首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4)–methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9–methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9–methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.  相似文献   

2.
A major focus of current research into gene induction relates to chromatin and nucleosomal regulation, especially the significance of multiple histone modifications such as phosphorylation, acetylation, and methylation during this process. We have discovered a novel physiological characteristic of all lysine 4 (K4)–methylated histone H3 in the mouse nucleus, distinguishing it from lysine 9–methylated H3. K4-methylated histone H3 is subject to continuous dynamic turnover of acetylation, whereas lysine 9–methylated H3 is not. We have previously reported dynamic histone H3 phosphorylation and acetylation as a key characteristic of the inducible proto-oncogenes c-fos and c-jun. We show here that dynamically acetylated histone H3 at these genes is also K4-methylated. Although all three modifications are proven to co-exist on the same nucleosome at these genes, phosphorylation and acetylation appear transiently during gene induction, whereas K4 methylation remains detectable throughout this process. Finally, we address the functional significance of the turnover of histone acetylation on the process of gene induction. We find that inhibition of turnover, despite causing enhanced histone acetylation at these genes, produces immediate inhibition of gene induction. These data show that all K4-methylated histone H3 is subject to the continuous action of HATs and HDACs, and indicates that at c-fos and c-jun, contrary to the predominant model, turnover and not stably enhanced acetylation is relevant for efficient gene induction.  相似文献   

3.
组蛋白乙酰化与癌症   总被引:17,自引:0,他引:17  
由于组蛋白被修饰所引起的染色质结构的改变,在真核生物基因表达调控中发挥着重要的作用,这些修饰主要包括甲基化、乙酰化、磷酸化和泛素化等,其中组蛋白乙酰化尤为重要.组蛋白乙酰转移酶(HAT)和组蛋白去乙酰化酶(HDAC)参与决定组蛋白乙酰化状态.HAT通常作为多亚基辅激活物复合体的一部分,催化组蛋白乙酰化,导致染色质结构的松散、激活转录;而HDAC是多亚基辅抑制物复合体的一部分,使组蛋白去乙酰化,导致染色质集缩,并抑制基因的转录. 编码这些酶的基因染色体易位易于导致急性白血病的发生.另一方面,已经确定了一些乙酰化修饰酶的基因在染色体上的位置,它们尤其倾向定位于染色体的断裂处.综述了HAT和HDAC参与的组蛋白乙酰化与癌症发生之间关系的最新进展,以期进一步阐明组蛋白乙酰化修饰酶的生物学功能以及它们在癌症发生过程中的作用.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Dynamic epigenetic regulation is critical for proper oogenesis and early embryo development. During oogenesis, fully grown germinal vesicle oocytes develop to mature Metaphase II oocytes which are ready for fertilization. Fertilized oocyte proliferates mitotically until blastocyst formation and the process is called early embryo development. Throughout oogenesis and early embryo development, spatio-temporal gene expression takes place, and this dynamic gene expression is controlled with the aid of epigenetics. Epigenetic means that gene expression can be altered without changing DNA itself. Epigenome is regulated through DNA methylation and histone modifications. While DNA methylation generally ends up with repression of gene expression, histone modifications can result in expression or repression depending on type of modification, type of histone protein and its specific residue. One of the modifications is histone acetylation which generally ends up with gene expression. Histone acetylation occurs through the addition of acetyl group onto amino terminal of the core histone proteins by histone acetyltransferases (HATs). Contrarily, histone deacetylation is associated with repression of gene expression, and it is catalyzed by histone deacetylases (HDACs). This review article focuses on what is known about alterations in the expression of HATs and HDACs and emphasizes importance of HATs and HDACs during oogenesis and early embryo development.  相似文献   

11.
Cellular differentiation is caused by highly controlled modifications in the gene expression but rarely involves a change in the DNA sequence itself. Histone acetylation is a major epigenetic factor that adds an acetyl group to histone proteins, thus altering their interaction with DNA and nuclear proteins. Illumination of the histone acetylation during dentinogenesis is important for odontoblast differentiation and dentinogenesis. In the current study, we aimed to discover the roles and regulation of acetylation at histone 3 lysine 9 (H3K9ac) and H3K27ac during dentinogenesis. We first found that both of these modifications were enhanced during odontoblast differentiation and dentinogenesis. These modifications are dynamically catalyzed by histone acetyltransferases (HATs) and deacetylases (HDACs), among which HDAC3 was decreased while p300 increased during odontoblast differentiation. Moreover, overexpression of HDAC3 or knockdown p300 inhibited odontoblast differentiation in vitro, and inhibition of HDAC3 and p300 with trichostatin A or C646 regulated odontoblast differentiation. Taken together, the results of our present study suggest that histone acetylation is involved in dentinogenesis and coordinated expression of p300- and HDAC3-regulated odontoblast differentiation through upregulating histone acetylation.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
What histone code for DNA repair?   总被引:8,自引:0,他引:8  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号