首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report time-resolved optical measurements of the primary electron transfer reactions in Rhodobacter capsulatus reaction centers (RCs) having four mutations: Phe(L181) --> Tyr, Tyr(M208) --> Phe, Leu(M212) --> His, and Trp(M250) --> Val (denoted YFHV). Following direct excitation of the bacteriochlorophyll dimer (P) to its lowest excited singlet state P, electron transfer to the B-side bacteriopheophytin (H(B)) gives P(+)H(B)(-) in approximately 30% yield. When the secondary quinone (Q(B)) site is fully occupied, P(+)H(B)(-) decays with a time constant estimated to be in the range of 1.5-3 ns. In the presence of excess terbutryn, a competitive inhibitor of Q(B) binding, the observed lifetime of P(+)H(B)(-) is noticeably longer and is estimated to be in the range of 4-8 ns. On the basis of these values, the rate constant for P(+)H(B)(-) --> P(+)Q(B)(-) electron transfer is calculated to be between approximately (2 ns)(-)(1) and approximately (12 ns)(-)(1), making it at least an order of magnitude smaller than the rate constant of approximately (200 ps)(-)(1) for electron transfer between the corresponding A-side cofactors (P(+)H(A)(-) --> P(+)Q(A)(-)). Structural and energetic factors associated with electron transfer to Q(B) compared to Q(A) are discussed. Comparison of the P(+)H(B)(-) lifetimes in the presence and absence of terbutryn indicates that the ultimate (i.e., quantum) yield of P(+)Q(B)(-) formation relative to P is 10-25% in the YFHV RC.  相似文献   

2.
A new reaction center (RC) quadruple mutant, called LDHW, of Rhodobacter sphaeroides is described. This mutant was constructed to obtain a high yield of B-branch electron transfer and to study P(+)Q(B)(-) formation via the B-branch. The A-branch of the mutant RC contains two monomer bacteriochlorophylls, B(A) and beta, as a result of the H mutation L(M214)H. The latter bacteriochlorophyll replaces bacteriopheophytin H(A) of wild-type RCs. As a result of the W mutation A(M260)W, the A-branch does not contain the ubiquinone Q(A); this facilitates the study of P(+)Q(B)(-) formation. Furthermore, the D mutation G(M203)D introduces an aspartic acid residue near B(A). Together these mutations impede electron transfer through the A-branch. The B-branch contains two bacteriopheophytins, Phi(B) and H(B), and a ubiquinone, Q(B.) Phi(B) replaces the monomer bacteriochlorophyll B(B) as a result of the L mutation H(M182)L. In the LDHW mutant we find 35-45% B-branch electron transfer, the highest yield reported so far. Transient absorption spectroscopy at 10 K, where the absorption bands due to the Q(X) transitions of Phi(B) and H(B) are well resolved, shows simultaneous bleachings of both absorption bands. Although photoreduction of the bacteriopheophytins occurs with a high yield, no significant (approximately 1%) P(+)Q(B)(-) formation was found.  相似文献   

3.
In the native purple bacterial reaction center (RC), light-driven charge separation utilizes only the A-side cofactors, with the symmetry related B-side inactive. The process is initiated by electron transfer from the excited primary donor (P*) to the A-side bacteriopheophytin (P* --> P+ H(A)-) in approximately 3 ps. This is followed by electron transfer to the A-side quinone (P+ H(A)- --> P+ Q(A)-) in approximately 200 ps, with an overall quantum yield of approximately 100%. Using nanosecond flash photolysis and RCs from the Rhodobacter capsulatus F(L181)Y/Y(M208)F/L(M212)H mutant (designated YFH), we have probed the decay pathways of the analogous B-side state P+ H(B)-. The rate of the P+ H(B)- --> ground-state charge-recombination process is found to be (3.0 +/- 0.8 ns)(-1), which is much faster than the analogous (10-20 ns)(-1) rate of P+ H(A)- --> ground state. The rate of P+ H(B)- --> P+ Q(B)- electron transfer is determined to be (3.9 +/- 0.9 ns)(-1), which is about a factor of 20 slower than the analogous A-side process P+ H(A)- --> P+ Q(A)-. The yield of P+ H(B)- --> P+ Q(B)- electron-transfer calculated from these rate constants is 44%. This value, when combined with the known 30% yield of P+ H(B)- from P in YFH RCs, gives an overall yield of 13% for B-side charge separation P* --> P+ H(B)- --> P+ Q(B)- in this mutant. We determine essentially the same value (15%) by comparing the P-bleaching amplitude at approximately 1 ms in YFH and wild-type RCs.  相似文献   

4.
The bacteriopheophytin a molecules at the H(A) and H(B) binding sites of reaction centers (RCs) of the Y(M210)W mutant of Rhodobacter sphaeroides were chemically exchanged with plant pheophytin a. The Y(M210)W mutation slows down the formation of H(A)(-), presumably by raising the free energy level of the P(+)B(A)(-) state above that of P* due to increasing the oxidation potential of the primary electron donor P and lowering the reduction potential of the accessory bacteriochlorophyll B(A). Exchange of the bacteriopheophytins with pheophytin a on the contrary lowers the redox potential of H(A), inhibiting its reduction. A combination of the mutation and pigment exchange was therefore expected to make the A-side of the RC incapable of electron transfer and cause the excited state P* to deactivate directly to the ground state or through the B-side, or both. Time-resolved absorption difference spectroscopy at 10 K on the RCs that were modified in this way showed a lifetime of P* lengthened to about 500 ps as compared to about 200 ps measured in the original Y(M210)W RCs. We show that the decay of P* in the pheophytin-exchanged preparations is accompanied by both return to the ground state and formation of a new charge-separated state, the absorption difference spectrum of which is characterized by bleachings at 811 and 890 nm. This latter state was formed with a time constant of ca. 1.7 ns and a yield of about 30%, and lasted a few nanoseconds. On the basis of spectroscopic observations these bands at 811 and 890 nm are tentatively attributed to the presence of the P(+)B(B)(-) state, where B(B) is the accessory bacteriochlorophyll in the "inactive" B-branch of the cofactors. The B(B) molecules in Y(M210)W RCs are suggested to be spectrally heterogeneous, absorbing in the Q(y) region at 813 or 806 nm. The results are discussed in terms of perturbation of the free energy level of the P(+)B(B)(-) state and absorption properties of the B(B) bacteriochlorophyll in the mutant RCs due to a long-range effect of the Y(M210)W mutation on the protein environment of the B(B) binding pocket.  相似文献   

5.
In Rhodobacter sphaeroides reaction centers (RCs) containing the mutation Ala M260 to Trp (AM260W), transmembrane electron transfer along the full-length of the A-branch of cofactors is prevented by the loss of the Q(A) ubiquinone, but it is possible to generate the radical pair P(+)H(A)(-) by A-branch electron transfer or the radical pair P(+)Q(B)(-) by B-branch electron transfer. In the present study, FTIR spectroscopy was used to provide direct evidence for the complete absence of the Q(A) ubiquinone in mutant RCs with the AM260W mutation. Light-induced FTIR difference spectroscopy of isolated RCs was also used to probe the neutral Q(B) and the semiquinone Q(B)(-) states in two B-branch active mutants, a double AM260W-LM214H mutant, denoted WH, and a quadruple mutant, denoted WAAH, in which the AM260W, LM214H, and EL212A-DL213A mutations were combined. The data were compared to those obtained with wild-type (Wt) RCs and the double EL212A-DL213A (denoted AA) mutant which exhibit the usual A-branch electron transfer to Q(B). The Q(B)(-)/Q(B) spectrum of the WH mutant is very close to that of Wt RCs indicating similar bonding interactions of Q(B) and Q(B)(-) with the protein in both RCs. The Q(B)(-)/Q(B) spectra of the AA and WAAH mutants are also closely related to one another, but are very different to that of the Wt complex. Isotope-edited IR fingerprint spectra were obtained for the AA and WAAH mutants reconstituted with site-specific (13)C-labeled ubiquinone. Whilst perturbations of the interactions of the semiquinone Q(B)(-) with the protein are observed in the AA and WAAH mutants, the FTIR data show that the bonding interaction of neutral Q(B) in these two mutants are essentially the same as those for Wt RCs. Therefore, it is concluded that Q(B) occupies the same binding position proximal to the non-heme iron prior to reduction by either A-branch or B-branch electron transfer.  相似文献   

6.
The role of protein dynamics in the electron transfer from the reduced primary quinone, Q(A)(-), to the secondary quinone, Q(B), was studied at room temperature in isolated reaction centers (RC) from the photosynthetic bacterium Rhodobacter sphaeroides by incorporating the protein in trehalose water systems of different trehalose/water ratios. The effects of dehydration on the reaction kinetics were examined by analyzing charge recombination after different regimes of RC photoexcitation (single laser pulse, double flash, and continuous light) as well as by monitoring flash-induced electrochromic effects in the near infrared spectral region. Independent approaches show that dehydration of RC-containing matrices causes reversible, inhomogeneous inhibition of Q(A)(-)-to-Q(B) electron transfer, involving two subpopulations of RCs. In one of these populations (i.e., active), the electron transfer to Q(B) is slowed but still successfully competing with P(+)Q(A)(-) recombination, even in the driest samples; in the other (i.e., inactive), electron transfer to Q(B) after a laser pulse is hindered, inasmuch as only recombination of the P(+)Q(A)(-) state is observed. Small residual water variations ( approximately 7 wt %) modulate fully the relative fraction of the two populations, with the active one decreasing to zero in the driest samples. Analysis of charge recombination after continuous illumination indicates that, in the inactive subpopulation, the conformational changes that rate-limit electron transfer can be slowed by >4 orders of magnitude. The reported effects are consistent with conformational gating of the reaction and demonstrate that the conformational dynamics controlling electron transfer to Q(B) is strongly enslaved to the structure and dynamics of the surrounding medium. Comparing the effects of dehydration on P(+)Q(A)(-)-->PQ(A) recombination and Q(A)(-)Q(B)-->Q(A)Q(B)(-) electron transfer suggests that conformational changes gating the latter process are distinct from those stabilizing the primary charge-separated state.  相似文献   

7.
The photosynthetic reaction center (RC) from purple bacteria converts light into chemical energy. Although the RC shows two nearly structurally symmetric branches, A and B, light-induced electron transfer in the native RC occurs almost exclusively along the A-branch to a primary quinone electron acceptor Q(A). Subsequent electron and proton transfer to a mobile quinone molecule Q(B) converts it to a quinol, Q(B)H(2). We report the construction and characterization of a series of mutants in Rhodobacter sphaeroides designed to reduce Q(B) via the B-branch. The quantum efficiency to Q(B) via the B-branch Phi(B) ranged from 0.4% in an RC containing the single mutation Ala-M260 --> Trp to 5% in a quintuple mutant which includes in addition three mutations to inhibit transfer along the A-branch (Gly-M203 --> Asp, Tyr-M210 --> Phe, Leu-M214 --> His) and one to promote transfer along the B-branch (Phe-L181 --> Tyr). Comparing the value of 0.4% for Phi(B) obtained in the AW(M260) mutant, which lacks Q(A), to the 100% quantum efficiency for Phi(A) along the A-branch in the native RC, we obtain a ratio for A-branch to B-branch electron transfer of 250:1. We determined the structure of the most effective (quintuple) mutant RC at 2.25 A (R-factor = 19.6%). The Q(A) site did not contain a quinone but was occupied by the side chain of Trp-M260 and a Cl(-). In this structure a nonfunctional quinone was found to occupy a new site near M258 and M268. The implications of this work to trap intermediate states are discussed.  相似文献   

8.
High-frequency electron paramagnetic resonance (HF EPR) techniques have been employed to look for localized light-induced conformational changes in the protein environments around the reduced secondary quinone acceptor (Q(B)(-)) in Rhodobacter sphaeroides and Blastochloris viridis RCs. The Q(A)(-) and Q(B)(-) radical species in Fe-removed/Zn-replaced protonated RCs substituted with deuterated quinones are distinguishable with pulsed D-band (130 GHz) EPR and provide native probes of both the low-temperature Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron-transfer event and the structure of trapped conformational substates. We report here the first spectroscopic evidence that cryogenically trapped, light-induced changes enable low-temperature Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer in the B. viridis RC and the first observation of an inactive, trapped P(+)Q(B)(-) state in both R. sphaeroides and B. viridis RCs that does not recombine at 20 K. The high resolution and orientational selectivity of HF electron-nuclear double resonance (ENDOR) allows us to directly probe protein environments around Q(B)(-) for distinct P(+)Q(B)(-) kinetic RC states by spectrally selecting specific nuclei in isotopically labeled samples. No structural differences in the protein structure near Q(B)(-) or reorientation (within 5 degrees ) of Q(B)(-) was observed with HF ENDOR spectra of two states of P(+)Q(B)(-): "active" and "inactive" states with regards to low-temperature electron transfer. These results reveal a remarkably enforced local protein environment for Q(B) in its reduced semiquinone state and suggest that the conformational change that controls reactivity resides beyond the Q(B) local environment.  相似文献   

9.
The pathway for proton transfer to Q(B) was studied in the reaction center (RC) from Rhodobacter sphaeroides. The binding of Zn(2+) or Cd(2+) to the RC surface at His-H126, His-H128, and Asp-H124 inhibits the rate of proton transfer to Q(B), suggesting that the His may be important for proton transfer [Paddock, M. L., Graige, M. S., Feher, G. and Okamura, M. Y. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 6183-6188]. To assess directly the role of the histidines, mutant RCs were constructed in which either one or both His were replaced with Ala. In the single His mutant RCs, no significant effects were observed. In contrast, in the double mutant RC at pH 8.5, the observed rates of proton uptake associated with both the first and the second proton-coupled electron-transfer reactions k(AB)(()(1)()) [Q(A)(-)(*)Q(B)-Glu(-) + H(+) --> Q(A)(-)(*)Q(B)-GluH --> Q(A)Q(B)(-)(*)-GluH] and k(AB)(()(2)()) [Q(A)(-)(*)Q(B)(-)(*) + H(+) --> Q(A)(-)(*)(Q(B)H)(*) --> Q(A)(Q(B)H)(-)], were found to be slowed by factors of approximately 10 and approximately 4, respectively. Evidence that the observed changes in the double mutant RC are due to a reduction in the proton-transfer rate constants are provided by the observations: (i) k(AB)(1) at pH approximately pK(a) of GluH became biphasic, indicating that proton transfer is slower than electron transfer and (ii) k(AB)(2) became independent of the driving force for electron transfer, indicating that proton transfer is the rate-limiting step. These changes were overcome by the addition of exogenous imidazole which acts as a proton donor in place of the imidazole groups of His that were removed in the double mutant RC. Thus, we conclude that His-H126 and His-H128 facilitate proton transfer into the RC, acting as RC-bound proton donors at the entrance of the proton-transfer pathways.  相似文献   

10.
The kinetics of charge recombination between the primary photoxidized donor (P(+)) and the secondary reduced quinone acceptor (Q(B)(-)) have been studied in reaction centers (RCs) from the purple photosynthetic bacterium Rhodobacter sphaeroides incorporated into lecithin vesicles containing large ubiquinone pools over the temperature range 275 K = (50 +/- 15) nm). Following these premises, we describe the kinetics of P(+)Q(B)(-) recombination with a truncated cumulant expansion and relate it to P(Q) and to the free energy changes for Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer (DeltaG(AB)(o)) and for quinone binding (DeltaG(bind)(o)) at Q(B). The model accounts well for the temperature and quinone dependence of the charge recombination kinetics, yielding DeltaG(AB)(o) = -7.67 +/- 0.05 kJ mol(-1) and DeltaG(bind)(o) = -14.6 +/- 0.6 kJ mol(-1) at 298 K.  相似文献   

11.
The reaction center (RC) from Rhodobacter sphaeroides uses light energy to reduce and protonate a quinone molecule, Q(B) (the secondary quinone electron acceptor), to form quinol, Q(B)H2. Asp-L210 and Asp-M17 have been proposed to be components of the pathway for proton transfer [Axelrod, H. L., Abresch, E. C., Paddock, M. L., Okamura, M. Y., and Feher, G. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 1542-1547]. To test the importance of these residues for efficient proton transfer, the rates of the proton-coupled electron-transfer reaction k(AB)(2) (Q(A-*)Q(B-*) + H+ <==>Q(A-*)Q(B)H* --> Q(A)Q(B)H-) and its associated proton uptake were measured in native and mutant RCs, lacking one or both Asp residues. In the double mutant RCs, the k(AB)(2) reaction and its associated proton uptake were approximately 300-fold slower than in native RCs (pH 8). In contrast, single mutant RCs displayed reaction rates that were < or =3-fold slower than native (pH 8). In addition, the rate-limiting step of k(AB)(2) was changed from electron transfer (native and single mutants) to proton transfer (double mutant) as shown from the lack of a dependence of the observed rate on the driving force for electron transfer in the double mutant RCs compared to the native or single mutants. This implies that the rate of the proton-transfer step was reduced (> or =10(3)-fold) upon replacement of both Asp-L210 and Asp-M17 with Asn. Similar, but less drastic, differences were observed for k(AB)(1), which at pH > or =8 is coupled to the protonation of Glu-L212 [(Q(A-*)Q(B))-Glu- + H+ --> (Q(A)Q(B-*)-GluH]. These results show that the pathway for proton transfer from solution to reduced Q(B) involves both Asp-L210 and Asp-M17, which provide parallel branches to the proton-transfer pathway and through their electrostatic interaction have a cooperative effect on the proton-transfer rate. A possible mechanism for the cooperativity is discussed.  相似文献   

12.
The kinetics of charge recombination following photoexcitation by a laser pulse have been analyzed in the reaction center-light harvesting complex 1 (RC-LH1) purified from the photosynthetic bacterium Rhodobacter sphaeroides. In RC-LH1 core complexes isolated from photosynthetically grown cells P(+)Q(B)(-) recombines with an average rate constant, k approximately 0.3 s(-1), more than three times smaller than that measured in RC deprived of the LH1 (k approximately 1 s(-1)). A comparable, slowed recombination kinetics is observed in RC-LH1 complexes purified from a pufX-deleted strain. Slowing of the charge recombination kinetics is even more pronounced in RC-LH1 complexes isolated from wild-type semiaerobically grown cells (k approximately 0.2 s(-1)). Since the kinetics of P(+)Q(A)(-) recombination is unaffected by the presence of the antenna, the P(+)Q(B)(-) state appears to be energetically stabilized in core complexes. Determinations of the ubiquinone-10 (UQ(10)) complement associated with the purified RC-LH1 complexes always yield UQ(10)/RC ratios larger than 10. These quinone molecules are functionally coupled to the RC-LH1 complex, as judged from the extent of exogenous cytochrome c(2) rapidly oxidized under continuous light excitation. Analysis of P(+)Q(B)(-) recombination, based on a kinetic model which considers fast quinone equilibrium at the Q(B) binding site, indicates that the slowing down of charge recombination kinetics observed in RC-LH1 complexes cannot be explained solely by a quinone concentration effect and suggests that stabilization of the light-induced charge separation is predominantly due to interaction of the Q(B) site with the LH1 complex. The high UQ(10) complements detected in RC-LH1 core complexes, but not in purified light-harvesting complex 2 and in RC, are proposed to reflect an in vivo heterogeneity in the distribution of the quinone pool within the chromatophore bilayer.  相似文献   

13.
The kinetics and thermodynamics of the photochemical reactions of the purified reaction center (RC)-cytochrome (Cyt) complex from the chlorosome-lacking, filamentous anoxygenic phototroph, Roseiflexus castenholzii are presented. The RC consists of L- and M-polypeptides containing three bacteriochlorophyll (BChl), three bacteriopheophytin (BPh) and two quinones (Q(A) and Q(B)), and the Cyt is a tetraheme subunit. Two of the BChls form a dimer P that is the primary electron donor. At 285K, the lifetimes of the excited singlet state, P*, and the charge-separated state P(+)H(A)(-) (where H(A) is the photoactive BPh) were found to be 3.2±0.3 ps and 200±20 ps, respectively. Overall charge separation P*→→ P(+)Q(A)(-) occurred with ≥90% yield at 285K. At 77K, the P* lifetime was somewhat shorter and the P(+)H(A)(-) lifetime was essentially unchanged. Poteniometric titrations gave a P(865)/P(865)(+) midpoint potential of +390mV vs. SHE. For the tetraheme Cyt two distinct midpoint potentials of +85 and +265mV were measured, likely reflecting a pair of low-potential hemes and a pair of high-potential hemes, respectively. The time course of electron transfer from reduced Cyt to P(+) suggests an arrangement where the highest potential heme is not located immediately adjacent to P. Comparisons of these and other properties of isolated Roseiflexus castenholzii RCs to those from its close relative Chloroflexus aurantiacus and to RCs from the purple bacteria are made.  相似文献   

14.
Li J  Takahashi E  Gunner MR 《Biochemistry》2000,39(25):7445-7454
The electron transfer from the reduced primary quinone (Q(A)(-)) to the secondary quinone (Q(B)) can occur in two phases with a well-characterized 100 micros component (tau(2)) and a faster process occurring in less than 10 micros (tau(1)). The fast reaction is clearly seen when the native ubiquinone-10 at Q(A) is replaced with naphthoquinones. The dependence of tau(1) on the free-energy difference between the P(+)Q(A)(-)Q(B) and P(+)Q(A)Q(B)(-) states (-) and on the pH was measured using naphthoquinones with different electrochemical midpoint potentials as Q(A) in Rhodobacter sphaeroides reaction centers (RCs) and in RCs where - is changed by mutation of M265 in the Q(A) site from Ile to Thr (M265IT). Q(B) was ubiquinone (UQ(B)) in all cases. Electron transfer was measured by using the absorption differences of the naphthosemiquinone at Q(A) and the ubisemiquinone at Q(B) between 390 and 500 nm. As - was changed from -90 to -250 meV tau(1) decreased from 29 to 0.2 micros. The free-energy dependence of tau(1) provides a reorganization energy of 850 +/- 100 meV for the electron transfer from Q(A)(-) to Q(B). The slower reaction at tau(2) is free-energy independent, so processes other than electron transfer determine the observed rate. The fraction of the reaction at tau(1) increases with increasing driving force and is 100% of the reaction when - is approximately 100 meV more favorable than in the native RCs with ubiquinone as Q(A). The fast phase, tau(1), is pH independent from pH 6 to 11 while tau(2) slows above pH 9. As the Q(A) isoprene tail length is increased from 2 to 10 isoprene units the fraction at tau(1) decreases. However, tau(1), tau(2), and the fraction of the reaction in each phase are independent of the tail length of UQ(B).  相似文献   

15.
Photosynthetic reaction center (RC) pigment protein complex converts the free energy of light into chemical potential of charge pairs with extremely high efficiency. A transient phase in the absorption spectrum in the sub-millisecond time scale is expected to be especially important to examine the conformational gating model of the Q (A) (-) Q(B) to Q(A)Q (B) (-) (here Q(A )and Q(B) are the primary and secondary quinone type electron acceptors, respectively) electron transport. Essential kinetic components at few tens of microseconds scale and at around 200 mus have been suggested. We investigated the conformation change of RCs using heterodyne detection of the laser-induced transient grating method. An about 25 mus dynamics was observed, which coincides with the one described by the conformational gating model and possibly related to the nonadiabatic intrinsic Q (A) (-) Q(B) to Q(A)Q (B) (-) electron transport. The relative intensity of this component decreased with increasing quinone concentration indicating an initial (P(+)Q (A) (-) )(1) or a relaxed (P(+)Q (A) (-) )(2 )conformational substate. We did not find the decay component at few hundreds of microseconds time scale indicating that there is no large displacement in the RC structure if Q(B) is present. The diffusion coefficient of the RC/LDAO detergent micelles calculated from the kinetic component was D = 3.8 x 10(-11 )m(2)/s that agrees fairly well with the number estimated from the Einstein-Stokes relationship, and relates to a hydrodynamic diameter of 11.4 nm of the RC in LDAO micellar solution.  相似文献   

16.
Xu Q  Gunner MR 《Biochemistry》2001,40(10):3232-3241
In protein, conformational changes are often crucial for function but not easy to observe. Two functionally relevant conformational intermediate states of photosynthetic reaction center protein (RCs) are trapped and characterized at low temperature. RCs frozen in the dark do not allow electron transfer from the reduced primary quinone, Q(A)(-), to the secondary quinone, Q(B). In contrast, RCs frozen under illumination in the product (P(+)Q(A)Q(B)(-)) state, with the oxidized electron donor, P(+), and reduced Q(B)(-), return to the ground state at cryogenic temperature in a conformation that allows a high yield of Q(B) reduction. Thus, RCs frozen under illumination are found to be trapped above the ground state in a conformation that allows product formation. When the temperature is raised above 120 K, the protein relaxes to an inactive conformation which is different from the RCs frozen in the dark. The activation energy for this change is 87 +/- 8 meV, and the active and inactive states differ in energy by only 16 +/- 3 meV. Thus, there are several conformational substates along the reaction coordinate with different transition temperatures. The ground state spectra of the RCs in active and inactive conformations report differences in the intraprotein electrostatic field, demonstrating that the dipole or charge distribution has changed. In addition, the electrochromic shift associated with the Q(A)(-) to Q(B) electron transfer at low temperature was characterized. The electron-transfer rate from Q(B)(-) to P(+) was measured at cryogenic temperature and is similar to the rate at room temperature, as expected for an exothermic, electron tunneling reaction in RCs.  相似文献   

17.
In the photosynthetic reaction center (RC) from Rhodobacter sphaeroides, the first electron transfer to the secondary quinone acceptor Q(B) is coupled to the protonation of Glu-L212, located approximately 5 A from the center of Q(B). Upon the second electron transfer to Q(B), Glu-L212 is involved in fast proton delivery to the reduced Q(B). Since Asp-L210 and Asp-M17 play an important role in the proton transfer to the Q(B) site [Paddock, M. L., Adelroth, P., Chang, C., Abresch, E. C., Feher, G., and Okamura, M. Y. (2001) Biochemistry 40, 6893-6902], we investigated the effects of replacing one or both Asp residues with Asn on proton uptake by Glu-L212 using FTIR difference spectroscopy. Upon the first electron transfer to Q(B), the amplitude of the proton uptake by Glu-L212 at pH 8 is increased in the single and double mutant RCs, as is evident from the larger intensity (by 35-55%) of the carboxylic acid band at 1727 cm(-1) in the Q(B)(-)/Q(B) difference spectra of mutant RCs, compared to that at 1728 cm(-1) in native RCs. This implies that the extent of ionization of Glu-L212 in the Q(B) ground state is greater in the mutants than in native RCs and that Asp-M17 and Asp-L210 are at least partially ionized near neutral pH in native RCs. In addition, no changes in the protonation state or the environment of these two residues are detected upon Q(B) reduction. The absence of the 1727 cm(-1) signal in all of the RCs lacking Glu-L212, confirms that the positive band at 1728-1727 cm(-1) probes the protonation of Glu-L212 in native and mutant RCs.  相似文献   

18.
Nabedryk E  Paddock ML  Okamura MY  Breton J 《Biochemistry》2005,44(44):14519-14527
In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (Q(B)) site. Several nearby residues are important for both binding and redox chemistry involved in the light-induced conversion from Q(B) to quinol Q(B)H(2). Ser-L223 is one of the functionally important residues located near Q(B). To obtain information on the interaction between Ser-L223 and Q(B) and Q(B)(-), isotope-edited Q(B)(-)/Q(B) FTIR difference spectra were measured in a mutant RC in which Ser-L223 is replaced with Ala and compared to the native RC. The isotope-edited IR fingerprint spectra for the C=O [see text] and C=C [see text] modes of Q(B) (Q(B)(-)) in the mutant are essentially the same as those of the native RC. These findings indicate that highly equivalent interactions of Q(B) and Q(B)(-) with the protein occur in both native and mutant RCs. The simplest explanation of these results is that Ser-L223 is not hydrogen bonded to Q(B) or Q(B)(-) but presumably forms a hydrogen bond to a nearby acid group, preferentially Asp-L213. The rotation of the Ser OH proton from Asp-L213 to Q(B)(-) is expected to be an important step in the proton transfer to the reduced quinone. In addition, the reduced quinone remains firmly bound, indicating that other distinct hydrogen bonds are more important for stabilizing Q(B)(-). Implications on the design features of the Q(B) binding site are discussed.  相似文献   

19.
The primary quinone acceptor radical anion Q(A)(-)(*) (a menaquinone-9) is studied in reaction centers (RCs) of Rhodopseudomonas viridis in which the high-spin non-heme Fe(2+) is replaced by diamagnetic Zn(2+). The procedure for the iron substitution, which follows the work of Debus et al. [Debus, R. J., Feher, G., and Okamura, M. Y. (1986) Biochemistry 25, 2276-2287], is described. In Rps. viridisan exchange rate of the iron of approximately 50% +/- 10% is achieved. Time-resolved optical spectroscopy shows that the ZnRCs are fully competent in charge separation and that the charge recombination times are similar to those of native RCs. The g tensor of Q(A)(-)(*) in the ZnRCs is determined by a simulation of the EPR at 34 GHz yielding g(x) = 2.00597 (5), g(y) = 2.00492 (5), and g(z) = 2.00216 (5). Comparison with a menaquinone anion radical (MQ(4)(-)(*)) dissolved in 2-propanol identifies Q(A)(-)(*) as a naphthoquinone and shows that only one tensor component (g(x)) is predominantly changed in the RC. This is attributed to interaction with the protein environment. Electron-nuclear double resonance (ENDOR) experiments at 9 GHz reveal a shift of the spin density distribution of Q(A)(-)(*) in the RC as compared with MQ(4)(-)(*) in alcoholic solution. This is ascribed to an asymmetry of the Q(A) binding site. Furthermore, a hyperfine coupling constant from an exchangeable proton is deduced and assigned to a proton in a hydrogen bond between the quinone oxygen and surrounding amino acid residues. By electron spin-echo envelope modulation (ESEEM) techniques performed on Q(A)(-)(*) in the ZnRCs, two (14)N nuclear quadrupole tensors are determined that arise from the surrounding amino acids. One nitrogen coupling is assigned to a N(delta)((1))-H of a histidine and the other to a polypeptide backbone N-H by comparison with the nuclear quadrupole couplings of respective model systems. Inspection of the X-ray structure of Rps. viridis RCs shows that His(M217) and Ala(M258) are likely candidates for the respective amino acids. The quinone should therefore be bound by two H bonds to the protein that could, however, be of different strength. An asymmetric H-bond situation has also been found for Q(A)(-)(*) in the RC of Rhodobacter sphaeroides. Time-resolved electron paramagnetic resonance (EPR) experiments are performed on the radical pair state P(960)(+) (*)Q(A)(-)(*) in ZnRCs of Rps. viridis that were treated with o-phenanthroline to block electron transfer to Q(B). The orientations of the two radicals in the radical pair obtained from transient EPR and their distance deduced from pulsed EPR (out-of-phase ESEEM) are very similar to the geometry observed for the ground state P(960)Q(A) in the X-ray structure [Lancaster, R., Michel, H. (1997) Structure 5, 1339].  相似文献   

20.
Kirmaier C  He C  Holten D 《Biochemistry》2001,40(40):12132-12139
We have investigated the primary charge separation processes in Rb. capsulatus reaction centers (RCs) bearing the mutations Phe(L181) --> Tyr, Tyr(M208) --> Phe, and Leu(M212) --> His. In the YFH mutant, decay of the excited primary electron donor P occurs with an 11 +/- 2 ps time constant and is trifurcated to give (1) internal conversion to the ground state ( approximately 10% yield), (2) charge separation to the L side of the RC ( approximately 60% yield), and (3) electron transfer to the M-side bacteriopheophytin BPh(M) ( approximately 30% yield). These results relate previous work in which the ionizable residues Lys (at L178) and Asp (at M201) have been used to facilitate charge separation to the M side of the RC, and the widely studied L181 and M208 mutants. One conclusion that comes from this work is that the Tyr (M208) --> Phe and Gly(M201) --> Asp mutations near the L-side bacteriochlorophyll (BChl(L)) raise the free energy of P(+)BChl(L)(-) by comparable amounts. The results also suggest that the free energy of P(+)BChl(M)(-) is lowered more substantially by a Tyr at L181 than a Lys at L178. The results on the YFH mutant further demonstrate that the free energy differences between the L- and M-side charge-separated states play a significant role in the directionality of charge separation in the wild-type RC, and place limits on the contributing role of differential electronic matrix elements on the two sides of the RC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号