首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Proteolytic processing of vitellin in Blattella germanica embryos is accomplished by activation of a yolk-borne cysteine protease (Mr 29 000) derived from a pro-protease precursor of Mr 40 000 (Liu et al., 1997). In the present study, fat body, ovaries and embryos of different developmental stages were examined immuno-cytochemically with purified murine anti-proprotease antibodies (Liu, 1995) to determine the intracellular location of the pro-protease. Proenzyme was detected in discrete secretory granules of the fat body and in large lysosome-like vesicles of both the follicle cell cytoplasm and the cortical ooplasm of previtellogenic ovarian follicles. In vitellogenic oocytes, coated pits and vesicles are scantily labelled for proprotease and no clear gold pattern could be discerned over the yolk granules. During embryonic development, pro-protease is associated with some, but not all, yolk granules. In newlyovulated eggs (day 0), pro-protease is either distributed over the entire granule or confined to some internal vesicles. As development proceeds, it becomes associated with almost every yolk granule and restricted to the superficial layer. By day 6, pro-protease is evident over all yolk granules but the intensity of reaction has greatly diminished, due probably to conversion of the pro-protease to the mature enzyme. Yolk granules are flanked along their margin by vesicles that are stained after zinc-osmium fixation. This observation suggests that the pro-protease may be transferred between yolk granules via vesicular shuttling. B. germanica embryos of different developmental stages were also exposed to [(3)H]-DAMP. Data show that autoradiographic grains are not evenly distributed among closely adjacent yolk granules within vitellophagic cells, a result consistent with the known slight temporal asynchrony of the acidification event.  相似文献   

2.
Oocytes and embryos of the cockroach Blattella germanica were examined by optical and electron microscopy to study yolk granule degradation during embryo development. During vitellogenesis, progressively larger yolk granules are formed in the ooplasm and by chorionogenesis, the mature granules are packed so tightly that their shape is highly distorted. Throughout ovarian development, endosymbiotic bacteria lie at the follicle cell/oocyte interface. Just prior to chorionogenesis the endosymbionts transit the oocyte plasma membrane and cluster at the periphery. Bacteria become more numerous over the ventral region of the egg by day 1 postovulation and begin to invade the interior of the yolk mass from the ventral periphery. At that time, lysis of the nearby yolk granules occurs while those in the central ooplasm remain intact and free of bacteria up to day 4. Vitellophages become evident by day 2 postovulation. These cells are also distributed over the egg's periphery but are most numerous in the ventral region. Vitellophages, in association with the endosymbionts, protrude toward the yolk granules and extend filo- and lamellipodia over the granule surface. Portions of the yolk granules are then engulfed and sequestered as large vacuoles in the vitellophage's cytoplasm. The vacuoles then become vesiculated. As embryo development proceeds, the vesiculated portions partition into smaller multivesicular bodies. This study describes the dynamics of yolk granule-vitellophage interaction in embryos of B. germanica and suggests that yolk utilization entails the cooperative efforts of both vitellophages and endosymbiont bacteria.  相似文献   

3.
The present study was designed to investigate the process of acidification of yolk granules during embryogenesis. In oocytes of mature Bombyx mori silkmoth, yolk proteins and a cysteine protease (pro-form BCP) were found in yolk granules. BCP was localized in small sized yolk granules (SYG, 3-6 microm in diameter) and yolk proteins in large sized granules (LYG, 6-11 microm in diameter), which might result in a spatial separation of protease and its substrates to avoid unnecessary hydrolysis. The granules were isolated on Percoll density gradient centrifugation. Although separation of LYG and SYG was incomplete, the granules sedimented in different fractions when using unfertilized egg extract, in which LYG was recovered from heavier fractions and BCP from lighter fractions. Acid phosphatase, as well as other lysosomal marker enzymes tested, was recovered from LYG-containing fractions. When extracts were prepared from developing eggs (day 3), some BCP-containing granules co-sedimented with LYG. The inactive pro-form BCP was activated in vivo, in parallel with yolk protein degradation, and as demonstrated previously in vitro under acidic conditions (). These results suggest that acidification occurs in yolk granules during embryogenesis. This was also confirmed using acridine orange fluorescent dye. In early development, most yolk granules were neutral, but became acidic during embryonic development. SYG were progressively recovered in heavier density fractions, displaying acidic interior. In this fraction, BCP-containing granules seem to be associated with larger granules (6-11 microm in size). In addition, SYG (BCP containing granules) were likely to be acidified earlier than LYG. Our results suggest that acidification initiates yolk degradation through activation of pro-form BCP.  相似文献   

4.
A panel of monoclonal antibodies was raised against late yolk sacs of the stick insect Carausius morosus and tested by immunoblotting to establish the extent vitellin polypeptides are processed proteolytically during embryonic development. Cryosections of late yolk sacs were also examined by confocal laser microscopy to determine how vitellin cleavage products become spatially distributed amongst yolk granules during the same developmental period. Distinct labelling patterns were obtained on yolk granules depending on: (1) the nature of the proteolytic processing; (2) the origin of vitellin cleavage products; and ultimately (3) their molecular sizes. Monoclonal antibodies raised against vitellin cleavage products resulting from proteolytic processing appeared to label: (1) the entire volume of many yolk granules; (2) their limiting membrane; or (3) a number of small vesicles interposed between larger yolk granules. On the other hand, monoclonal antibodies against vitellin cleavage products that remain invariant throughout development appeared to label either the serosa membrane or the cytosolic space comprised between adjacent yolk granules. Data are interpreted as indicating that vitellin cleavage products may leak out from the yolk granules, gain access to the cytosolic space of the vitellophages and eventually percolate through the serosa membrane enclosing the yolk sac.  相似文献   

5.
In mid-embryogenesis, the stick insect Carausius morosus comes to be comprised of three distinct districts: the embryo proper, the yolk sac and the perivitelline fluid. A monolayered epithelium, the so-called serosa membrane, encloses the yolk sac and its content of vitellophages and large yolk granules. During embryonic development, the yolk sac declines gradually in protein concentration due to Vt polypeptides undergoing limited proteolysis to yield a number of Vt cleavage products of lower molecular weights. mAbs 1D1 and 5H11 are monoclonal antibodies raised against some of the Vt cleavage products generated by this process in the yolk sac. At the confocal microscope, antibody fluorescence is initially associated with a few yolk granules, while it is gradually displaced in the cytosolic spaces of the vitellophages. With the proceeding of embryonic development, label appears also in the serosa membrane in the form of clustered dots. At the ultrastructural level, gold particles are initially associated with the vitellophages that are labeled on a few yolk granules and in the cytosolic space flanking the yolk granules. Subsequently, the serosa cells become labeled on vesicles close to the yolk granules or just underneath the plasma membrane. Inside the serosa cells, label is also associated with granules budding from the Golgi apparatus, but never with the intercellular channels percolating the serosa membrane. These observations are interpreted as indicating that Vt cleavage products leak out from the yolk granules into the cytosolic spaces of the vitellophages and are eventually transferred to the perivitelline fluid via transcytosis through the serosa cells.  相似文献   

6.
Developing embryos of the stick insect Carausius morosus were examined ultrastructurally with a view to studying vitellophage invasion of the yolk mass during and after germ band formation. Newly laid eggs in C.morosus have a unique yolk fluid compartment surrounded by a narrow fringe of cytoplasm comprising several small yolk granules. Vitellophages originate mainly from a thin layer of stem cells, the so-called yolk cell membrane, interposed between the germ band and the yolk mass. Throughout development, a thin basal lamina separates the yolk cell membrane from the overlying embryo.
Vitellophages extend from the yolk cell membrane with long cytoplasmic processes or filopodia to invade the central yolk mass. Along their route of entrance, filopodia engulf portions of the yolk mass and sequester it into membrane-bounded granules. As this process continues, the yolk mass is gradually partitioned into a number of yolk granules inside the vitellophages.
Later in development, the yolk cell membrane is gradually replaced by the endodermal cells that emerge from the anterior and posterior embryonic rudiments. From this stage of development onwards, vitellophages remain attached to the basal lamina through long filopodia extending between the endodermal cells. Yolk confined in different vitellophagic cells appears heterogeneous both in density and texture, suggesting that yolk degradation may be spatially differentiated.  相似文献   

7.
This study investigates the developmental fate of vitellin (Vt) polypeptides generated by limited proteolysis in an insect embryo. To this end, a number of polyclonal (pAb) and monoclonal antibodies (mAb) were raised against the yolk sac and the perivitelline fluid of late embryos of the stick insect Carausius morosus. Two dimensional immuno gel electrophoresis and Western blotting demonstrate that polypeptides resulting from Vt processing are present both in the yolk sac and the perivitelline fluid. At the confocal microscope, different labelling patterns were detected in the ooplasm depending on the stage of development attained by the embryo. At early developmental stages, label is associated with large unsegmented portions of the fluid ooplasm. During embryonic development, the fluid ooplasm is gradually transformed into yolk granules by intervention of vitellophages. Prior to dorsal closure, the yolk sac is separated from the perivitelline fluid by interposition of serosa cells (the so called serosa membrane). Several mAbs raised against the perivitelline fluid react specifically with this membrane suggesting that the release of Vt polypeptides from the yolk sac occurs by intracellular transit through the serosa cells. By immunocytochemistry, gold label appears associated with the cell surface and a number of vacuoles of the serosa membrane. These data are interpreted as suggesting that Vt polypeptides resulting from limited proteolysis in stick insect embryos are not exhaustively degraded within the yolk sac, but are instead transferred transcytotically to the perivitelline fluid through the serosa membrane.  相似文献   

8.
The H+-PPase activity was characterized in membrane fractions of ovary and eggs of Rhodnius prolixus. This activity is totally dependent on Mg2+, independent of K+ and strongly inhibited by NaF, IDP and Ca2+. The membrane proteins of eggs were analyzed by western blot using antibodies to the H+-PPase from Arabidopsis thaliana. The immunostain was associated with a single 65-kDa polypeptide. This polypeptide was immunolocalized in yolk granule membranes by optical and transmission electron microscopy. We describe the acidification of yolk granules in the presence of PPi and ATP. This acidification is inhibited in the presence of NAF, Ca2+ and antibodies against H+-PPase. These data show for the first time in animal cells that acidification of yolk granules involves an H+-PPase as well as H+-ATPase.  相似文献   

9.
We have investigated the biochemical and functional characteristics of the major protein constituents of the yolk granule organelle present in sea urchin eggs and embryos. Compositional analysis, using sodium dodecyl sulfate polyacrylamide gel electrophoresis, revealed distinctly different polypeptide patterns under reducing and non-reducing conditions. In the presence of reducing agent, a 240 kDa species dissociated into polypeptides of apparent mol mass 160, 120 and 90 k. The relatedness of these polypeptides to the 240 kDa species was demonstrated in protein gel blot and peptide mapping analyses. The profile of yolk granule polypeptides was dynamic during embryonic development with the disappearance of the 160 kDa species and the coincidental appearance of lower mol mass polypeptides. However, the 240 kDa complex was detected even after the disappearance of the 160 kDa polypeptide. The 240 kDa complex was released from yolk granules in the absence of calcium and the purified species was shown to bind liposomes in a calcium-dependent manner. In addition, the 240 kDa complex possessed a calcium-dependent, liposome aggregating activity. The 240 kDa species could also induce the aggregation of yolk granules, previously denuded of the complex following treatment with either ethylenediaminetetraacetic acid or trypsin. Collectively, these results demonstrate the dynamic characteristics of the yolk granule 240 kDa protein complex and offer insights into a possible functional role.  相似文献   

10.
During Blattella germanica embryo development, the nutritive yolk protein vitellin is processed by a cysteine protease, which is activated proteolytically from a proprotease during acidification of yolk granules. A murine polyclonal antiserum was generated with the purified proprotease as the immunogen. The antiserum was made monospecific to proprotease by subtractive affinity chromatography using proprotease-free yolk proteins as ligand. The purified antibodies were employed to investigate the temporal and spatial expression of the proprotease during vitellogenesis and embryo development. Anti-proprotease-reactive peptides appeared in extracts of fat bodies and ovarian follicles of post-mating females, but not in fat bodies of males or the fat bodies or follicles of unmated females, suggesting that the proprotease is synthesized extraovarially. Use of the antibodies was extended to monitor the kinetics of proprotease disappearance during early embryo development. Arch. Insect Biochem. Physiol. 38:109–118, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Summary Exposure of the polychaeteOphryotrocha labronica to3H-thymidine during vitellogenesis leads to substantial incorporation of label in the ooplasm, especially in yolk granule DNA. In embryos from oocytes labelled in this way it was possible to follow the amount and localization of the labelled material (DNA) throughout early development by means of light microscopical and electron microscopical autoradiography; liquid scintillation measurements also were carried out.Within the embryonic cells the bulk of the labelled DNA was localized in the yolk granules and noticeable amounts were associated with minor structural elements, whereas mitochondria and lipid droplets were only slightly labelled. Nuclear labelling was weak. Early development was found to be characterized by rapid loss of labelled DNA, so that larvae, ready to leave the egg packs, retained only about 30% of the amount originally present.It was concluded that yolk granule DNA cannot be a store of precursor material for nuclear DNA synthesis, as has been suggested sometimes, but most likely represents an informative DNA which upon release from the yolk granules is rapidly metabolized. Possible roles for yolk granule DNA is discussed.The excellent technical assistance of Mrs. Siv Nilsson and Mrs. Annagreta Petersen is gratefully acknowledged. This work has been supported by the Swedish Natural Science Research Council and Kungliga Fysiografiska Sällskapet, Lund.  相似文献   

12.
The precise function of the yolk platelets of sea urchin embryos during early development is unknown. We have shown previously that the chemical composition of the yolk platelets remains unchanged in terms of phospholipid, triglyceride, hexose, sialic acid, RNA, and total protein content after fertilization and early development. However, the platelet is not entirely static because the major 160-kD yolk glycoprotein YP-160 undergoes limited, step-wise proteolytic cleavage during early development. Based on previous studies by us and others, it has been postulated that yolk platelets become acidified during development, leading to the activation of a cathepsin B-like yolk proteinase that is believed to be responsible for the degradation of the major yolk glycoprotein. To investigate this possibility, we studied the effect of addition of chloroquine, which prevents acidification of lysosomes. Consistent with the postulated requirement for acidification, it was found that chloroquine blocked YP-160 breakdown but had no effect on embryonic development. To directly test the possibility that acidification of the yolk platelets over the course of development temporally correlated with YP-160 proteolysis, we added 3-(2,4-dinitroanilo)-3-amino-N-methyldipropylamine (DAMP) to eggs or embryos. This compound localizes to acidic organelles and can be detected in these organelles by EM. The results of these studies revealed that yolk platelets did, in fact, become transiently acidified during development. This acidification occurred at the same time as yolk protein proteolysis, i.e., at 6 h after fertilization (64-cell stage) in Strongylocentrotus purpuratus and at 48 h after fertilization (late gastrula) in L. pictus. Furthermore, the pH value at the point of maximal acidification of the yolk platelets in vivo was equal to the pH optimum of the enzyme measured in vitro, indicating that this acidification is sufficient to activate the enzyme. For both S. purpuratus and Lytechinus pictus, the observed decrease in the pH was approximately 0.8 U, from 7.0 to 6.2. The trypsin inhibitor benzamidine was found to inhibit the yolk proteinase in vivo. By virtue of the fact that this inhibitor was reversible we established that the activity of the yolk proteinase is developmentally regulated even though the enzyme is present throughout the course of development. These findings indicate that acidification of yolk platelets is a developmentally regulated process that is a prerequisite to initiation of the catabolism of the major yolk glycoprotein.  相似文献   

13.
A pepstatin A-sensitive enzyme involved in yolk formation was purified from the masu salmon (Oncorhynchus masou) ovary using in vitro generation of yolk proteins from purified vitellogenin to assay enzymatic activity. Purification of the enzyme involved precipitation of ovarian extracts by water and ammonium sulfate followed by five steps of column chromatography. After SDS-PAGE and Western blotting, the purified enzyme appeared as a single approximately 42 kDa band that was immunoreactive to anti-human cathepsin D. The course of proteolytic cleavage of the three major yolk proteins (lipovitellin, beta'-component, and phosvitin) in fertilized masu salmon and Sakhalin taimen (Hucho perryi) eggs and embryos was visualized by SDS-PAGE and Western blotting using specific antisera. Major yolk protein bands appeared in positions corresponding to 92 kDa, 68 kDa, and 22 kDa (lipovitellin-derived peptides), as well as 17 kDa (beta'-component). During embryo development, the 92 kDa and 22 kDa bands gradually decreased in intensity, becoming undetectable in alevins. The 68 kDa band and a minor 24 kDa band became more intense after the eyed stage. Two additional peptides, corresponding to 40 and 28 kDa, newly appeared in alevins. During embryonic growth, the beta'-component band (17 kDa) persisted and phosvitin appeared to be progressively dephosphorylated. In vitro analysis of lipovitellin proteolysis indicated that the enzyme involved is a Pefabloc SC-sensitive serine protease. These results demonstrate, for the first time, that a cathepsin D-like protease and serine proteases play key roles in yolk formation and degradation, respectively, in salmonid fishes.  相似文献   

14.
The developmental fate of the vitellogenin-derived yolk protein, lipovitellin (Lv), was investigated in winter flounder embryos and yolk-sac larvae. Since Lv is present as only one major polypeptide in ovulated winter flounder eggs, unlike the multiple yolk polypeptides found in the mature eggs of most teleosts, this system is presented as a simpler model of yolk protein structure and utilization during teleostean development. Winter flounder Lv is cleaved during embryogenesis from a 94 kD polypeptide at fertilization to 67 kD and 26 kD polypeptides at hatching. The rate of this proteolytic processing is slow during early embryonic development, but enters a more rapid phase between days 8 and 12 post-fertilization in embryos reared at 4-5 degrees C, and approaches 50% completion at day 10. Lv processing is essentially complete 3 days before hatching; nevertheless, major degradation of the Lv peptide by the developing winter flounder does not occur until after hatching. The Stokes radius of Lv changes only moderately following processing, from 4.50 nm in unfertilized eggs to 4.19 nm in late embryos and newly hatched larvae, whereas the processed Lv retains its heat stability relative to other yolk polypeptides. Nearly 50% of its lipid content, however, is released from the Lv particle during embryogenesis, concomitant with cleavage of the Lv 94 kD polypeptide. Lv processing may thus render a portion of the yolk protein-associated lipid more accessible to the developing embryo, whereas other yolk components are retained for later use by the winter flounder larva. Alternately, removal of lipid may lead to proteolytic vulnerability of the Lv polypeptide. In either case, only a portion of the lipid moiety of the Lv particle appears to play a significant nutritive role for the embryo, whereas its protein component is reserved for larval use. J. Exp. Zool. 284:686-695, 1999.  相似文献   

15.
A protease was purified from Xenopus embryos. Proteolytic activity of the protease against BSA had an optimum pH of 3.8 in acetate buffer and was not detectable at neutral pH. However, when embryonic proteins were used as substrates and digested in phosphate buffer, proteolysis of embryonic proteins was enhanced and was detectable from pH 5.0 to pH 7.0. Digestion of three proteins were mainly detected in digestion of total embryonic proteins. The proteins digested had the same mobilities (on SDS polyacrylamide gel) as yolk proteins. The protease was present in the cytoplasm and around yolk granules. We propose that this protease mainly cleaves a certain yolk proteins in the cytoplasm of Xenopus embryos.  相似文献   

16.
Summary Cleavage embryos of the polychaeteOphryotrocha labronica were exposed to LiCl solutions of various strength for up to 4 days. High concentrations strongly inhibited development and led to endodermal protrusion, whereas moderate concentrations permitted development of larvae, although with characteristic disturbances as a consequence. Ultrastructural analyses of embryos exposed to moderate concentrations demonstrated manifest changes already during the first 24 hours, viz. of lipid droplets and yolk granules, the latter being ruptured and the contents dispersed to an extent far surpassing that at normal development. The premature widespread splitting of yolk granules by LiCl was confirmed by quantitative measurements on embryos which during oogenesis had their yolk granule DNA selectively labelled with3H-thymidine.The skilful technical assistance of Miss Britt Jönsson, Mrs. Siv Nilsson and Mrs. Annagreta Petersen is gratefully acknowledged. This work has been supported by the Swedish Natural Science Research Council and Kungliga Fysiografiska Sällskapet, Lund.  相似文献   

17.
Differentiation of the yolk sac was examined ultrastructurally and cytochemically in late embryonic development of the stick insect Carausius morosus. During migration along the yolk sac, endodermal cells form a discontinuous cell epithelium, leaving wide intercellular channels between neighbouring cell clusters. Within the same cell cluster, cells are all joined by septate junctions. In the proximity of the proctodeum region, intercellular channels are filled with numerous cell debris which are shown to derive from vitellophages undergoing cell lysis. Yolk sacs resolved by gel electrophoresis are shown to release a number of vitellin polypeptides into the culture medium. These are equivalent in molecular weight to those present in the vitellophage yolk granules This observation is consistent with the evidence that the basement lamina may act as a course physical filter, retaining particles larger than colloidal thorium dioxide and allowing free percolation of peroxidase. Differentiating endodermal cells form a microvillar striated border along the apical plasma membrane. A number of vesicular criptae were frequently seen in these differentiating endodermal cells. Electron dense granules released by endodermal cells are suggested to play a role in vitellophage lysis and vitellin release from the enclosed yolk granules.  相似文献   

18.
Bactenecins are highly cationic polypeptides of bovine neutrophil granules and exert in vitro a potent antimicrobial activity. We have previously purified two bactenecins, designated in an abbreviated form Bac7 and Bac5 from their approximate molecular masses of 7 and 5 kD (Gennaro, R., B. Skerlavaj, and D. Romeo. 1989. Infect. Immun. 57:3142-3146). Here we have studied the biosynthesis, processing, and localization of precursors of Bac7 and Bac5 in bovine bone marrow cells of the myeloid lineage. In vitro translation directed by mRNA isolated from these cells has shown that the primary translation products are preprobactenecins of 23.5 and 21 kD, and are processed to polypeptides of 20 and 15.8 kD, respectively. The 20-kD polypeptide is the granule storage form of Bac7, or proBac7, as also demonstrated by Western blot analysis of lysates of peripheral neutrophils. Between 15 and 50 min from the beginning of its biosynthesis the 15.8-kD polypeptide is converted into the 15-kD granule storage form of Bac5, or proBac5. As shown by immunogold EM, proBac7 and proBac5 are sorted and targeted to the matrix of the so called large granules, which are the predominant organelles in the cytoplasm of bovine neutrophils and are the exclusive store of the nonoxidative antimicrobial system of these cells. Solubilization of granules with Triton X-100 with concomitant unmasking of proteases leads to cleavage of the proforms to Bac7 and Bac5. Experiments performed with protease inhibitors suggest that the proteolytic cleavage is catalyzed in detergent-solubilized neutrophils by neutral serine protease(s), very likely derived from the azurophil granules.  相似文献   

19.
Vitellins from ovarian follicles and newly laid eggs of the stick insect Carausius morosus were examined by ion exchange chromatography on a HPLC Mono Q column. Under these conditions, vitellins from newly laid eggs resolved as two distinct peaks, referred to as VtA and VtB, that eluted at 8.5 and 12.0 min, respectively. On native gels, both VtA and VtB separated into two different variant forms (VtA′ and VtA′, VtB′ and VtB′). By two-dimensional gel electrophoresis, VtA′ and VtA′ were shown to contain polypeptides A1, A2 and A3. On the other hand, VtB′ and VtB′ appeared to comprise polypeptides B1 and B2 and B1, A1, A2, B2 and A3*, respectively. A similar Vt polypeptide composition was also observed by size-exclusion chromatography of vitellins from newly laid eggs. Vitellins from early vitellogenic ovarian follicles resolved into a single chromatographic peak at 7.5 min that coeluted with a major peak from the hemolymph of egg-laying females. Ovarian follicles progressively more advanced in development exhibited a more complex chromatographic profile, consisting of three separate peaks. By two-dimensional gel immunoelectrophoresis, vitellins from ovarian follicles appeared to consist of two closely related, immunologically cross-reacting antigens that gradually shifted apart as ovarian development proceeded to completion. By size-exclusion chromatography, each Vt from ovarian follicles was shown to consist of a unique set of polypeptides different from those listed above. Single ovarian follicles were fractionated into yolk granules and yolk fluid ooplasm and tested by immunoblotting against Mab 12. Under these conditions, VtA variant forms in yolk granules and yolk fluid ooplasm reacted differently. Sections from ovarian follicles in different developmental stages were exposed to Mab 12 and stained with a peroxidase-conjugated, goat anti-mouse antibody. Regardless of the developmental stage attained, staining for peroxidase was restricted to free yolk granules, suggesting that native vitellins in stick insects are structurally modified upon fusion into the yolk fluid ooplasm. Arch. Insect Biochem. Physiol. 36:335–348, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Histology and histochemistry are useful tools to study reproductive mechanisms in fish and they have been applied in this study. In the bluefin tuna, Thunnus thymus L., oocyte development can be divided into 4 principal phases based on the morphological features of developing oocytes and follicles. The primary growth phase includes oogonia and basophilic or previtellogenic oocytes classified as chromatin-nucleolus and perinucleolus stages. The secondary growth phase is represented by vitellogenic oocytes at early (lipid globule and yolk granule 1), mid (yolk granule 2) and late (yolk granule 3) vitellogenesis stages. The maturation phase involves postvitellogenic oocytes undergoing maturation process. During the spawning period, both postovulatory follicles, which indicate spawning, and atretic follicles can be distinguished in the ovary. Carbohydrates, lipids, proteins and specially those rich in tyrosine, tryptophan, cystine, arginine, lysine and cysteine, as well phospholipids and/or glycolipids and neutral glycoproteins were detected in yolk granules. Moreover, affinity for different lectins (ConA, WGA, DBA and UEA) was detected in vitellogenic oocytes (yolk granules, cortical alveoli, follicular layer and zona radiata), indicating the presence of glycoconjugates with different sugar residues (Mannose- Man- and/or Glucose -Glc-; N-acetyl-D-glucosamine- GlcNAc- and/or sialic acid- NANA-; N-acetyl-D-galactosamine- GalNAc-; L-Fucose -Fuc-). Histochemical techniques also demonstrated the presence of neutral lipids in globules (vacuoles in paraffin sections) and neutral and carboxylated mucosubstances in cortical alveoli. By using anti-vitellogenin (VTG) serum, immunohistochemical positive results were demonstrated in yolk granules, granular cytoplasm and follicular cells of vitellogenic oocytes. Calcium was also detected in yolk granules and weakly in follicular envelope. In females, the gonadosomatic index (GSI) increased progressively from May, during early vitellogenesis, until June during mid and late vitellogenesis, where the highest values were reached. Subsequently, throughout the maturation-spawning phases (July), GSI decreased progressively reaching the minimal values during recovering-resting period (October).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号