首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 991 毫秒
1.
2.
3.
4.
5.
6.
Glucocorticoid hormones and p44/42 mitogen-activated protein kinase (MAPK) inactivation are considered to be important in small-intestinal differentiation/maturation. In this study, we found that co-treatment with glucocorticoid hormone agonist dexamethasone and p44/42 MAPK inhibitor PD98059 in intestinal cell line Caco-2 strongly induced GLUT5 gene expression. Glucocorticoid hormone receptor (GR) was translocated from the cytoplasm to the nucleus and de-phosphorylated at serine residue 203 in the nucleus, by combined treatment with dexamethasone and PD98059. The binding of GR, as well as acetylated histones H3 and H4, to the promoter/enhancer region of GLUT5 gene was enhanced by combined treatment with dexamethasone and PD98059. These results suggest that the inactivation of p44/42 MAP kinase enhances glucocorticoid hormone-induced GLUT5 gene expression, probably through controlling the phosphorylation at serine 203 and nuclear transport of GR, as well as histone acetylation on the promoter/enhancer region of GLUT5 gene.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Stow LR  Voren GE  Gumz ML  Wingo CS  Cain BD 《Steroids》2012,77(5):360-366
Aldosterone stimulates the endothelin-1 gene (Edn1) in renal collecting duct (CD) cells by a mechanism involving the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). The goal of the present study was to determine if the synthetic glucocorticoid dexamethasone affected Edn1 gene expression and to characterize GR binding patterns to an element in the Edn1 promoter. Dexamethasone (1μM) induced a 4-fold increase in Edn1 mRNA in mIMCD-3 inner medullary CD cells. Similar results were obtained from cortical collecting duct-derived mpkCCD(c14) cells. RU486 inhibition of GR completely blocked dexamethasone action on Edn1. Similarly, 24h transfection of siRNA against GR reduced Edn1 expression by approximately 50%. However, blockade of MR with either spironolactone or siRNA had little effect on dexamethasone induction of Edn1. Cotransfection of MR and GR siRNAs together had no additive effect compared to GR-siRNA alone. The results indicate that dexamethasone acts on Edn1 exclusively through GR and not MR. DNA affinity purification studies revealed that either dexamethasone or aldosterone resulted in GR binding to the same hormone response element in the Edn1Edn1 promoter. The Edn1 hormone response element contains three important sequence segments. Mutational analysis revealed that one of these segments is particularly important for modulating MR and GR binding to the Edn1 hormone response element.  相似文献   

14.
15.
Glucocorticoid induction of the phosphoenolpyruvate carboxykinase (PEPCK) gene requires a glucocorticoid response unit (GRU) comprised of two non-consensus glucocorticoid receptor (GR) binding sites, GR1 and GR2, and at least three accessory factor elements (gAF1-3). DNA-binding accessory proteins are commonly required for the regulation of genes whose products play an important role in metabolism, development, and a variety of defense responses, but little is known about why they are necessary. Quantitative, real time homogenous assays of cooperative protein-DNA interactions in complex media (e.g. nuclear extracts) have not previously been reported. Here we perform quantitative, real time equilibrium and stopped-flow fluorescence anisotropy measurements of protein-DNA interactions in nuclear extracts to demonstrate that GR binds to the GR1-GR2 elements poorly as compared with a palindromic or consensus glucocorticoid response element (GRE). Inclusion of either the gAF1 or gAF2 element with GR1-GR2, however, creates a high affinity binding environment for GR. GR can undergo multiple rounds of binding and dissociation to the palindromic GRE in less than 100 ms at nanomolar concentrations. The dissociation rate of GR is differentially slowed by the gAF1 or gAF2 elements that bind two functionally distinct accessory factors, COUP-TF/HNF4 and HNF3, respectively.  相似文献   

16.
17.
18.
19.
Pathophysiology of liver fibrosis (LF) includes hepatic parenchymal cell destruction and connective tissue formation. Although dexamethasone has been used in the liver diseases, there is controversy over the beneficial effects of dexamethasone on LF. Previous studies showed that CCAAT/enhancer binding protein-beta (C/EBPbeta) activation contributes to hepatocyte regeneration and dissolution of fibrosis and that dexamethasone activates C/EBPbeta whereas C/EBPbeta-mediated gene induction by dexamethasone is antagonized by a corepressor. The present study investigated the possible therapeutic effect of dexamethasone for the treatment of LF in rats. We injected rats with multiple doses of dimethylnitrosamine (DMN) for 4 weeks and then used the LF rats to determine whether dexamethasone treatment therapeutically improved liver functions and resolved fibers accumulated in the liver. Dexamethasone (100 microg/kg, po, three times per week for 4 weeks) failed to restore the body weight gain and liver weight decreased by LF. The body weight gain reduced during LF was further decreased by dexamethasone treatment. Animals were subjected to blood biochemical, liver histopathological and immunochemical analyses. Although dexamethasone treatment significantly reduced ascites in LF rats, the plasma albumin and total protein levels decreased in fibrotic rats were not restored. Impaired liver functions during LF including elevated plasma aminotransferases and bilirubin levels along with GSTA2 repression were not recovered by dexamethasone. Dexamethasone failed to decrease the fibrosis score and to eliminate the extracellular matrix and alpha-smooth muscle actin accumulated in the fibrotic liver. The results of the present study showed that dexamethasone ameliorated ascites in LF rats but failed to improve the liver functions and fiber accumulation, and that the possible beneficial effect of dexamethasone might result from anti-inflammatory effect but not from liver improvement.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号