首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We cloned and sequenced the second gene coding for yeast ribosomal protein 51 (RP51B). When the DNA sequence of this gene was compared with the DNA sequence of RP51A (J.L. Teem and M. Rosbash, Proc. Natl. Acad. Sci. U.S.A. 80:4403--4407, 1983), the following conclusions emerged: both genes code for a protein of 135 amino acids; both open reading frames are interrupted by a single intron which occurs directly after the initiating methionine; the open reading frames are 96% homologous and code for the same protein with the exception of the carboxy-terminal amino acid; DNA sequence homology outside of the coding region is extremely limited. The cloned genes, in combination with the one-step gene disruption techniques of Rothstein (R. J. Rothstein, Methods Enzymol. 101:202-211, 1983), were used to generate haploid strains containing mutations in the RP51A or RP51B genes or in both. Strains missing a normal RP51A gene grew poorly (180-min generation time versus 130 min for the wild type), whereas strains carrying a mutant RP51B were relatively normal. Strains carrying mutations in the two genes grew extremely poorly (6 to 9 h), which led us to conclude that RP51A and RP51B were both expressed. The results of Northern blot and primer extension experiments indicate that strains with a wild-type copy of the RP51B gene and a mutant (or deleted) RP51A gene grow slowly because of an insufficient amount of RP51 mRNA. The growth defect was completely rescued with additional copies of RP51B. The data suggest that RP51A contributes more RP51 mRNA (and more RP51 protein) than does RP51B and that intergenic dosage compensation, sufficient to rescue the growth defect of strains missing a wild-type RP51A gene, does not take place.  相似文献   

3.
4.
5.
A gene encoding a yeast homologue of translation elongation factor 1 gamma (EF-1 gamma), TEF3, was isolated as a gene dosage extragenic suppressor of the cold-sensitive phenotype of the Saccharomyces cerevisiae drs2 mutant. The drs2 mutant is deficient in the assembly of 40S ribosomal subunits. We have identified a second gene, TEF4, that encodes a protein highly related to both the Tef3p protein (Tef3p), and EF-1 gamma isolated from other organisms. In contrast to TEF3, the TEF4 gene contains an intron. Gene disruptions showed that neither gene is required for mitotic growth. Haploid spores containing disruptions of both genes are viable and have no defects in ribosomal subunit composition or polyribosomes. Unlike TEF3, extra copies of TEF4 do not suppress the cold-sensitive 40S ribosomal subunit deficiency of a drs2 strain. Low-stringency genomic Southern hybridization analysis indicates there may be additional yeast genes related to TEF3 and TEF4.  相似文献   

6.
7.
8.
9.
The translation elongation factor EF-1 alpha of the yeast Saccharomyces cerevisiae is coded for by two genes, called TEF1 and TEF2. Both genes were cloned. TEF1 maps on chromosome II close to LYS2. The location of TEF2 is unknown. TEF2 alone is sufficient to promote growth of the cells as shown with a strain deleted for TEF1. TEF1 and TEF2 were originally identified as two strongly transcribed genes, which most likely code for an identical or nearly identical protein as judged from S1 nuclease protection experiments with mRNA-DNA hybrids. The DNA sequence analysis of TEF1 allowed the prediction of the protein sequence. This was shown, by a search in the Dayhoff protein data bank, to represent the translation elongation factor EF-1 alpha due to the striking similarity to EF-1 alpha from the shrimp Artemia. A search for TEF1 homologous sequences in several yeast species shows, in most cases, duplicated genes and a much higher sequence conservation than among genes encoding amino acid biosynthetic enzymes.  相似文献   

10.
The presence of histones on the enhancer-promoter region of the X.laevis ribosomal spacer has been studied in embryos at stage 40, where the ribosomal genes are actively transcribed. Isolated tadpole nuclei were either fixed with formaldehyde or irradiated with UV laser to crosslink histones to DNA. The purified protein-DNA complexes were immunoprecipitated with antibodies to the histones H1, H2A and H4 and the DNA fragments carrying the respective histones were analyzed for the presence of spacer enhancer-promoter sequences by hybridization to specific DNA probe. The two independent crosslinking procedures revealed the presence of these DNA sequences in the precipitated DNA. The quantitative analysis of the UV laser-crosslinked complexes showed that histones H2A and H4 were associated with enhancer-promoter DNA in amounts similar to those found for bulk DNA, whilst the content of H1 was reduced.  相似文献   

11.
12.
The Saccharomyces cerevisiae ribosomal protein rp51 is encoded by two interchangeable genes, RP51A and RP51B. We altered the RP51 gene dose by creating deletions of the RP51A or RP51B genes or both. Deletions of both genes led to spore inviability, indicating that rp51 is an essential ribosomal protein. From single deletion studies in haploid cells, we concluded that there was no intergenic dosage compensation at the level of mRNA abundance or mRNA utilization (translational efficiency), although phenotypic analysis had previously indicated a small compensation effect on growth rate. Similarly, deletions in diploid strains indicated that no strong mechanisms exist for intragenic dosage compensation; in all cases, a decreased dose of RP51 genes was characterized by a slow growth phenotype. A decreased dose of RP51 genes also led to insufficient amounts of 40S ribosomal subunits, as evidenced by a dramatic accumulation of excess 60S ribosomal subunits. We conclude that inhibition of 40S synthesis had little or no effect on the synthesis of the 60S subunit components. Addition of extra copies of rp51 genes led to extra rp51 protein synthesis. The additional rp51 protein was rapidly degraded. We propose that rp51 and perhaps many ribosomal proteins are normally oversynthesized, but the unassembled excess is degraded, and that the apparent compensation seen in haploids, i.e., the fact that the growth rate of mutant strains is less depressed than the actual reduction in mRNA, is a consequence of this excess which is spared from proteolysis under this circumstance.  相似文献   

13.
14.
15.
16.
Jamieson ER  Lippard SJ 《Biochemistry》2000,39(29):8426-8438
High-mobility group (HMG) domain proteins bind specifically to the major DNA adducts formed by the anticancer drug cisplatin and can modulate the biological response to this inorganic compound. Stopped-flow fluorescence studies were performed to investigate the kinetics of formation and dissociation of complexes between HMG-domain proteins and a series of 16-mer oligonucleotide probes containing both a 1,2-intrastrand d(GpG) cisplatin cross-link and a fluorescein-modified deoxyuridine residue. Rate constants, activation parameters, and dissociation constants were determined for complexes formed by HMG1 domain A and the platinated DNA probes. The sequence context of the cisplatin adduct modulates the value of the associative rate constant for HMG1 domain A by a factor of 2-4, contributing significantly to differences in binding affinity. The rates of association or dissociation of the protein-DNA complex were similar for a 71 bp platinated DNA analogue. Additional kinetic studies performed with HMG1 domain B, an F37A domain A mutant, and the full-length HMG1 protein highlight differences in the binding properties of the HMG domains. The stopped-flow studies demonstrate the utility of the fluorescein-dU probe in studying protein-DNA complexes. The kinetic data will assist in determining what role these proteins might play in the cisplatin mechanism of action.  相似文献   

17.
Multiple protein factors bind to a rice glutelin promoter region.   总被引:6,自引:1,他引:5       下载免费PDF全文
S Y Kim  R Wu 《Nucleic acids research》1990,18(23):6845-6852
  相似文献   

18.
One gene coding for yeast cytoplasmic elongation factor 1 alpha (EF-1 alpha) was isolated by colony hybridization using a cDNA probe prepared from purified EF-1 alpha mRNA. A recombinant plasmid, pLB1, with a 6-kilobase yeast DNA insert, was found by hybrid selection and translation experiments to carry the entire gene. The nucleotide sequence of the gene with its 5'- and 3'-flanking regions was determined. The 5' and 3' ends of EF-1 alpha mRNA were localized by the S1 nuclease mapping technique. The cloned gene, called TEF1, encodes a protein of 458 amino acids (Mr = 50,071) in a single, uninterrupted reading frame. The amino acid sequence shows a strong homology with several domains of Artemia salina EF-1 alpha cytoplasmic factor, as evidenced by diagonal dot matrix analysis. Protein sequence homology is comparatively much lower with the yeast mitochondrial elongation factor. S1 nuclease mapping of the mRNA, hybridization analysis of chromosomal DNA using intragenic or extragenic DNA probes, and gene disruption experiments demonstrated the existence of two genes coding for the cytoplasmic elongation factor EF-1 alpha/haploid genome. The presence of an intact chromosomal TEF1 gene is not essential for growth of haploid yeast cells.  相似文献   

19.
The formation of a multimeric nucleoprotein complex by the phage phi 29 dsDNA binding protein p6 at the phi 29 DNA replication origins, leads to activation of viral DNA replication. In the present study, we have analysed protein p6-DNA complexes formed in vitro along the 19.3 kb phi 29 genome by electron microscopy and micrococcal nuclease digestion, and estimated binding parameters. Under conditions that greatly favour protein-DNA interaction, the saturated phi 29 DNA-protein p6 complex appears as a rigid, rod-like, homogeneous structure. Complex formation was analysed also by a psoralen crosslinking procedure that did not disrupt complexes. The whole phi 29 genome appears, under saturating conditions, as an irregularly spaced array of complexes approximately 200-300 bp long; however, the size of these complexes varies from approximately 2 kb to 130 bp. The minimal size of the complexes, confirmed by micrococcal nuclease digestion, probably reflects a structural requirement for stability. The values obtained for the affinity constant (K(eff) approximately 10(5) M-1) and the cooperativity parameter (omega approximately 100) indicate that the complex is highly dynamic. These results, together with the high abundance of protein p6 in infected cells, lead us to propose that protein p6-DNA complexes could have, at least at some stages, during infection, a structural role in the organization of the phi 29 genome into a nucleoid-type, compact nucleoprotein complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号