首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Population abundance estimates using predictive models are important for describing habitat use and responses to population-level impacts, evaluating conservation status of a species, and for establishing monitoring programs. The golden-cheeked warbler (Setophaga chrysoparia) is a neotropical migratory bird that was listed as federally endangered in 1990 because of threats related to loss and fragmentation of its woodland habitat. Since listing, abundance estimates for the species have mainly relied on localized population studies on public lands and qualitative-based methods. Our goal was to estimate breeding population size of male warblers using a predictive model based on metrics for patches of woodland habitat throughout the species' breeding range. We first conducted occupancy surveys to determine range-wide distribution. We then conducted standard point-count surveys on a subset of the initial sampling locations to estimate density of males. Mean observed patch-specific density was 0.23 males/ha (95% CI = 0.197–0.252, n = 301). We modeled the relationship between patch-specific density of males and woodland patch characteristics (size and landscape composition) and predicted patch occupancy. The probability of patch occupancy, derived from a model that used patch size and landscape composition as predictor variables while addressing effects of spatial relatedness, best predicted patch-specific density. We predicted patch-specific densities as a function of occupancy probability and estimated abundance of male warblers across 63,616 woodland patches accounting for 1.678 million ha of potential warbler habitat. Using a Monte Carlo simulation, our approach yielded a range-wide male warbler population estimate of 263,339 (95% CI: 223,927–302,620). Our results provide the first abundance estimate using habitat and count data from a sampling design focused on range-wide inference. Managers can use the resulting model as a tool to support conservation planning and guide recovery efforts. © 2012 The Wildlife Society.  相似文献   

2.
Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond‐breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata; and Southern Leopard frogs, Lithobates sphenocephalus) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond‐breeding amphibian species.  相似文献   

3.
Habitat preferences need to be understood if species are to be adequately managed or conserved. Habitat preferences are presumed to reflect requirements for food, shelter and breeding, as well as interactions with predators and competitors. However, one or more of these requirements may dominate. Tree‐cavity‐dependent wildlife species are one example where shelter or breeding site requirements may dominate. We installed 120 nest boxes across 40 sites to target the vulnerable Brush‐tailed Phascogale (Phascogale tapoatafa) and the non‐threatened Sugar Glider (Petaurus breviceps). The provision of shelter sites where few of quality are available may enable better resolution of habitat preferences. Over three years, we observed the Brush‐tailed Phascogale at 17 sites, whereas the Sugar Glider was observed at 39 sites. We tested four broad hypotheses (H1–H4) relating to habitat that may influence occupancy by these species. There was no influence of hollow (cavity) abundance (H1) on either species suggesting our nest boxes had satisfied their shelter requirements. There was no influence of habitat structure (canopy and tree proximity) (H2) immediately around the nest box trees. We found no influence of distance to the forest edge (H3). Variables at and away from the nest box site that appear to reflect foraging substrates (H4) were influential on the Brush‐tailed Phascogale. Sugar Glider occupancy was only influenced by a single variable at the nest box site. The lack of influence of any other variables is consistent with the very high occupancy observed, suggesting most of the forest habitat is suitable when shelter sites are available. We found no evidence that the Sugar Glider reduced site use by the Brush‐tailed Phascogale.  相似文献   

4.
Animals use and select habitat at multiple hierarchical levels and at different spatial scales within each level. Still, there is little knowledge on the scale effects at different spatial levels of species occupancy patterns. The objective of this study was to examine nonlinear effects and optimal‐scale landscape characteristics that affect occupancy of the Siberian flying squirrel, Pteromys volans, in South‐ and Mid‐Finland. We used presence–absence data (n = 10,032 plots of 9 ha) and novel approach to separate the effects on site‐, landscape‐, and regional‐level occupancy patterns. Our main results were: landscape variables predicted the placement of population patches at least twice as well as they predicted the occupancy of particular sites; the clear optimal value of preferred habitat cover for species landscape‐level abundance is a surprisingly low value (10% within a 4 km buffer); landscape metrics exert different effects on species occupancy and abundance in high versus low population density regions of our study area. We conclude that knowledge of regional variation in landscape utilization will be essential for successful conservation of the species. The results also support the view that large‐scale landscape variables have high predictive power in explaining species abundance. Our study demonstrates the complex response of species occurrence at different levels of population configuration on landscape structure. The study also highlights the need for data in large spatial scale to increase the precision of biodiversity mapping and prediction of future trends.  相似文献   

5.
ABSTRACT Beaver (Castor canadensis) activity creates wetland habitats with varying hydroperiods important in maintaining habitat diversity for pond-breeding amphibians with significantly different breeding habitat requirements. We documented pond-breeding amphibian assemblages in 71 freshwater wetlands in Acadia National Park, Maine, USA. Using 15 variables describing local pond conditions and wetland landscape characteristics, we developed a priori models to predict sites with high amphibian species richness and used model selection with Akaike's Information Criterion to judge the strength of evidence supporting each model. We developed single-species models to predict wood frog (Rana sylvatica), bullfrog (R. catesbeiana), and pickerel frog (R. palustris) breeding site selection. Sites with high species richness were best predicted by 1) connectivity of wetlands in the landscape through stream corridors and 2) wetland modification by beaver. Wood frog breeding habitat was best predicted by temporary hydroperiod, lack of fish, and absence of current beaver activity. Wood frog breeding was present in abandoned beaver wetlands nearly as often as in nonbeaver wetlands. Bullfrog breeding was limited to active beaver wetlands with fish and permanent water. Pickerel frog breeding sites were best predicted by connectivity through stream corridors within the landscape. As beavers have recolonized areas of their former range in North America, they have increased the number and diversity of available breeding sites in the landscape for pond-breeding amphibians. The resulting mosaic of active and abandoned beaver wetlands both supports rich amphibian assemblages and provides suitable breeding habitat for species with differing habitat requirements. Land managers should consider the potential benefits of minimal management of beavers in promoting and conserving amphibian and wetland diversity at a landscape scale.  相似文献   

6.
There is a pressing need to develop a sound conservation strategy for pool-breeding amphibians, which includes gaining a better understanding of the habitat and landscape-scale characteristics associated with populations. To investigate relationships between amphibian species richness and characteristics of breeding pools and surrounding landscapes, we surveyed 85 pools in eastern Massachusetts (USA) in 1996 and 1997. A total of 11 species was detected, with most pools having 2–5 species. Pools were typically small, 77.6% were <0.2 ha, but most pools (72%) had hydroperiods that persisted at least into August in most years. Based on linear regression analyses, species richness was positively associated with three within-pool variables (pool surface area, hydroperiod, and the amount of emergent vegetation), and a landscape-level variable (presence of another breeding pool within 1 km), while one within-pool variable (tree canopy cover) exhibited a significant negative association with species richness. These within-pool habitat variables and connectivity to other breeding pools are important characteristics to consider when attempting to identify breeding sites that could provide core habitat in conservation reserves designed for the conservation of pool-breeding amphibian species richness. Conservation reserves for pool-breeding amphibian populations should include pool complexes functioning as habitat for metapopulations. Core pool habitats within such reserves should be large (0.5–1.0 ha), with seasonal hydroperiods that persist into August or that dry in some years, and with sufficient emergent vegetation to provide diverse microhabitats and refugia.  相似文献   

7.
Changes in site occupancy across habitat patches have often been attributed to landscape features in fragmented systems, particularly when considering metapopulations. However, failure to include habitat quality of individual patches can mask the relative importance of local scale features in determining distributional changes. We employed dynamic occupancy modeling to compare the strength of local habitat variables and metrics of landscape patterns as drivers of metapopulation dynamics for a vulnerable, high‐elevation species in a naturally fragmented landscape. Repeat surveys of Bicknell's thrush Catharus bicknelli presence/non‐detection were conducted at 88 sites across Vermont, USA in 2006 and 2007. We used an organism‐based approach, such that at each site we measured important local‐scale habitat characteristics and quantified landscape‐scale features using a predictive habitat model for this species. We performed a principal component analysis on both the local and landscape features to reduce dimensionality. We estimated site occupancy, colonization, and extinction probabilities while accounting for imperfect detection. Univariate, additive, and interaction models of local habitat and landscape context were ranked using AICc scores. Both local and landscape scales were important in determining changes in occupancy patterns. An interaction between scales was detected for occupancy dynamics indicating that the relationship of the parameters to local‐scale habitat conditions can change depending on the landscape context and vice versa. An increase in both landscape‐ and local‐scale habitat quality increased occupancy and colonization probability while decreasing extinction risk. Colonization and extinction were both more strongly influenced by local habitat quality relative to landscape patterns. We also identified clear, qualitative thresholds for landscape‐scale features. Conservation of large habitat patches in high‐cover landscapes will help ensure persistence of Bicknell's thrushes, but only if local scale habitat quality is maintained. Our results highlight the importance of incorporating information beyond landscape characteristics when investigating patch occupancy patterns in metapopulations.  相似文献   

8.
The non-indigenous red swamp crayfish (Procambarus clarkii) has been shown to be a threat for amphibian conservation. Many amphibian species breed in temporary ponds to diminish predation risk as such ecosystems are free of large predators. However P. clarkii, occurring as an invasive species in the Camargue delta, can readily disperse on the ground and thus colonize isolated ponds. We studied the current impact of the exotic crayfish on the reproductive success of the Mediterranean tree frog (Hyla meridionalis). In a mesocosm experiment, we tested the effect of two crayfish densities (1 and 3 crayfish/m2) on tadpole abundance. We also tested in a field experiment, within a temporary pond, the crayfish’s predation on the tree frog’s eggs. Finally, we developed site occupancy models using data from 20 ponds to assess the effect of crayfish abundance on tadpole abundance. Neither the experiments, nor the site occupancy models showed a negative impact of the current crayfish abundance on the tree frog populations breeding in ponds. We found that recorded crayfish densities were lower than in other areas where crayfish has impacted amphibian populations, but we hypothesize that current crayfish abundance in the area may increase in the future, thus impacting tree frog populations.  相似文献   

9.
A detailed understanding of the population dynamics of many amphibian species is lacking despite concerns about declining amphibian biodiversity and abundance. This paper explores temporal patterns of occupancy and underlying extinction and colonization dynamics in a regionally imperiled amphibian species, the Northern leopard frog (Lithobates pipiens) in Alberta. Our study contributes to elucidating regional occupancy dynamics at northern latitudes, where climate extremes likely have a profound effect on seasonal occupancy. The primary advantage of our study is its wide geographic scale (60,000 km2) and the use of repeat visual surveys each spring and summer from 2009–2013. We find that occupancy varied more dramatically between seasons than years, with low spring and higher summer occupancy. Between spring and summer, colonization was high and extinction low; inversely, colonization was low and extinction high over the winter. The dynamics of extinction and colonization are complex, making conservation management challenging. Our results reveal that Northern leopard frog occupancy was constant over the last five years and thus there is no evidence of decline or recovery within our study area. Changes to equilibrium occupancy are most sensitive to increasing colonization in the spring or declining extinction in the summer. Therefore, conservation and management efforts should target actions that are likely to increase spring colonization; this could be achieved through translocations or improving the quality or access to breeding habitat. Because summer occupancy is already high, it may be difficult to improve further. Nevertheless, summer extinction could be reduced by predator control, increasing water quality or hydroperiod of wetlands, or increasing the quality or quantity of summer habitat.  相似文献   

10.
Understanding species distribution and predicting range shifts are major goals of ecology and biogeography. Obtaining reliable predictions of how species distribution might change in response to habitat change requires knowledge of habitat availability, occupancy, use for breeding, and spatial autocorrelation in these parameters. Amphibians in alpine areas provide an excellent model system for disentangling habitat drivers of occupancy from that of breeding while explicitly accounting for spatial autocorrelation. We focused on the widespread common frog (Rana temporaria) inhabiting alpine lakes in the Southern Carpathians, Romania. We used single season multistate occupancy models developed to account for imperfect detection and spatial autocorrelation to estimate the occupancy and breeding probabilities and to evaluate their response to habitat characteristics. We found that frogs do not occur in all water bodies [occupancy probability: 0.697; 95% credible interval (0.614, 0.729)] and do not breed in a substantial proportion of water bodies where they occur [breeding probability conditional on occupancy: 0.707; 95% credible interval (0.670, 0.729)]. Habitat characteristics explain water body occupancy but not breeding probability; and altitude, water body surface area, water body sinuosity and permanency, presence of invertebrates, and grazing along the banks all had positive effects on occupancy. We also detected strong spatial autocorrelation in occupancy and breeding probabilities. Thus, our results indicate that habitat choice by montane amphibians is influenced by both spatial autocorrelation and habitat characteristics. Because spatial autocorrelations matter and because the presence of adults is not the same as the presence of a reproducing population, it will be difficult to predict the effects of habitat change on high altitude amphibian populations.  相似文献   

11.
Capsule Woodland structure, rather than tree species, is the most important determinant of breeding habitat selection by Willow Warblers in North West England.

Aims To examine how habitat characteristics predict the occurrence of male Willow Warbler territories.

Methods Woodland structure (trunk density, trunk diameter, canopy cover and understory cover), tree species and food abundance were compared between woodland areas within and outside of male territories at a site in the UK.

Results Territories contained higher trunk numbers, had a narrow range of trunk diameters, and intermediate canopy cover. Food abundance did not differ with occupancy. Willow and alder were the most common trees within territories, in contrast to birch which has been found in previous studies. The habitat structure matches young woodlands, where birches often grow. However, at the study site the birches were large and mature, and therefore unsuitable. Moreover, woodland structure variables were better predictors of occupancy than any particular tree genera.

Conclusion The results indicate that vegetation structure, but not tree species or food availability, influence breeding habitat selection by Willow Warblers. The preferred structure is similar to coppice woodlands; therefore, the Willow Warbler decline may be linked to the loss of this traditional management across south England.  相似文献   

12.
Understanding what factors influence species occupancy in human‐modified landscapes is a central theme in ecology. We examined scale‐dependent habitat relationships and site occupancy in reptiles across three topographically different study areas in south‐eastern Australia. We collected presence–absence data on reptiles from 443 sites associated with three long‐term biodiversity monitoring programs, on four to seven occasions, between 2001 and 2013. We characterised sites by the following four variable domains: 1) field design, 2) topography, 3) local‐scale vegetation attributes and 4) landscape‐scale vegetation cover. We constructed occupancy models for 14 species and used an information‐theoretic approach to compare multiple alternative hypotheses to explain occupancy within and between study areas. We modelled detection probability and used the model with the lowest AIC in subsequent analyses. We then modelled occupancy probability against all subsets of the variable groups (field design, topography, local‐ and landscape‐scale vegetation), as well as a model that held occupancy constant (null model). We found that local‐scale vegetation attributes were important for explaining site occupancy in 12/19 possible models, although, in several cases model fit was improved by the addition of topographic variables or native vegetation cover in the surrounding landscape. Occupancy models for widespread species were broadly congruent across study areas. We demonstrate that topographic variables are important for explaining reptile occupancy in hilly landscapes, and local‐ and landscape‐scale variables are important for explaining reptile occupancy in flat or gently undulating landscapes. Management actions that improve habitat complexity at a site‐level, and encompass entire topographic gradients, will have greater benefit to woodland reptiles than simply increasing vegetation cover in the surrounding landscape.  相似文献   

13.
Aim Predicting species distribution is of fundamental importance for ecology and conservation. However, distribution models are usually established for only one region and it is unknown whether they can be transferred to other geographical regions. We studied the distribution of six amphibian species in five regions to address the question of whether the effect of landscape variables varied among regions. We analysed the effect of 10 variables extracted in six concentric buffers (from 100 m to 3 km) describing landscape composition around breeding ponds at different spatial scales. We used data on the occurrence of amphibian species in a total of 655 breeding ponds. We accounted for proximity to neighbouring populations by including a connectivity index to our models. We used logistic regression and information‐theoretic model selection to evaluate candidate models for each species. Location Switzerland. Results The explained deviance of each species’ best models varied between 5% and 32%. Models that included interactions between a region and a landscape variable were always included in the most parsimonious models. For all species, models including region‐by‐landscape interactions had similar support (Akaike weights) as models that did not include interaction terms. The spatial scale at which landscape variables affected species distribution varied from 100 m to 1000 m, which was in agreement with several recent studies suggesting that land use far away from the ponds can affect pond occupancy. Main conclusions Different species are affected by different landscape variables at different spatial scales and these effects may vary geographically, resulting in a generally low transferability of distribution models across regions. We also found that connectivity seems generally more important than landscape variables. This suggests that metapopulation processes may play a more important role in species distribution than habitat characteristics.  相似文献   

14.
Variation in the distribution and abundance of species across landscapes has traditionally been attributed to processes operating at fine spatial scales (i.e., environmental conditions at the scale of the sampling unit), but processes that operate across larger spatial scales such as seasonal migration or dispersal are also important. To determine the relative importance of these processes, we evaluated hypothesized relationships between the probability of occupancy in wetlands by two amphibians [wood frogs (Lithobates sylvaticus) and boreal chorus frogs (Pseudacris maculata)] and attributes of the landscape measured at three spatial scales in Rocky Mountain National Park, Colorado. We used cost-based buffers and least-cost distances to derive estimates of landscape attributes that may affect occupancy patterns from the broader spatial scales. The most highly ranked models provide strong support for a positive relationship between occupancy by breeding wood frogs and the amount of streamside habitat adjacent to a wetland. The model selection results for boreal chorus frogs are highly uncertain, though several of the most highly ranked models indicate a positive association between occupancy and the number of neighboring, occupied wetlands. We found little evidence that occupancy of either species was correlated with local-scale attributes measured at the scale of individual wetlands, suggesting that processes operating at broader scales may be more important in influencing occupancy patterns in amphibian populations.  相似文献   

15.
Occupancy patterns can assist with the determination of habitat limitation during breeding or wintering periods and can help guide population and habitat management efforts. American black ducks (Anas rubripes; black ducks) are thought to be limited by habitat and food availability during the winter, but breeding sites may also limit the size or growth potential of the population. The Canadian Wildlife Service conducts an annual breeding waterfowl survey that we used to explore the hypothesis that black duck carrying capacity is limited by wetlands available for breeding in Québec, Canada. We applied single-visit, multi-species occupancy models to the 1990–2015 population survey data to determine if there was evidence the black duck population was limited by breeding habitat. Using a dynamic (multi-season) occupancy modeling approach, we estimated latent occupancy (occupancy accounting for imperfect detection) of black ducks and then used latent occupancy estimates to derive occupancy, colonization, and extirpation rates. We jointly modeled the occupancy dynamics of black ducks and other duck species in wetlands where both species were present. Throughout the duration of the survey, 44% of wetlands were never observed to be occupied by black ducks. Occupancy models showed wetland size was positively associated with occupancy at the first time step (initial occupancy) and colonization. All 2-species models indicated initial black duck occupancy, persistence (continued occupancy), and colonization were positively associated with the presence of a second species. Colonization rate over the 26-year period ranged from 7% to 27% across all models. Extirpation rates were similar and were constant through time within each model. Low occupancy rates, combined with approximately equal colonization and extirpation rates, suggest there are available wetlands for breeding black ducks in their core breeding area. If breeding habitats are not saturated, this suggests migration or wintering areas may be more limiting to black duck population abundance. © 2019 The Wildlife Society.  相似文献   

16.
We present data on sample richness, relative abundance, and community structure of a leaf litter amphibian assemblage from globally important miombo-mopane woodlands characteristic of western Tanzania. We describe patterns of diversity across major habitat types and between different seasons from an annual pitfall-trapping campaign. We recorded 28 species of amphibians, which is significantly higher than existing richness estimates for other miombo woodland sites elsewhere in sub-Saharan Africa. We found that cultivation of native habitat reduces frog diversity, a conclusion that has important implications in light of the rapid conversion of miombo woodland for agriculture and fuel-wood across much of southern and central Africa. Many species showed strongly ansynchronized patterns of seasonality in relative abundance, which has significant implications for the establishment of successful monitoring programs and biodiversity surveys. These conclusions emphasize the importance of stratified long-term sampling in biodiversity studies and demonstrate that superficial levels of sampling effort can lead to erroneous conclusions regarding patterns of diversity in amphibian communities. The relatively poor focus on herpetofaunal research in African miombo-mopane woodland is out of proportion to its ecological and conservation significance.  相似文献   

17.
Conservation of rare and endangered species requires assessment of factors that influence the current habitat associations of a species and the role of past habitat degradation in limiting occupancy or abundance. The objective of our 2011–2014 study was to determine how habitat characteristics and wetland history can predict occupancy and abundance patterns of bog turtles (Glyptemys muhlenbergii) at the fringe of their range in the southeastern United States. We used a hurdle model to examine occupancy and abundance patterns while addressing problems associated with zero-inflated data. Occupancy patterns were weakly related to percent of the wetland containing emergent vegetation, whereas abundance patterns were predicted by the percent silt in the wetland substrate, percent forest cover, amount of habitat degradation, and recovery time since past habitat degradation. The effect of historical habitat degradation on abundance rather than occupancy patterns has rarely been documented and its effect is rarely studied in vertebrate populations. Identification of predictors of occupancy and abundance patterns will aid discovery of new populations of bog turtles and improve management of occupied wetlands. © 2019 The Wildlife Society.  相似文献   

18.
Capsule Expert‐based classification of bird species as habitat specialists and as generalists agrees with objective measures of species’ habitat requirements based on large‐scale monitoring data.

Aims To compare habitat specialization of 137 common bird species breeding in the Czech Republic using three different measures and to test their relationships to species’ abundance and habitat associations.

Methods Data on bird abundance and surveyed habitats were collected through a standardized monitoring scheme of common breeding species in the Czech Republic. From these data we calculated a quantitative species specialization index (SSI). Canonical correspondence analysis (CCA) was applied to calculate species’ habitat niche breadth and the level of association of each species to the main habitats. A panel of 11 local bird experts classified each species as habitat generalist or habitat specialist.

Results Species classified as habitat specialists by expert opinion showed higher habitat specialization according to the SSI, as well as according to CCA‐based habitat niche breadth. These species were also more closely associated with one of the main habitat types. These relationships were significant even after controlling for abundance.

Conclusions As expert opinion accords with the level of species’ habitat specialization expressed using two quantitative objective measures, we suggest that these characteristics reflect real interspecific variation in the breadth of habitat requirements in birds. Interspecific differences in habitat specialization are not caused solely by the variability in abundance among species.  相似文献   

19.
Å. Berg 《Bird Study》2013,60(3):355-366
This study investigated the importance of habitat quality and habitat heterogeneity for the abundance and diversity of breeding birds in continuous forest and in forest fragments surrounded by farmland in central Sweden. Positive correlations were found between species number and area, volume of Aspen Populus tremula and habitat heterogeneity. Spatial segregation of habitats at a relatively fine-grained scale is suggested to allow for the co-occurrence of more species. The abundance of at least 18 of the species in this study was influenced by fragmentation, and nine of these species preferred fragments to forest sites. The total density of birds was higher in fragments than in forest sites, probably because several fragment species forage in farmland surrounding the sites and a few also forage at edges. Nine species were more common in forest sites than in fragments, but only one species was restricted to continuous forest. However, several fragments were relatively close to forests (150 m) and forest was common in larger scale contexts. The abundance of most species (25 of 33 species) in this study was correlated with habitat quality variables (i.e. variables measuring the size, volume and diversity of ‘tree species’). Among these habitat variables the most important was the occurrence of deciduous trees which seemed to be important for 14 species. The second most important habitat factor seemed to be the diameter of trees, which was positively correlated with the abundance of eight species of which five are hole-nesters. Among coniferous trees, six species were positively correlated with the volume of Norway Spruce Picea abies, whereas no species seemed to be correlated with the volume of Pine Pinus sylvestris.  相似文献   

20.
Understanding resource selection by animals is important when considering habitat suitability at proposed release sites within threatened species recovery programmes. Multi-scale investigatory approaches are increasingly encouraged, as the patchy distribution of suitable habitats in fragmented landscapes often determines species presence and survival. Habitat models applied to a threatened New Zealand forest passerine, the South Island saddleback (Philesturnus carunculatus carunculatus), reintroduced to Ulva Island (Stewart Island) found that at landscape scale breeding pairs? preferences for sites near the coast were driven by micro-scale vegetation structure. We tested these results by examining models of breeding site selection by a reintroduced saddleback population on Motuara Island (Marlborough Sounds) at two scales: (1) micro-scale, for habitat characteristics that may drive breeding site selection, and (2) landscape scale, for variations in micro-scale habitat characteristics that may influence site colonisation in breeding pairs. Results indicated that birds on Motuara Island responded similarly to those on Ulva Island, i.e. birds primarily settled at the margins of coastal scrub and forest and later cohorts moved into larger stands of coastal forest where they established breeding territories. Plant species composition was also important in providing breeding saddleback pairs with adequate food supply and nesting support. However, Motuara Island birds differed in their partitioning of habitat use: preferred habitats were used for nesting while birds were foraging outside territorial boundaries or in shared sites. These differences may be explained because Motuara has a more homogeneous distribution of microscale habitats throughout the landscape and a highly bird-populated environment. These results show that resource distribution and abundance across the landscape needs to be accounted for in the modelling of density?bird?habitat relationships. In the search for future release sites, food (invertebrates and fruiting tree species) should be abundant close to available nesting sites, or evenly spread and available throughout the landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号