   

3.
Modulation of death is a pathogen strategy to establish residence and promote survival in host cells and tissues. Shigella spp. are human pathogens that invade colonic mucosa, where they provoke lesions caused by their ability to manipulate the host cell responses. Shigella spp. induce various types of cell death in different cell populations. However, they are equally able to protect host cells from death. Here, we have investigated on the molecular mechanisms and cell effectors governing the balance between survival and death in epithelial cells infected with Shigella. To explore these aspects, we have exploited both, the HeLa cell invasion assay and a novel ex vivo human colon organ culture model of infection that mimics natural conditions of shigellosis. Our results definitely show that Shigella induces a rapid intrinsic apoptosis of infected cells, via mitochondrial depolarization and the ensuing caspase-9 activation. Moreover, for the first time we identify the eukaryotic stress-response factor growth arrest and DNA damage 45α as a key player in the induction of the apoptotic process elicited by Shigella in epithelial cells, revealing an unexplored role of this molecule in the course of infections sustained by invasive pathogens.  相似文献   

4.
Virulence is generally considered to benefit parasites by enhancing resource-transfer from host to pathogen. Here, we offer an alternative framework where virulent immune-provoking behaviours and enhanced immune resistance are joint tactics of invading pathogens to eliminate resident competitors (transferring resources from resident to invading pathogen). The pathogen wins by creating a novel immunological challenge to which it is already adapted. We analyse a general ecological model of 'proactive invasion' where invaders not adapted to a local environment can succeed by changing it to one where they are better adapted than residents. However, the two-trait nature of the 'proactive' strategy (provocation of, and adaptation to environmental change) presents an evolutionary conundrum, as neither trait alone is favoured in a homogenous host population. We show that this conundrum can be resolved by allowing for host heterogeneity. We relate our model to emerging empirical findings on immunological mediation of parasite competition.  相似文献   

5.
Actinobacillus spp. are Gram-negative bacteria associated with mucosal membranes. While some are commensals, others can cause important human and animal diseases. A. pleuropneumoniae causes severe fibrinous hemorrhagic pneumonia in swine but not systemic disease whereas other species invade resulting in septicemia and death. To understand the invasive phenotype of Actinobacillus spp., complete genomes of eight isolates were obtained and pseudogenomes of five isolates were assembled and annotated. Phylogenetically, A. suis isolates clustered by surface antigen type and were more closely related to the invasive A. ureae, A. equuli equuli, and A. capsulatus than to the other swine pathogen, A. pleuropneumoniae. Using the LS-BSR pipeline, 251 putative virulence genes associated with serum resistance and invasion were detected.To our knowledge, this is the first genome-wide study of the genus Actinobacillus and should contribute to a better understanding of host tropism and mechanisms of invasion of pathogenic Actinobacillus and related genera.  相似文献   

6.
The evolution of drug resistance in microbial pathogens provides a paradigm for investigating evolutionary dynamics with important consequences for human health. Candida albicans, the leading fungal pathogen of humans, rapidly evolves resistance to two major antifungal classes, the triazoles and echinocandins. In contrast, resistance to the third major antifungal used in the clinic, amphotericin B (AmB), remains extremely rare despite 50 years of use as monotherapy. We sought to understand this long-standing evolutionary puzzle. We used whole genome sequencing of rare AmB-resistant clinical isolates as well as laboratory-evolved strains to identify and investigate mutations that confer AmB resistance in vitro. Resistance to AmB came at a great cost. Mutations that conferred resistance simultaneously created diverse stresses that required high levels of the molecular chaperone Hsp90 for survival, even in the absence of AmB. This requirement stemmed from severe internal stresses caused by the mutations, which drastically diminished tolerance to external stresses from the host. AmB-resistant mutants were hypersensitive to oxidative stress, febrile temperatures, and killing by neutrophils and also had defects in filamentation and tissue invasion. These strains were avirulent in a mouse infection model. Thus, the costs of evolving resistance to AmB limit the emergence of this phenotype in the clinic. Our work provides a vivid example of the ways in which conflicting selective pressures shape evolutionary trajectories and illustrates another mechanism by which the Hsp90 buffer potentiates the emergence of new phenotypes. Developing antibiotics that deliberately create such evolutionary constraints might offer a strategy for limiting the rapid emergence of drug resistance.  相似文献   

7.
Generalist plant pathogens may have wide host ranges, but many exhibit varying degrees of host specialization, with multiple pathogen races that have narrower host ranges. These races are often genetically distinct, with each race causing highest disease incidence on its host of origin. We examined host specialization in the seed pathogen Pyrenophora semeniperda by reciprocally inoculating pathogen strains from Bromus tectorum and from four other winter annual grass weeds (Bromus diandrus, Bromus rubens, Bromus arvensis and Taeniatherum caput-medusae) onto dormant seeds of B. tectorum and each alternate host. We found that host species varied in resistance and pathogen strains varied in aggressiveness, but there was no evidence for host specialization. Most variation in aggressiveness was among strains within populations and was expressed similarly on both hosts, resulting in a positive correlation between strain-level disease incidence on B. tectorum and on the alternate host. In spite of this lack of host specialization, we detected weak but significant population genetic structure as a function of host species using two neutral marker systems that yielded similar results. This genetic structure is most likely due to founder effects, as the pathogen is known to be dispersed with host seeds. All host species were highly susceptible to their own pathogen races. Tolerance to infection (i.e., the ability to germinate even when infected and thereby avoid seed mortality) increased as a function of seed germination rate, which in turn increased as dormancy was lost. Pyrenophora semeniperda apparently does not require host specialization to fully exploit these winter annual grass species, which share many life history features that make them ideal hosts for this pathogen.  相似文献   

8.
The extent and speed at which pathogens adapt to host resistance varies considerably. This presents a challenge for predicting when—and where—pathogen evolution may occur. While gene flow and spatially heterogeneous environments are recognized to be critical for the evolutionary potential of pathogen populations, we lack an understanding of how the two jointly shape coevolutionary trajectories between hosts and pathogens. The rust pathogen Melampsora lini infects two ecotypes of its host plant Linum marginale that occur in close proximity yet in distinct populations and habitats. In this study, we found that within-population epidemics were different between the two habitats. We then tested for pathogen local adaptation at host population and ecotype level in a reciprocal inoculation study. Even after controlling for the effect of spatial structure on infection outcome, we found strong evidence of pathogen adaptation at the host ecotype level. Moreover, sequence analysis of two pathogen infectivity loci revealed strong genetic differentiation by host ecotype but not by distance. Hence, environmental variation can be a key determinant of pathogen population genetic structure and coevolutionary dynamics and can generate strong asymmetry in infection risks through space.  相似文献   

9.
Both theory and experimental evolution studies predict migration to influence the outcome of antagonistic coevolution between hosts and their parasites, with higher migration rates leading to increased diversity and evolutionary potential. Migration rates are expected to vary in spatially structured natural pathosystems, yet how spatial structure generates variation in coevolutionary trajectories across populations occupying the same landscape has not been tested. Here, we studied the effect of spatial connectivity on host evolutionary potential in a natural pathosystem characterized by a stable Plantago lanceolata host network and a highly dynamic Podosphaera plantaginis parasite metapopulation. We designed a large inoculation experiment to test resistance of five isolated and five well‐connected host populations against sympatric and allopatric pathogen strains, over 4 years. Contrary to our expectations, we did not find consistently higher resistance against sympatric pathogen strains in the well‐connected populations. Instead, host local adaptation varied considerably among populations and through time with greater fluctuations observed in the well‐connected populations. Jointly, our results suggest that in populations where pathogens have successfully established, they have the upper hand in the coevolutionary arms race, but hosts may be better able to respond to pathogen‐imposed selection in the well‐connected than in the isolated populations. Hence, the ongoing and extensive fragmentation of natural habitats may increase vulnerability to diseases.  相似文献   

10.
Few studies have examined the potential for pathogens with complex life cycles to cause selection on their required alternate (=intermediate) hosts. Here we examine the effects of two fungal pathogens on an herbaceous mustard, Arabis holboellii. One pathogen species uses A. holboellii as a primary host, the other uses it as an alternate host. This plant-pathogen system is especially interesting because the host, A. holboellii, is apomictic; thus individuals reproduce exact copies of themselves. Despite this mode of reproduction, A. holboellii populations are surprisingly genetically diverse. Could frequency dependent selection by pathogens be maintaining clonal diversity? This study assesses the potential for selection by pathogens. In a controlled greehouse experiment we show that there is heritable variation in A. holboellii's resistance to the rust, Puccinia monoica, and that host fitness is severely reduced by P. monoica infection in both the greenhouse and under natural conditions. Field observations indicate that host clones are also differentially susceptible to the short-cycled rust, P. thlaspeos, and that host fitness is reduced by infection to this pathogen as well. Although the preconditions for pathogen-mediated selection are present, frequency-dependent selection by pathogens is unlikely to be important in structuring populations of Arabis holboellii because multiple host genotypes are susceptible to the same inoculum and the pathogen has a long generation time.  相似文献   

11.
12.
Do host invaders and their associated symbiont co-invaders have different genetic responses to the same invasion process? To answer this question, we compared genetic patterns of native and exotic populations of an invasive symbiont-host association. This is an approach applied by very few studies, of which most are based on parasites with complex life cycles. We used the mitochondrial genetic marker cytochrome oxidase subunit I (COI) to investigate a non-parasitic freshwater ectosymbiont with direct life-cycle, low host specificity and well-documented invasion history. The study system was the crayfish Procambarus clarkii and its commensal ostracod Ankylocythere sinuosa, sampled in native (N American) and exotic (European) ranges. Results of analyses indicated: (1) higher genetic diversity in the symbiont than its host; (2) genetic diversity loss in the exotic range for both species, but less pronounced in the symbiont; (3) native populations genetically structured in space, with stronger patterns in the symbiont and (4) loss of spatial genetic structure in the exotic range in both species. The combination of historical, demographic and genetic data supports a higher genetic diversity of source populations and a higher propagule size that allowed the symbiont to overcome founder effects better than its host co-invader. Thus, the symbiont might be endowed with a higher adaptive potential to new hosts or off-host environmental pressures expected in the invasive range. We highlight the usefulness of this relatively unexplored kind of symbiont-host systems in the invasion context to test important ecological and evolutionary questions.  相似文献   

13.
Plant inoculation with endophytic bacteria that normally live inside the plant without harming the host is a highly promising approach for biological disease control. The mechanism of resistance induction by beneficial bacteria is poorly understood, because pathways are only partly known and systemic responses are typically not seen. The innate endophytic community structures change in response to external factors such as inoculation, and bacterial endophytes can exhibit direct or indirect antagonism towards pathogens. Earlier we showed that resistance induction by an endophytic Methylobacterium sp. in potato towards Pectobacterium atrosepticum was dependent on the density of the inoculum, whereas the bacterium itself had no antagonistic activity. To elucidate the role of innate endophyte communities in plant responses, we studied community changes in both in vitro and greenhouse experiments using various combinations of plants, endophyte inoculants, and pathogens. Induction of resistance was studied in several potato (Solanum tuberosum L.) cultivars by Methylobacterium sp. IMBG290 against the pathogens P. atrosepticum, Phytophthora infestans and Pseudomonas syringae pv. tomato DC3000, and in pine (Pinus sylvestris L.) by M. extorquens DSM13060 against Gremmeniella abietina. The capacities of the inoculated endophytic Methylobacterium spp. strains to induce resistance were dependent on the plant cultivar, pathogen, and on the density of Methylobacterium spp. inoculum. Composition of the endophyte community changed in response to inoculation in shoot tissues and correlated with resistance or susceptibility to the disease. Our results demonstrate that endophytic Methylobacterium spp. strains have varying effects on plant disease resistance, which can be modulated through the endophyte community of the host.  相似文献   

14.
The increase in seawater temperature associated with global warming is a significant threat to coral health and is linked to increasing mass mortality events and Vibrio-related coral diseases. In the Mediterranean Sea, the endemic Cladocora caespitosa and the invasive species Oculina patagonica are the main scleractinian corals affected by mass mortalities. In this study, culturable Vibrio spp. assemblages associated with healthy and unhealthy colonies of these two shallow coral species were characterized to assess the presence of Vibrio pathogens in tissue necrosis. Vibrio communities associated with O. patagonica and C. caespitosa showed geographical differences, although these became more homogeneous in unhealthy specimens of both species. Furthermore, the number of recovered Vibrio specimens was more than five times higher in unhealthy than in healthy corals. Within these culturable vibrios, the known pathogens Vibrio mediterranei and Vibrio coralliilyticus were present in unhealthy colonies of both coral species in the two localities, suggesting that they could play a role in the health status of C. caespitosa and thus act as generalist pathogens in Mediterranean corals. Nonetheless, a clonal type of V. coralliilyticus detected in C. caespitosa was not associated with disease signs, suggesting that this species could encompass assemblages with different levels of virulence.  相似文献   

15.
Pathogens continue to emerge from increased contact with novel host species. Whilst these hosts can represent distinct environments for pathogens, the impacts of host genetic background on how a pathogen evolves post-emergence are unclear. In a novel interaction, we experimentally evolved a pathogen (Staphylococcus aureus) in populations of wild nematodes (Caenorhabditis elegans) to test whether host genotype and genetic diversity affect pathogen evolution. After ten rounds of selection, we found that pathogen virulence evolved to vary across host genotypes, with differences in host metal ion acquisition detected as a possible driver of increased host exploitation. Diverse host populations selected for the highest levels of pathogen virulence, but infectivity was constrained, unlike in host monocultures. We hypothesise that population heterogeneity might pool together individuals that contribute disproportionately to the spread of infection or to enhanced virulence. The genomes of evolved populations were sequenced, and it was revealed that pathogens selected in distantly-related host genotypes diverged more than those in closely-related host genotypes. S. aureus nevertheless maintained a broad host range. Our study provides unique empirical insight into the evolutionary dynamics that could occur in other novel infections of wildlife and humans.Subject terms: Molecular evolution, Bacterial evolution, Bacterial genetics  相似文献   

16.
Theory predicts that hosts and pathogens will evolve higher resistance and aggressiveness in systems where populations are spatially connected than in situations in which populations are isolated and dispersal is more local. In a large cross‐inoculation experiment we surveyed patterns of host resistance and pathogen infectivity in anther‐smut diseased Viscaria alpina populations from three contrasting areas where populations range from continuous, through patchy but spatially connected to highly isolated demes. In agreement with theory, isolated populations of V. alpina were more susceptible on average than either patchily distributed or continuous populations. While increased dispersal in connected systems increases disease spread, it may also increase host gene flow and the potential for greater host resistance to evolve. In the Viscaria–Microbotryum system, pathogen infectivity mirrored patterns of host resistance with strains from the isolated populations being the least infective and strains from the more resistant continuous populations being the most infective on average, suggesting that high resistance selects for high infectivity. To our knowledge this study is the first to characterize the impacts of varying spatial connectivity on patterns of host resistance and pathogen infectivity in a natural system.  相似文献   

17.
Natural plant populations encounter strong pathogen pressure and defence-associated genes are known to be under selection dependent on the pressure by the pathogens. Here, we use populations of the wild tomato Solanum chilense to investigate natural resistance against Cladosporium fulvum, a well-known ascomycete pathogen of domesticated tomatoes. Host populations used are from distinct geographical origins and share a defined evolutionary history. We show that distinct populations of S. chilense differ in resistance against the pathogen. Screening for major resistance gene-mediated pathogen recognition throughout the whole species showed clear geographical differences between populations and complete loss of pathogen recognition in the south of the species range. In addition, we observed high complexity in a homologues of Cladosporium resistance (Hcr) locus, underlying the recognition of C. fulvum, in central and northern populations. Our findings show that major gene-mediated recognition specificity is diverse in a natural plant-pathosystem. We place major gene resistance in a geographical context that also defined the evolutionary history of that species. Data suggest that the underlying loci are more complex than previously anticipated, with small-scale gene recombination being possibly responsible for maintaining balanced polymorphisms in the populations that experience pathogen pressure.  相似文献   

18.
The relationship between invaders and the pathogens encountered in their new environment can have a large effect on invasion success. Invaders can become free from their natural pathogens and reallocate costly immune resources to growth and reproduction, thereby increasing invasion success. Release from enemies and relaxation of selective pressures could render newly founded populations more variable at immune-related genes, such as the major histocompatibility complex (MHC), particularly when they have different origins. Using rainbow and brown trout, two of the world’s most successful fish invaders, we tested the general hypothesis that invaders should display high intrapopulation immunogenetic diversity and interpopulation divergence, due to the interplay between genetic drift and successive waves of genetically divergent introductions. We analysed genetic diversity and signatures of selection at the MHC class II β immune-related locus. In both species, MHC diversity (allelic richness and heterozygosity) for southern hemisphere populations was similar to values reported for populations at their native range. However, MHC functional diversity was limited, and population immunogenetic structuring weaker than that observed using neutral markers. Depleted MHC functional diversity could reflect a decrease in immune response, immune-related assortative mating or selection for resistance to newly encountered parasites. Given that the role of MHC diversity in the survival of these populations remains unclear, depleted functional diversity of invasive salmonids could compromise their long-term persistence. A better understanding of the eco-immunology of invaders may help in managing and preventing the impact of biological invasions, a major cause of loss of biodiversity worldwide.  相似文献   

19.
Fungi in the genus Lecanicillium (formerly classified as the single species Verticillium lecanii) are important pathogens of insects and some have been developed as commercial biopesticides. Some isolates are also active against phytoparasitic nematodes or fungi. Lecanicillium spp. use both mechanical forces and hydrolytic enzymes to directly penetrate the insect integument and the cell wall of the fungal plant pathogen. In addition to mycoparasitism of the plant pathogen, the mode of action is linked to colonization of host plant tissues, triggering an induced systemic resistance. Recently it was demonstrated that development of Lecanicillium hybrids through protoplast fusion may result in strains that inherit parental attributes, thereby allowing development of hybrid strains with broader host range and other increased benefits, such as increased viability. Such hybrids have demonstrated increased virulence against aphids, whiteflies and the soybean cyst nematode. Three naturally occurring species of Lecanicillium, L. attenuatum, L. longisporum, and an isolate that could not be linked to any presently described species based on rDNA sequences have been shown to have potential to control aphids as well as suppress the growth and spore production of Sphaerotheca fuliginea, the causal agent of cucumber powdery mildew. These results suggest that strains of Lecanicillium spp. may have potential for development as a single microbial control agent effective against several plant diseases, pest insects and plant parasitic nematodes due to its antagonistic, parasitic and disease resistance inducing characteristics. However, to our knowledge, no Lecanicillium spp. have been developed for control of phytopathogens or phytoparasitic nematodes.  相似文献   

20.
The occurrence of multiple pathogen species on a shared host species is unexpected when they exploit the same micro‐niche within the host individual. One explanation for such observations is the presence of pathogen‐specific resistances segregating within the host population into sites that are differentially occupied by the competing pathogens. This study used experimental inoculations to test whether specific resistances may contribute to the maintenance of two species of anther‐smut fungi, Microbotryum silenes‐inflatae and Microbotryum lagerheimii, in natural populations of Silene uniflora in England and Wales. Overall, resistance to the two pathogens was strongly positively correlated among host populations and to a lesser degree among host families within populations. A few instances of specific resistance were also observed and confirmed by replicated inoculations. The results suggest that selection for resistance to one pathogen may protect the host from the emergence via host shifts of related pathogen species, and conversely that co‐occurrence of two species of pathogens may be dependent on the presence of host genotypes susceptible to both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号