首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the developmental fate of vitellin (Vt) polypeptides generated by limited proteolysis in an insect embryo. To this end, a number of polyclonal (pAb) and monoclonal antibodies (mAb) were raised against the yolk sac and the perivitelline fluid of late embryos of the stick insect Carausius morosus. Two dimensional immuno gel electrophoresis and Western blotting demonstrate that polypeptides resulting from Vt processing are present both in the yolk sac and the perivitelline fluid. At the confocal microscope, different labelling patterns were detected in the ooplasm depending on the stage of development attained by the embryo. At early developmental stages, label is associated with large unsegmented portions of the fluid ooplasm. During embryonic development, the fluid ooplasm is gradually transformed into yolk granules by intervention of vitellophages. Prior to dorsal closure, the yolk sac is separated from the perivitelline fluid by interposition of serosa cells (the so called serosa membrane). Several mAbs raised against the perivitelline fluid react specifically with this membrane suggesting that the release of Vt polypeptides from the yolk sac occurs by intracellular transit through the serosa cells. By immunocytochemistry, gold label appears associated with the cell surface and a number of vacuoles of the serosa membrane. These data are interpreted as suggesting that Vt polypeptides resulting from limited proteolysis in stick insect embryos are not exhaustively degraded within the yolk sac, but are instead transferred transcytotically to the perivitelline fluid through the serosa membrane.  相似文献   

2.
A panel of monoclonal antibodies was raised against late yolk sacs of the stick insect Carausius morosus and tested by immunoblotting to establish the extent vitellin polypeptides are processed proteolytically during embryonic development. Cryosections of late yolk sacs were also examined by confocal laser microscopy to determine how vitellin cleavage products become spatially distributed amongst yolk granules during the same developmental period. Distinct labelling patterns were obtained on yolk granules depending on: (1) the nature of the proteolytic processing; (2) the origin of vitellin cleavage products; and ultimately (3) their molecular sizes. Monoclonal antibodies raised against vitellin cleavage products resulting from proteolytic processing appeared to label: (1) the entire volume of many yolk granules; (2) their limiting membrane; or (3) a number of small vesicles interposed between larger yolk granules. On the other hand, monoclonal antibodies against vitellin cleavage products that remain invariant throughout development appeared to label either the serosa membrane or the cytosolic space comprised between adjacent yolk granules. Data are interpreted as indicating that vitellin cleavage products may leak out from the yolk granules, gain access to the cytosolic space of the vitellophages and eventually percolate through the serosa membrane enclosing the yolk sac.  相似文献   

3.
在胚胎发育中期,半滑舌鳎胚胎由胚体、卵黄囊和卵周液构成.对半滑舌鳎胚胎发育中后期的卵黄囊进行超微结构观察.结果表明,卵黄囊是由卵黄囊膜和包裹其内的卵黄物质组成.在半滑舌鳎胚胎发育过程中,卵黄囊内的卵黄物质逐渐消耗产生低分子量的卵黄磷蛋白分裂小泡.分裂小泡转移到卵黄囊内部消黄细胞中,在消黄细胞的作用下分裂小泡转化成卵黄颗粒.随后卵黄颗粒在卵黄囊内表面聚集成囊状结构并转移运输到卵黄囊膜内部,最后把卵黄物质从卵黄囊膜转移并释放到卵周液中,为胚胎发育提供营养.  相似文献   

4.
Developing embryos of the stick insect Carausius morosus were examined ultrastructurally with a view to studying vitellophage invasion of the yolk mass during and after germ band formation. Newly laid eggs in C.morosus have a unique yolk fluid compartment surrounded by a narrow fringe of cytoplasm comprising several small yolk granules. Vitellophages originate mainly from a thin layer of stem cells, the so-called yolk cell membrane, interposed between the germ band and the yolk mass. Throughout development, a thin basal lamina separates the yolk cell membrane from the overlying embryo.
Vitellophages extend from the yolk cell membrane with long cytoplasmic processes or filopodia to invade the central yolk mass. Along their route of entrance, filopodia engulf portions of the yolk mass and sequester it into membrane-bounded granules. As this process continues, the yolk mass is gradually partitioned into a number of yolk granules inside the vitellophages.
Later in development, the yolk cell membrane is gradually replaced by the endodermal cells that emerge from the anterior and posterior embryonic rudiments. From this stage of development onwards, vitellophages remain attached to the basal lamina through long filopodia extending between the endodermal cells. Yolk confined in different vitellophagic cells appears heterogeneous both in density and texture, suggesting that yolk degradation may be spatially differentiated.  相似文献   

5.
Differentiation of the yolk sac was examined ultrastructurally and cytochemically in late embryonic development of the stick insect Carausius morosus. During migration along the yolk sac, endodermal cells form a discontinuous cell epithelium, leaving wide intercellular channels between neighbouring cell clusters. Within the same cell cluster, cells are all joined by septate junctions. In the proximity of the proctodeum region, intercellular channels are filled with numerous cell debris which are shown to derive from vitellophages undergoing cell lysis. Yolk sacs resolved by gel electrophoresis are shown to release a number of vitellin polypeptides into the culture medium. These are equivalent in molecular weight to those present in the vitellophage yolk granules This observation is consistent with the evidence that the basement lamina may act as a course physical filter, retaining particles larger than colloidal thorium dioxide and allowing free percolation of peroxidase. Differentiating endodermal cells form a microvillar striated border along the apical plasma membrane. A number of vesicular criptae were frequently seen in these differentiating endodermal cells. Electron dense granules released by endodermal cells are suggested to play a role in vitellophage lysis and vitellin release from the enclosed yolk granules.  相似文献   

6.
Newly laid eggs of stick insects comprise a unique fluid ooplasm that is gradually partitioned into a number of yolk granules by invasion of secondary vitellophages. This study aimed at establishing how yolk granules become acidified in the course of embryonic development. Data show that acidified yolk granules are rather scarce and randomly distributed in vitellophages of early embryos, while they tend to increase gradually in number as development proceeds to completion. Yolk granule acidification is progressively more inhibited in the presence of increasing concentrations of chloroquine, monensin and bafilomycin. A pro-protease was identified cytochemically and by immunoblotting in yolk extracts of progressively more advanced embryos. A specific monoclonal antibody raised against this pro-protease helped to demonstrate that it is gradually processed to yield a lower molecular weight polypeptide as development proceeds to completion. This latter polypeptide was identified as a protease using electrophoresis in polyacrylamide gels containing yolk extracts. Simultaneous administration of a fluorescent substrate for cysteine protease and an acidotropic probe produced superimposable labelling patterns, suggesting that only acidified yolk granules possess a proteolytic activity. On the other hand, yolk granules probed simultaneously for acidification and latent pro-protease yielded labelling patterns partially superimposed. Pro-protease labelling is gradually lost as yolk granules are progressively more acidified during development. Distinct labelling patterns were also obtained in vitellophages processed for the simultaneous detection of pro-protease and protease, suggesting that the two activities are expressed by different yolk granule populations, and that one is gradually converted into the other as time goes by.  相似文献   

7.
The biogenesis of basement-membrane components was investigated in the endodermal cells of the rat parietal yolk sac in 12.5-day pregnant rats; 3H-proline was injected into conceptuses. After various time intervals, the parietal yolk sac, including endodermal cells and the associated Reichert's membrane, was removed and processed for electron-microscopic radioautography. Silver grains were counted over endodermal cell organelles and Reichert's membrane. At 2 and 5 min after 3H-proline injection, endodermal cells showed heavy labeling in rough endoplasmic reticulum (rER). Silver grain density over the rER decreased from 2 to 20 min and then remained at a plateau. Grain density was moderate over the Golgi apparatus initially but rose to a peak at 2 hr and decreased by 4 hr and later. Grain density was negligible over secretory granules at 2 and 5 min and increased moderately with time to reach a maximum at 8 hr. Thus, radioautographic peaks occurred sequentially in rER, Golgi apparatus, and secretory granules. By 4 hr and later, silver grains accumulated over Reichert's membrane. These results indicated that endodermal cells incorporated labeled proline into substances which were processed from the rER through the Golgi apparatus, transported from there to the cell surface by secretory granules, and released for export to Reichert's membrane. To clarify the nature of the exported substances, the amount of label present in proline and hydroxyproline residues after 3H-proline injection was measured in Reichert's membrane with or without the associated endodermal cells. Within the cells, 61.8% of the labeled proteins were classified as "sedentary" and 38.2% as "exportable." Of the label exported to Reichert's membrane, 66.3% consisted of type IV collagen and the rest of other basement-membrane components. The results obtained with this model suggest that basement-membrane proteins, including type IV collagen, are elaborated by the associated cells through the classical pathway: rER-Golgi apparatus-secretory granules.  相似文献   

8.
Lamer A  Dorn A 《Tissue & cell》2001,33(6):580-595
In Manduca sexta, the blastoderm forms successively and becomes immediately cellularized as the cleavage energids reach the surface of the oocyte. Presumptive serosal cells are large and contain 2 or 4 large polyploid nuclei; presumptive embryonic cells are small and mononuclear. All parts of the blastoderm participate in the uptake and digestion of yolk material. About 10 h post-oviposition, the blastoderm breaks at the amnioserosal fold and the extraembryonic part closes above the germ band and constitutes the serosa (12 h post-oviposition, i.e. 10% development completed). At once, the serosa starts to secrete a cuticle consisting of an epi- and a lamellated endocuticle. Detachment of the serosal cuticle, 22h post-oviposition, is reminiscent of apolysis of larval cuticle. Thereafter, the serosa deposits a membranous structure, the serosal membrane. The sercretory process lasts from 23h to 44h post-oviposition. At first a fine granular layer, then an amorphous, spongy-like, fibrillar layer is secreted via microvilli. This persisting membrane is tough, rubbery and very elastic. It may serve to bolster the serosa during katatrepsis (48h post-oviposition) and later embryonic movements. After detachment of the serosal membrane, 44h post-oviposition, a distinct subcellular reorganization of the serosa takes place. The nuclei become still larger and more irregular. Uptake of yolk granules, but not of lipid droplets, ceases, although interaction of serosa and yolk cells are intense. Serosal cells include many mitochondria, large areas of rER, besides some sER, increasing amounts of lysosomal bodies and prominent Golgi complexes. Most conspicuous is the assembly of spindle-shaped, electron-lucent vesicles below the apical surface. These vesicles may contain metabolic products which are released into the peripheral space. The studies show that the serosa assumes changing functions during embryogenesis: digestion of yolk substances, synthesis of a serosal cuticle and a serosal membrane, which may have a protective function, and excretion.  相似文献   

9.
The mechanism of yolk consumption was studied morphologically and biochemically in Japanese quail Coturnix japonica. The amount of yolk granules in the yolk (or 'yolk cell') decreased in two steps during embryonic development. In the first step, during days 0-4 of incubation, the yolk-granule weight decreased at a rate of 13 mg/day. This decrease was due to segregation by endodermal cells that were newly formed in the developing yolk sac. In the second step after day 6, the decrease was drastic at a rate of 29.8 mg/day during days 6-12 and very slow thereafter. The decrease at the second step was due to the enzymatic digestion of yolk granules by cathepsin D that coexisted in yolk spheres. This digesting reaction was triggered by the solubilization of the granules with high concentrations of salts that were supplied after disruption of the limiting membrane of yolk spheres. The 'yolk cell' seemed to die around day 5 of incubation. Thus the digestion products might be taken up together with yolk lipids by endocytosis into the endodermal cells and transported to blood vessels.  相似文献   

10.
The developing chick embryo acquires calcium from two sources. Until about Day 10 of incubation, the yolk is the only source; thereafter, calcium is also mobilized from the eggshell. We have previously shown that during normal chick embryonic development, vitamin D is involved in regulating yolk calcium mobilization, whereas vitamin K is required for eggshell calcium translocation by the chorioallantoic membrane. We have studied here the biochemical action of 1,25-dihydroxy vitamin D3 in the yolk sac by examining the expression and regulation of the cytosolic vitamin D-dependent calcium-binding protein, calbindin-D28K. Two types of embryos are used for this study, normal embryos developing in ovo and embryos maintained in long-term shell-less culture ex ovo, the latter being dependent solely on the yolk as their calcium source. Our findings are (1) calbindin-D28K is expressed in the embryonic yolk sac, detectable at incubation Days 9 and 14; (2) the embryonic yolk sac calbindin-D28K resembles that of the adult duodenum in both molecular weight (Mr 28,000) and isoelectric point, as well as the presence of E-F hand Ca2(+)-binding structural domains; (3) systemic calcium deficiency caused by shell-less culture of chick embryos results in enhanced expression of calbindin-D28K in the yolk sac during late development; (4) yolk sac calbindin-D28K expression is inducible by 1,25-dihydroxy vitamin D3 treatment in vivo and in vitro; and (5) immunohistochemistry revealed that yolk sac calbindin-D28K is localized exclusively to the cytoplasm of the yolk sac endoderm. These findings indicate that the chick embryonic yolk sac is a genuine target tissue of 1,25-dihydroxy vitamin D3.  相似文献   

11.
In mice, the yolk sac appears to play a crucial role in nourishing the developing embryo, especially during embryonic days (E) 7;-10. Lipoprotein synthesis and secretion may be essential for this function: embryos lacking apolipoprotein (apo) B or microsomal triglyceride transfer protein (MTP), both of which participate in the assembly of triglyceride-rich lipoproteins, are apparently defective in their ability to export lipoproteins from yolk sac endoderm cells and die during mid-gestation. We therefore analyzed the embryonic expression of apoB, MTP, and alpha-tocopherol transfer protein (alpha-TTP), which have been associated with the assembly and secretion of apoB-containing lipoproteins in the adult liver, at different developmental time points. MTP expression or activity was found in the yolk sac and fetal liver, and low levels of activity were detected in E18.5 placentas. alpha-TTP mRNA and protein were detectable in the fetal liver, but not in the yolk sac or placenta. Ultrastructural analysis of yolk sac visceral endoderm cells demonstrated nascent VLDL within the luminal spaces of the rough endoplasmic reticulum and Golgi apparatus at E7.5 and E8.5. The particles were reduced in diameter at E13.5 and reduced in number at E18.5;-19.The data support the hypothesis that the yolk sac plays a vital role in providing lipids and lipid-soluble nutrients to embryos during the early phases (E7;-10) of mouse development. secretion in mouse yolk sac during embryonic development.  相似文献   

12.
Because of the permeability of the chorion, sea bass embryos are exposed to seawater before hatching and hence require precocious osmoregulatory processes. Several studies of other species have demonstrated the existence of ion-transporting cells located on the yolk sac membrane of embryos. In these cells, called ionocytes, ion movements are controlled by a pool of transmembrane proteins. Among them, the Na+/K+-ATPase, an abundant driving enzyme, has been used to reveal the presence or absence of ionocytes. We have immunostained the Na+/K+-ATPase in sea-bass embryos and shown the presence of the first ionocytes on the yolk sac membrane at stage 12 somites and the occurrence of ionocytes at other sites before hatching. Ionocytes located on the first gill slits have been identified at stage 14 somites. Primitive enteric ionocytes have also been detected at stage 14 somites in the mid and posterior gut. The presence of these cells might be related to the early opening of the gut to perivitelline fluids, both anteriorly by the gill slits and posteriorly by the anus. The role of embryonic ionocytes in osmoregulation before hatching is discussed.  相似文献   

13.
Inorganic 35S-sulfate was injected into Xenopus laevis embryos before first cleavage to study incorporation of the label into the yolk platelets in order to localize glycosaminoglycan synthesis. Electron microscope autoradiography of embryonic thin sections from blastulae and gastrulae revealed that the primary site of label incorporation is at the edge of the yolk platelets, and, to a lesser extent, in their interiors. Autoradiography of isolated yolk platelets, lacking unit membranes, indicated the absence of label. Thus, edge associated label comes from the yolk platelets membrane, and interior label is solubilized in the glycerol-water gradient during yolk platelets isolation. Ruthenium red staining of yolk platelet in situ shows haavy deposits of the dye on the yolk platelet membrane surface facing the cytoplasmic surface. The crystalline main body of isolated yolk platelets does not take up the dye. It appears that continuous synthesis or sulfation of glycosaminoglycan occurs primarily at the outer surface yolk platelet membranes during early development, providing a novel site for this process.  相似文献   

14.
The early maturation stages of definitive erythroid cells are observed in the embryonic circulation of the chick yolk sac at 4.5--5 days of incubation. Light and electron microscope observation of the mesoderm of the yold sac membrane indicate that individual presumptive precursors of the definitive-line are present as early as 2 days of incubation and give rise to sequestered populations of immature erythroblasts within sinusoids during the period of 2.5-6 days incubation. Such isolated populations of definitive-line erythroblasts eventually connect with the established capillary circulation of yolk sac membrane but a large proportion of the erythroblasts temporarily remain associated with the endothelium prior to free circulation.  相似文献   

15.
Extraembryonal degradation of yolk protein is necessary to provide the avian embryo with required free amino acids during early embryogenesis. Screening of proteolytic activity in different compartments of quail eggs revealed an increasing activity in the yolk sac membrane during the first week of embryogenesis. In this tissue, the occurrence of cathepsin B, a lysosomal cysteine proteinase, and cathepsin D, a lysosomal aspartic proteinase, has been described recently (Gerhartz et al., Comp Biochem Physiol, 118B:159-166, 1997). Determination of cathepsin B-like and cathepsin D-like proteolytic activity in the yolk sac membrane indicated a significant correlation between growth of the yolk sac membrane and proteolytic activity, shown by an almost constant specific activity. Both proteinases could be localized in the endodermal cells, which are in direct contact to the yolk. The concentration of proteinases in the endodermal cells appears to be almost unaltered in the investigated early stage of quail development, whereas the amount of endodermal cells increases rapidly, seen by a complicated folding of the yolk sac membrane. In the same cells quail cystatin, a potent inhibitor of quail cathepsin B (Ki 0.6 nM), has been localized at day 8 of embryonic development. Approximately at this stage of development, the quail embryo stops metabolizing yolk. In conclusion, it is strongly indicated that the amount of available free amino acids, produced by proteolytic degradation and supporting embryonic growth, is regulated by the growth of the yolk sac membrane.  相似文献   

16.
Inorganic 35S-sulfate was injected into Xenopus laevis embryos before first cleavage to study incorporation of the label into the yolk platelets in order to localize glycosaminoglycan synthesis. Electron microscope autoradiography of embryonic thin sections from blastulae and gastrulae revealed that the primary site of label incorporation is at the edge of the yolk platelets, and, to a lesser extent, in their interiors. Autoradiography of isolated yolk platelets, lacking unit membranes, indicated the absence of label. Thus, edge associated label comes from the yolk platelets membrane, and interior label is solubilized in the glycerol-water gradient during yolk platelets isolation.
Ruthenium red staining of yolk platelet in situ shows heavy deposits of the dye on the yolk platelet membrane surface facing the cytoplasmic surface. The crystalline main body of isolated yolk platelets does not take up the dye.
It appears that continuous synthesis or sulfation of glycosaminoglycan occurs primarily at the outer surface yolk platelet membranes during early development, providing a novel site for this process.  相似文献   

17.
凡纳滨对虾卵母细胞卵黄发生的超微结构   总被引:11,自引:0,他引:11  
利用电镜研究凡纳滨对虾卵母细胞卵黄发生的全过程。结果表明 :凡纳滨对虾卵黄的发生是双源性的。卵黄发生早、中期是内源性卵黄大量合成的阶段 ,卵黄发生中、后期则以外源性卵黄的合成为主。内源性卵黄主要由内质网、线粒体、核糖体、溶酶体、高尔基器等多种胞器活跃参与形成。其中数量众多的囊泡状粗面内质网是形成内源性卵黄粒的最主要的细胞器 ;部分线粒体参与卵黄粒的合成并自身最终演变为卵黄粒 ;丰富的游离核糖体合成了大量致密的蛋白质颗粒并在卵质中直接聚集融合成无膜的卵黄粒 ;溶酶体通过吞噬、消化内含物来形成卵黄粒和脂滴 ,且方式多样 ;高尔基器不直接参与形成卵黄粒。外源性卵黄主要通过卵质膜的微吞饮活动从卵周隙或卵泡细胞中摄取外源物质来形成  相似文献   

18.
Abstract. The Bandeiraea simplicifolia lectin I (BSA-I) conjugated to fluorescein isothiocyanate was used as a histochemical reagent to study the mouse embryos from fertilization to early somitogenesis. No lectin binding could be detected on the embryonic cells in the preimplantation embryo. Lectin labeled intensely the zona pellucida. In the implanting embryos lectin binding was detected along the subtrophectodermal and Reichert's membrane, in the cytoplasm of the parietal and visceral endoderm, and the trophoblastic giant cells, but not in the ectodermal cells. Studies on explanted blastocyts cultured in vitro disclosed that the cytoplasmic BSA-I binding sites in trophoblastic cells develop gradually. In the 9-day somitic embryo BSA-I reacted with epithelial cells of the yolk sac, but not with the mesenchymal cells. A continuity between the lectin-reactive endoderm and the foregut epithelium could be demonstrated. These data indicated that BSA-I lectin can be used as a histochemical probe for endodermal (yolk sac) and trophoblastic differentiation in the peri-implantational mouse embryo.  相似文献   

19.
Oocytes and embryos of the cockroach Blattella germanica were examined by optical and electron microscopy to study yolk granule degradation during embryo development. During vitellogenesis, progressively larger yolk granules are formed in the ooplasm and by chorionogenesis, the mature granules are packed so tightly that their shape is highly distorted. Throughout ovarian development, endosymbiotic bacteria lie at the follicle cell/oocyte interface. Just prior to chorionogenesis the endosymbionts transit the oocyte plasma membrane and cluster at the periphery. Bacteria become more numerous over the ventral region of the egg by day 1 postovulation and begin to invade the interior of the yolk mass from the ventral periphery. At that time, lysis of the nearby yolk granules occurs while those in the central ooplasm remain intact and free of bacteria up to day 4. Vitellophages become evident by day 2 postovulation. These cells are also distributed over the egg's periphery but are most numerous in the ventral region. Vitellophages, in association with the endosymbionts, protrude toward the yolk granules and extend filo- and lamellipodia over the granule surface. Portions of the yolk granules are then engulfed and sequestered as large vacuoles in the vitellophage's cytoplasm. The vacuoles then become vesiculated. As embryo development proceeds, the vesiculated portions partition into smaller multivesicular bodies. This study describes the dynamics of yolk granule-vitellophage interaction in embryos of B. germanica and suggests that yolk utilization entails the cooperative efforts of both vitellophages and endosymbiont bacteria.  相似文献   

20.
Calcium-selective microelectrodes were used to measure the free calcium-ion concentration ([Ca2+]i) in early-cleaving embryonic cells of the golden medaka, Oryzias latipes, a fresh water teleost fish. Embryos could be dechorionated as early as the four-cell stage using a three-step technique consisting of removal of some yolk to enlarge the perivitelline space, partial digestion of the chorion with pancreatin, and removal of the weakened chorion with forceps. Dechorionated embryos underwent cleavage at a normal rate. Intracellular cytosolic [Ca2+]i was monitored by impaling blastomeres first with a microelectrode filled with 5 M potassium acetate to measure membrane potential, and a few minutes later with a calcium-selective microelectrode. During nine rounds of cytokinesis from a total of six different embryos, cytosolic [Ca2+]i remained constant (with apparently random fluctuations of less than +/- 0.1 microM). During two successive cleavages in one embryo, however, [Ca2+]i rose transiently fourfold above the original resting level to 1.32 and 1.20 microM in synchrony with each period of cytokinesis and returned after each rise to submicromolar levels. Because a calcium-selective microelectrode can detect [Ca2+]i changes only in the immediate vicinity of its 2-microns tip, we interpreted these data to suggest that, although [Ca2+]i in most areas of the cytosol remains between 0.01 and 0.40 microM (mean of 0.14 microM), there may be small regions of the cell in which [Ca2+]i undergoes a substantial increase at the time of cleavage. Evidence also is presented to suggest that the membrane potential in these blastomeres undergoes a slow net hyperpolarization during early cleavage stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号