首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe here an approach for rapidly producing scar-free and precise gene deletions in S. cerevisiae with high efficiency. Preparation of the disruption gene cassette in this approach was simply performed by overlap extension-PCR of an invert repeat of a partial or complete sequence of the targeted gene with URA3. Integration of the prepared disruption gene cassette to the designated position of a target gene leads to the formation of a mutagenesis cassette within the yeast genome, which consists of a URA3 gene flanked by the targeted gene and its inverted repeat between two short identical direct repeats. The inherent instability of the inverted sequences in close proximity facilitates the self-excision of the entire mutagenesis cassette deposited in the genome and promotes homologous recombination resulting in a seamless deletion via a single transformation. This rapid assembly circumvents the difficulty during preparation of disruption gene cassettes composed of two inverted repeats of the URA3, which requires the engineering of unique restriction sites for subsequent digestion and T4 DNA ligation in vitro. We further identified that the excision of the entire mutagenesis cassette flanked by two DRs in the transformed S. cerevisiae is dependent on the length of the inverted repeat of which a minimum of 800 bp is required for effective gene deletion. The deletion efficiency improves with the increase of the inverted repeat till 1.2 kb. Finally, the use of gene-specific inverted repeats of target genes enables simultaneous gene deletions. The procedure has the potential for application on other yeast strains to achieve precise and efficient removal of gene sequences.  相似文献   

2.
3.
CRISPR assisted homology directed repair enables the introduction of virtually any modification to the Saccharomyces cerevisiae genome. Of obvious interest is the marker-free and seamless introduction of point mutations. To fulfill this promise, a strategy that effects single nucleotide changes while preventing repeated recognition and cutting by the gRNA/Cas9 complex is needed. We demonstrate a two-step method to introduce point mutations at 17 positions in the S. cerevisiae genome. We show the general applicability of the method, enabling the seamless introduction of single nucleotide changes at any location, including essential genes and non-coding regions. We also show a quantifiable phenotype for a point mutation introduced in gene GSH1. The ease and wide applicability of this general method, combined with the demonstration of its feasibility will enable genome editing at an unprecedented level of detail in yeast and other organisms.  相似文献   

4.
Here we describe a one-step method to create precise modifications in the genome of Saccharomyces cerevisiae as a tool for synthetic biology, metabolic engineering, systems biology and genetic studies. Through homologous recombination, a mutagenesis cassette containing an inverted repeat of selection marker(s) is integrated into the genome. Due to its inherent instability in genomic DNA, the inverted repeat catalyzes spontaneous self-excision, resulting in precise genome modification. Since this excision occurs at very high frequencies, selection for the integration event can be followed immediately by counterselection, without the need for growth in permissive conditions. This is the first time a truly one-step method has been described for genome modification in any organism.  相似文献   

5.
6.

Background

With the development of several new technologies using synthetic biology, it is possible to engineer genetically intractable organisms including Mycoplasma mycoides subspecies capri (Mmc), by cloning the intact bacterial genome in yeast, using the host yeast’s genetic tools to modify the cloned genome, and subsequently transplanting the modified genome into a recipient cell to obtain mutant cells encoded by the modified genome. The recently described tandem repeat coupled with endonuclease cleavage (TREC) method has been successfully used to generate seamless deletions and point mutations in the mycoplasma genome using the yeast DNA repair machinery. But, attempts to knock-in genes in some cases have encountered a high background of transformation due to maintenance of unwanted circularization of the transforming DNA, which contains possible autonomously replicating sequence (ARS) activity. To overcome this issue, we incorporated a split marker system into the TREC method, enabling seamless gene knock-in with high efficiency. The modified method is called TREC-assisted gene knock-in (TREC-IN). Since a gene to be knocked-in is delivered by a truncated non-functional marker, the background caused by an incomplete integration is essentially eliminated.

Results

In this paper, we demonstrate applications of the TREC-IN method in gene complementation and genome minimization studies in Mmc. In the first example, the Mmc dnaA gene was seamlessly replaced by an orthologous gene, which shares a high degree of identity at the nucleotide level with the original Mmc gene, with high efficiency and low background. In the minimization example, we replaced an essential gene back into the genome that was present in the middle of a cluster of non-essential genes, while deleting the non-essential gene cluster, again with low backgrounds of transformation and high efficiency.

Conclusion

Although we have demonstrated the feasibility of TREC-IN in gene complementation and genome minimization studies in Mmc, the applicability of TREC-IN ranges widely. This method proves to be a valuable genetic tool that can be extended for genomic engineering in other genetically intractable organisms, where it may be implemented in elucidating specific metabolic pathways and in rationale vaccine design.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1180) contains supplementary material, which is available to authorized users.  相似文献   

7.
The adoptive transfer of engineered T cells for the treatment of cancer, autoimmunity, and infectious disease is a rapidly growing field that has shown great promise in recent clinical trials. Nuclease-driven genome editing provides a method in which to precisely target genetic changes to further enhance T cell function in vivo. We describe the development of a highly efficient method to genome edit both primary human CD8 and CD4 T cells by homology-directed repair at a pre-defined site of the genome. Two different homology donor templates were evaluated, representing both minor gene editing events (restriction site insertion) to mimic gene correction, or the more significant insertion of a larger gene cassette. By combining zinc finger nuclease mRNA delivery with AAV6 delivery of a homologous donor we could gene correct 41% of CCR5 or 55% of PPP1R12C (AAVS1) alleles in CD8+ T cells and gene targeting of a GFP transgene cassette in >40% of CD8+ and CD4+ T cells at both the CCR5 and AAVS1 safe harbor locus, potentially providing a robust genome editing tool for T cell-based immunotherapy.  相似文献   

8.
The industrial yeast Pichia pastoris has been harnessed extensively for production of proteins, and it is attracting attention as a chassis cell factory for production of chemicals. However, the lack of synthetic biology tools makes it challenging in rewiring P. pastoris metabolism. We here extensively engineered the recombination machinery by establishing a CRISPR-Cas9 based genome editing platform, which improved the homologous recombination (HR) efficiency by more than 54 times, in particular, enhanced the simultaneously assembly of multiple fragments by 13.5 times. We also found that the key HR-relating gene RAD52 of P. pastoris was largely repressed in compared to that of Saccharomyces cerevisiae. This gene editing system enabled efficient seamless gene disruption, genome integration and multiple gene assembly with positive rates of 68–90%. With this efficient genome editing platform, we characterized 46 potential genome integration sites and 18 promoters at different growth conditions. This library of neutral sites and promoters enabled two-factorial regulation of gene expression and metabolic pathways and resulted in a 30-fold range of fatty alcohol production (12.6–380 mg/l). The expanding genetic toolbox will facilitate extensive rewiring of P. pastoris for chemical production, and also shed light on engineering of other non-conventional yeasts.  相似文献   

9.
A universal method to reconstitute sets of genes was developed. Owing to the intrinsic nature of the plasmid establishment mechanism in Bacillus subtilis, the assembly of five antibiotic resistance genes with a defined order and orientation was achieved. These five fragments and the plasmid have three-base protruding sequences at both ends. The protruding sequences are designed so that each fragment is ligated once in a row according to the pairing. Ligation by T4 DNA ligase in the presence of 150 mM NaCl and 10% polyethylene glycol at 37°C yielded high molecular tandem repeat linear form DNA. This multimeric form of DNA was preferentially used for plasmid establishment in B.subtilis. The method, referred to as Ordered Gene Assembly in B.subtilis (OGAB), allows for the design of multiple fragments with very high efficiency and great fidelity.  相似文献   

10.
刘星晨  谷守芹  董金皋 《微生物学报》2017,57(11):1634-1642
CRISPR/Cas9技术是在特定的RNA引导下,利用特异的核酸酶实现对基因组进行编辑的新技术。自2013年该技术体系建立起来已成功应用于动物、植物及真菌中。本文简述了3种基于核酸酶的基因编辑技术及其应用,概述了CRISPR/Cas9系统的组成及其作用机理,总结了CRISPR/Cas9在模式真菌酿酒酵母及丝状真菌中的应用,并就在丝状真菌中应用该技术时sg RNA表达盒的设计、Cas9表达盒的优化、抗性标记的筛选、受体的选择等方面提出具体的研究方法。另外,针对该技术应用过程中出现的脱靶效应、Cas9核定位信号的添加、启动子的选择及多个靶基因的编辑等问题提出了建议与展望,希望能够为初次涉足该领域的科研人员提供理论参考和技术支持。  相似文献   

11.
《Fungal biology》2020,124(3-4):228-234
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is widely used as a tool to precisely manipulate genomic sequence targeted by sgRNA (single guide RNA) and is adapted in different species for genome editing. One of the major concerns of CRISPR-Cas9 is the possibility of off-target effects, which can be remedied by the deployment of high fidelity Cas9 variants. Ustilago maydis is a maize fungal pathogen, which has served as a model organism for biotrophic pathogens for decades. The successful adaption of CRISPR-Cas9 in U. maydis greatly facilitated effector biology studies. Here, we constructed an U. maydis reporter strain that allows in vivo quantification of efficiency and target specificity of three high fidelity Cas9 variants, Cas9HF1, Cas9esp1.1 and Cas9hypa. This approach identified Cas9HF1 as most specific Cas9 variant in U. maydis. Furthermore, whole genome sequencing showed absence of off-target effects in U. maydis by CRISPR-Cas9 editing.  相似文献   

12.
Rhodococcus spp. are organic solvent-tolerant strains with strong adaptive abilities and diverse metabolic activities, and are therefore widely utilized in bioconversion, biosynthesis and bioremediation. However, due to the high GC-content of the genome (~70%), together with low transformation and recombination efficiency, the efficient genome editing of Rhodococcus remains challenging. In this study, we report for the first time the successful establishment of a CRISPR/Cas9-based genome editing system for R. ruber. With a bypass of the restriction-modification system, the transformation efficiency of R. ruber was enhanced by 89-fold, making it feasible to obtain enough colonies for screening of mutants. By introducing a pair of bacteriophage recombinases, Che9c60 and Che9c61, the editing efficiency was improved from 1% to 75%. A CRISPR/Cas9-mediated triple-plasmid recombineering system was developed with high efficiency of gene deletion, insertion and mutation. Finally, this new genome editing method was successfully applied to engineer R. ruber for the bio-production of acrylamide. By deletion of a byproduct-related gene and in-situ subsititution of the natural nitrile hydratase gene with a stable mutant, an engineered strain R. ruber THY was obtained with reduced byproduct formation and enhanced catalytic stability. Compared with the use of wild-type R. ruber TH, utilization of R. ruber THY as biocatalyst increased the acrylamide concentration from 405 g/L to 500 g/L, reduced the byproduct concentration from 2.54 g/L to 0.5 g/L, and enhanced the number of times that cells could be recycled from 1 batch to 4 batches.  相似文献   

13.
Recombineering is employed to modify large DNA clones such as fosmids, BACs and PACs. Subtle and seamless modifications can be achieved using counter-selection strategies in which a donor cassette carrying both positive and negative markers inserted in the target clone is replaced by the desired sequence change. We are applying counter-selection recombineering to modify bacmid bMON14272, a recombinant baculoviral genome, as we wish to engineer the virus into a therapeutically useful gene delivery vector with cell targeting characteristics. Initial attempts to replace gp64 with Fusion (F) genes from other baculoviruses resulted in many rearranged clones in which the counter-selection cassette had been deleted. Bacmid bMON14272 contains nine highly homologous regions (hrs) and deletions were mapped to recombination between hr pairs. Recombineering modifications were attempted to decrease intramolecular recombination and/or increase recombineering efficiency. Of these only the use of longer homology arms on the donor molecule proved effective permitting seamless modification. bMON14272, because of the presence of the hr sequences, can be considered equivalent to a highly repetitive BAC and, as such, the optimized method detailed here should prove useful to others applying counter-selection recombineering to modify BACs or PACs containing similar regions of significant repeating homologies.  相似文献   

14.
CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots   总被引:1,自引:0,他引:1  
As a new technology for gene editing, the CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) system has been rapidly and widely used for genome engineering in various organisms. In the present study, we successfully applied type II CRISPR/Cas9 system to generate and estimate genome editing in the desired target genes in soybean (Glycine max (L.) Merrill.). The single-guide RNA (sgRNA) and Cas9 cassettes were assembled on one vector to improve transformation efficiency, and we designed a sgRNA that targeted a transgene (bar) and six sgRNAs that targeted different sites of two endogenous soybean genes (GmFEI2 and GmSHR). The targeted DNA mutations were detected in soybean hairy roots. The results demonstrated that this customized CRISPR/Cas9 system shared the same efficiency for both endogenous and exogenous genes in soybean hairy roots. We also performed experiments to detect the potential of CRISPR/Cas9 system to simultaneously edit two endogenous soybean genes using only one customized sgRNA. Overall, generating and detecting the CRISPR/Cas9-mediated genome modifications in target genes of soybean hairy roots could rapidly assess the efficiency of each target loci. The target sites with higher efficiencies can be used for regular soybean transformation. Furthermore, this method provides a powerful tool for root-specific functional genomics studies in soybean.  相似文献   

15.

Background

The facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We identified and categorized tandem repeat arrays and their distribution throughout the genome of B. pseudomallei strain K96243 in order to develop a genetic typing method for B. pseudomallei. We then screened 104 of the potentially polymorphic loci across a diverse panel of 31 isolates including B. pseudomallei, B. mallei and B. thailandensis in order to identify loci with varying degrees of polymorphism. A subset of these tandem repeat arrays were subsequently developed into a multiple-locus VNTR analysis to examine 66 B. pseudomallei and 21 B. mallei isolates from around the world, as well as 95 lineages from a serial transfer experiment encompassing ~18,000 generations.

Results

B. pseudomallei contains a preponderance of tandem repeat loci throughout its genome, many of which are duplicated elsewhere in the genome. The majority of these loci are composed of repeat motif lengths of 6 to 9 bp with 4 to 10 repeat units and are predominately located in intergenic regions of the genome. Across geographically diverse B. pseudomallei and B.mallei isolates, the 32 VNTR loci displayed between 7 and 28 alleles, with Nei's diversity values ranging from 0.47 and 0.94. Mutation rates for these loci are comparable (>10-5 per locus per generation) to that of the most diverse tandemly repeated regions found in other less diverse bacteria.

Conclusion

The frequency, location and duplicate nature of tandemly repeated regions within the B. pseudomallei genome indicate that these tandem repeat regions may play a role in generating and maintaining adaptive genomic variation. Multiple-locus VNTR analysis revealed extensive diversity within the global isolate set containing B. pseudomallei and B. mallei, and it detected genotypic differences within clonal lineages of both species that were identical using previous typing methods. Given the health threat to humans and livestock and the potential for B. pseudomallei to be released intentionally, MLVA could prove to be an important tool for fine-scale epidemiological or forensic tracking of this increasingly important environmental pathogen.  相似文献   

16.
17.
An efficient genome-scale editing tool is required for construction of industrially useful microbes. We describe a targeted, continual multigene editing strategy that was applied to the Escherichia coli genome by using the Streptococcus pyogenes type II CRISPR-Cas9 system to realize a variety of precise genome modifications, including gene deletion and insertion, with a highest efficiency of 100%, which was able to achieve simultaneous multigene editing of up to three targets. The system also demonstrated successful targeted chromosomal deletions in Tatumella citrea, another species of the Enterobacteriaceae, with highest efficiency of 100%.  相似文献   

18.
The two-step process of selection and counter-selection is a standard way to enable genetic modification and engineering of bacterial genomes using homologous recombination methods. The tetA and sacB genes are contained in a DNA cassette and confer a novel dual counter-selection system. Expression of tetA confers bacterial resistance to tetracycline (TcR) and also causes sensitivity to the lipophillic chelator fusaric acid; sacB causes sensitivity to sucrose. These two genes are introduced as a joint DNA cassette into Escherichia coli by selection for TcR. A medium containing both fusaric acid and sucrose has been developed, in which, coexpression of tetA-sacB is orders of magnitude more sensitive as a counter-selection agent than either gene alone. In conjunction with the homologous recombination methods of recombineering and P1 transduction, this powerful system has been used to select changes in the bacterial genome that cannot be directly detected by other counter-selection systems.  相似文献   

19.

Background

Polymorphic tandem repeat typing is a new generic technology which has been proved to be very efficient for bacterial pathogens such as B. anthracis, M. tuberculosis, P. aeruginosa, L. pneumophila, Y. pestis. The previously developed tandem repeats database takes advantage of the release of genome sequence data for a growing number of bacteria to facilitate the identification of tandem repeats. The development of an assay then requires the evaluation of tandem repeat polymorphism on well-selected sets of isolates. In the case of major human pathogens, such as S. aureus, more than one strain is being sequenced, so that tandem repeats most likely to be polymorphic can now be selected in silico based on genome sequence comparison.

Results

In addition to the previously described general Tandem Repeats Database, we have developed a tool to automatically identify tandem repeats of a different length in the genome sequence of two (or more) closely related bacterial strains. Genome comparisons are pre-computed. The results of the comparisons are parsed in a database, which can be conveniently queried over the internet according to criteria of practical value, including repeat unit length, predicted size difference, etc. Comparisons are available for 16 bacterial species, and the orthopox viruses, including the variola virus and three of its close neighbors.

Conclusions

We are presenting an internet-based resource to help develop and perform tandem repeats based bacterial strain typing. The tools accessible at http://minisatellites.u-psud.fr now comprise four parts. The Tandem Repeats Database enables the identification of tandem repeats across entire genomes. The Strain Comparison Page identifies tandem repeats differing between different genome sequences from the same species. The "Blast in the Tandem Repeats Database" facilitates the search for a known tandem repeat and the prediction of amplification product sizes. The "Bacterial Genotyping Page" is a service for strain identification at the subspecies level.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号