首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Mammalian vacuolar-type proton pumping ATPases (V-ATPases) are diverse multi-subunit proton pumps. They are formed from membrane V(o) and catalytic V(1) sectors, whose subunits have cell-specific or ubiquitous isoforms. Biochemical study of a unique V-ATPase is difficult because ones with different isoforms are present in the same cell. However, the properties of mouse isoforms can be studied using hybrid V-ATPases formed from the isoforms and other yeast subunits. As shown previously, mouse subunit E isoform E1 (testis-specific) or E2 (ubiquitous) can form active V-ATPases with other subunits of yeast, but E1/yeast hybrid V-ATPase is defective in proton transport at 37 degrees C (Sun-Wada, G.-H., Imai-Senga, Y., Yamamoto, A., Murata, Y., Hirata, T., Wada, Y., and Futai, M., 2002, J. Biol. Chem. 277, 18098-18105). In this study, we have analyzed the properties of E1/yeast hybrid V-ATPase to understand the role of the E subunit. The proton transport by the defective hybrid ATPase was reversibly recovered when incubation temperature of vacuoles or cells was shifted to 30 degrees C. Corresponding to the reversible defect of the hybrid V-ATPase, the V(o) subunit a epitope was exposed to the corresponding antibody at 37 degrees C, but became inaccessible at 30 degrees C. However, the V(1) sector was still associated with V(o) at 37 degrees C, as shown immunochemically. The control yeast V-ATPase was active at 37 degrees C, and its epitope was not accessible to the antibody. Glucose depletion, known to dissociate V(1) from V(o) in yeast, had only a slight effect on the hybrid at acidic pH. The domain between Lys26 and Val83 of E1, which contains eight residues not conserved between E1 and E2, was responsible for the unique properties of the hybrid. These results suggest that subunit E, especially its amino-terminal domain, plays a pertinent role in the assembly of V-ATPase subunits in vacuolar membranes.  相似文献   

2.
The subunit architecture of the yeast vacuolar ATPase (V-ATPase) was analyzed by single particle transmission electron microscopy and electrospray ionization (ESI) tandem mass spectrometry. A three-dimensional model of the intact V-ATPase was calculated from two-dimensional projections of the complex at a resolution of 25 angstroms. Images of yeast V-ATPase decorated with monoclonal antibodies against subunits A, E, and G position subunit A within the pseudo-hexagonal arrangement in the V1, the N terminus of subunit G in the V1-V0 interface, and the C terminus of subunit E at the top of the V1 domain. ESI tandem mass spectrometry of yeast V1-ATPase showed that subunits E and G are most easily lost in collision-induced dissociation, consistent with a peripheral location of the subunits. An atomic model of the yeast V-ATPase was generated by fitting of the available x-ray crystal structures into the electron microscopy-derived electron density map. The resulting atomic model of the yeast vacuolar ATPase serves as a framework to help understand the role the peripheral stalk subunits are playing in the regulation of the ATP hydrolysis driven proton pumping activity of the vacuolar ATPase.  相似文献   

3.
Vacuolar proton-translocating ATPases are composed of a complex of integral membrane proteins, the Vo sector, attached to a complex of peripheral membrane proteins, the V1 sector. We have examined the early steps in biosynthesis of the yeast vacuolar ATPase by biosynthetically labeling wild-type and mutant cells for varied pulse and chase times and immunoprecipitating fully and partially assembled complexes under nondenaturing conditions. In wild-type cells, several V1 subunits and the 100-kDa Vo subunit associate within 3-5 min, followed by addition of other Vo subunits with time. Deletion mutants lacking single subunits of the enzyme show a variety of partial complexes, including both complexes that resemble intermediates in the assembly pathway of wild-type cells and independent V1 and Vo sectors that form without any apparent V1Vo subunit interaction. Two yeast sec mutants that show a temperature-conditional block in export from the endoplasmic reticulum accumulate a complex containing several V1 subunits and the 100-kDa Vo subunit during incubation at elevated temperature. This complex can assemble with the 17-kDa Vo subunit when the temperature block is reversed. We propose that assembly of the yeast V-ATPase can occur by two different pathways: a concerted assembly pathway involving early interactions between V1 and Vo subunits and an independent assembly pathway requiring full assembly of V1 and Vo sectors before combination of the two sectors. The data suggest that in wild-type cells, assembly occurs predominantly by the concerted assembly pathway, and V-ATPase complexes acquire the full complement of Vo subunits during or after exit from the endoplasmic reticulum.  相似文献   

4.
The vacuolar (H+)-ATPase (or V-ATPase) is a membrane protein complex that is structurally related to F1 and F0 ATP synthases. The V-ATPase is composed of an integral domain (V0) and a peripheral domain (V1) connected by a central stalk and up to three peripheral stalks. The number of peripheral stalks and the proteins that comprise them remain controversial. We have expressed subunits E and G in Escherichia coli as maltose binding protein fusion proteins and detected a specific interaction between these two subunits. This interaction was specific for subunits E and G and was confirmed by co-expression of the subunits from a bicistronic vector. The EG complex was characterized using size exclusion chromatography, cross-linking with short length chemical cross-linkers, circular dichroism spectroscopy, and electron microscopy. The results indicate a tight interaction between subunits E and G and revealed interacting helices in the EG complex with a length of about 220 angstroms. We propose that the V-ATPase EG complex forms one of the peripheral stators similar to the one formed by the two copies of subunit b in F-ATPase.  相似文献   

5.
The vacuolar H(+)-ATPase (V-ATPase) is responsible for acidifying endomembrane compartments in eukaryotic cells. Although a 100 kDa subunit is common to many V-ATPases, it is not detected in a purified and active pump from oat (Ward J.M. and Sze H. (1992) Plant Physiol. 99, 925-931). A 100 kDa subunit of the yeast V-ATPase is encoded by VPH1. Immunostaining revealed a Vph1p-related polypeptide in oat membranes, thus the role of this polypeptide was investigated. Membrane proteins were detergent-solubilized and size-fractionated, and V-ATPase subunits were identified by immunostaining. A 100 kDa polypeptide was not associated with the fully assembled ATPase; however, it was part of an approximately 250 kDa V0 complex including subunits of 36 and 16 kDa. Immunostaining with an affinity-purified antibody against the oat 100 kDa protein confirmed that the polypeptide was part of a 250 kDa complex and that it had not degraded in the approximately 670 kDa holoenzyme. Co-immunoprecipitation with a monoclonal antibody against A subunit indicated that peripheral subunits exist as assembled V1 subcomplexes in the cytosol. The free V1 subcomplex became attached to the detergent-solubilized V0 sector after mixing, as subunits of both sectors were co-precipitated by an antibody against subunit A. The absence of this polypeptide from the active enzyme suggests that, unlike the yeast Vph1p, the 100 kDa polypeptide in oat is not required for activity. Its association with the free Vo subcomplex would support a role of this protein in V-ATPase assembly and perhaps in sorting.  相似文献   

6.
The V-ATPase H subunit (encoded by the VMA13 gene) activates ATP-driven proton pumping in intact V-ATPase complexes and inhibits MgATPase activity in cytosolic V1 sectors (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767). Yeast diploids heterozygous for a vma13Delta mutation show the pH- and calcium-dependent conditional lethality characteristic of mutants lacking V-ATPase activity, although they still contain one wild-type copy of VMA13. Vacuolar vesicles from this strain have approximately 50% of the ATPase activity of those from a wild-type diploid but do not support formation of a proton gradient. Compound heterozygotes with a second heterozygous deletion in another V1 subunit gene exhibit improved growth, vacuolar acidification, and ATP-driven proton transport in vacuolar vesicles. In contrast, compound heterozygotes with a second deletion in a Vo subunit grow even more poorly than the vma13Delta heterozygote, have very little vacuolar acidification, and have very low levels of V-ATPase subunits in isolated vacuoles. In addition, cytosolic V1 sectors from this strain and from the strain containing only the heterozygous vma13Delta mutation have elevated MgATPase activity. The results suggest that balancing levels of subunit H with those of other V-ATPase subunits is critical, both for allowing organelle acidification and for preventing unproductive hydrolysis of cytosolic ATP.  相似文献   

7.
The RAVE complex is essential for stable assembly of the yeast V-ATPase   总被引:6,自引:0,他引:6  
Vacuolar proton-translocating ATPases are composed of a peripheral complex, V(1), attached to an integral membrane complex, V(o). Association of the two complexes is essential for ATP-driven proton transport and is regulated post-translationally in response to glucose concentration. A new complex, RAVE, was recently isolated and implicated in glucose-dependent reassembly of V-ATPase complexes that had disassembled in response to glucose deprivation (Seol, J. H., Shevchenko, A., and Deshaies, R. J. (2001) Nat. Cell Biol. 3, 384-391). Here, we provide evidence supporting a role for RAVE in reassembly of the V-ATPase but also demonstrate an essential role in V-ATPase assembly under other conditions. The RAVE complex associates reversibly with V(1) complexes released from the membrane by glucose deprivation but binds constitutively to cytosolic V(1) sectors in a mutant lacking V(o) sectors. V-ATPase complexes from cells lacking RAVE subunits show serious structural and functional defects even in glucose-grown cells or in combination with a mutation that blocks disassembly of the V-ATPase. RAVE small middle dotV(1) interactions are specifically disrupted in cells lacking V(1) subunits E or G, suggesting a direct involvement for these subunits in interaction of the two complexes. Skp1p, a RAVE subunit involved in many different signal transduction pathways, binds stably to other RAVE subunits under conditions that alter RAVE small middle dotV(1) binding; thus, Skp1p recruitment to the RAVE complex does not appear to provide a signal for V-ATPase assembly.  相似文献   

8.
The G subunit of V-ATPases is a soluble subunit that shows homology with the b subunit of F-ATPases and may be part of the "stator" stalk connecting the peripheral V(1) and membrane V(0) sectors. When the N-terminal half of the G subunit is modeled as an alpha helix, most of the conserved residues fall on one face of the helix (Hunt, I. E., and Bowman, B. J. (1997) J. Bioenerg. Biomembr. 29, 533-540). We probed the function of this region by site-directed mutagenesis of the yeast VMA10 gene. Stable G subunits were produced in the presence of Y46A and K55A mutations, but subunit E was destabilized, resulting in loss of the V-ATPase assembly. Mutations E14A and K50A allowed wild-type growth and assembly of V-ATPase complexes, but the complexes formed were unstable. Mutations R25A and R25L stabilized V-ATPase complexes relative to wild-type and partially inhibited disassembly of V(1) from V(0) in response to glucose deprivation even though the mutant enzymes were fully active. A 2-amino acid deletion in the middle of the predicted N-terminal helix (DeltaQ29D30) allowed assembly of a functional V-ATPase. The results indicate that, although the N-terminal half of the G subunit is essential for V-ATPase activity, either this region is not a rigid helix or the presence of a continuous, conserved face of the helix is not essential.  相似文献   

9.
The RAVE complex is required for stable assembly of the yeast vacuolar proton-translocating ATPase (V-ATPase) during both biosynthesis of the enzyme and regulated reassembly of disassembled V(1) and V(0) sectors. It is not yet known how RAVE effects V-ATPase assembly. Previous work has shown that V(1) peripheral or stator stalk subunits E and G are critical for binding of RAVE to cytosolic V(1) complexes, suggesting that RAVE may play a role in docking of the V(1) peripheral stalk to the V(0) complex at the membrane. Here we provide evidence for an interaction between the RAVE complex and V(1) subunit C, another subunit that has been assigned to the peripheral stalk. The C subunit is unique in that it is released from both V(1) and V(0) sectors during disassembly, suggesting that subunit C may control the regulated assembly of the V-ATPase. Mutants lacking subunit C have assembly phenotypes resembling that of RAVE mutants. Both are able to assemble V(1)/V(0) complexes in vivo, but these complexes are highly unstable in vitro, and V-ATPase activity is extremely low. We show that in the absence of the RAVE complex, subunit C is not able to stably assemble with the vacuolar ATPase. Our data support a model where RAVE, through its interaction with subunit C, is facilitating V(1) peripheral stalk subunit interactions with V(0) during V-ATPase assembly.  相似文献   

10.
Vacuolar H(+)-ATPases (V-ATPases) are highly conserved proton pumps that couple hydrolysis of cytosolic ATP to proton transport out of the cytosol. Although it is generally believed that V-ATPases transport protons by a rotary catalytic mechanism analogous to that used by F(1)F(0)-ATPases, the structure and subunit composition of the central or peripheral stalk of the multisubunit complex are not well understood. We searched for proteins that bind to the E subunit of V-ATPase using the yeast two-hybrid assay and identified the H subunit as an interacting partner. Physical association between the E and H subunits of V-ATPase was confirmed in vitro by precipitation assays. Deletion mapping analysis revealed that a 78-amino acid fragment at the amino terminus of the E subunit was sufficient for binding to the H subunit. Expression of the amino-terminal fragments of the E subunits from human and yeast as dominant-negative mutants resulted in dramatic decreases in bafilomycin A(1)-sensitive ATP hydrolysis and proton transport activities of V-ATPase. Our data demonstrate the physiological significance of the interaction between the E and H subunits of V-ATPase and extend previous studies on the arrangement of subunits on the peripheral stalk of V-ATPase.  相似文献   

11.
Mammalian vacuolar-type proton pumping ATPases (V-ATPases) are diverse multi-subunit proton pumps. They are formed from membrane Vo and catalytic V1 sectors, whose subunits have cell-specific or ubiquitous isoforms. Biochemical study of a unique V-ATPase is difficult because ones with different isoforms are present in the same cell. However, the properties of mouse isoforms can be studied using hybrid V-ATPases formed from the isoforms and other yeast subunits. As shown previously, mouse subunit E isoform E1 (testis-specific) or E2 (ubiquitous) can form active V-ATPases with other subunits of yeast, but E1/yeast hybrid V-ATPase is defective in proton transport at 37 °C (Sun-Wada, G.-H., Imai-Senga, Y., Yamamoto, A., Murata, Y., Hirata, T., Wada, Y., and Futai, M., 2002, J. Biol. Chem. 277, 18098-18105). In this study, we have analyzed the properties of E1/yeast hybrid V-ATPase to understand the role of the E subunit. The proton transport by the defective hybrid ATPase was reversibly recovered when incubation temperature of vacuoles or cells was shifted to 30 °C. Corresponding to the reversible defect of the hybrid V-ATPase, the Vo subunit a epitope was exposed to the corresponding antibody at 37 °C, but became inaccessible at 30 °C. However, the V1 sector was still associated with Vo at 37 °C, as shown immunochemically. The control yeast V-ATPase was active at 37 °C, and its epitope was not accessible to the antibody. Glucose depletion, known to dissociate V1 from Vo in yeast, had only a slight effect on the hybrid at acidic pH. The domain between Lys26 and Val83 of E1, which contains eight residues not conserved between E1 and E2, was responsible for the unique properties of the hybrid. These results suggest that subunit E, especially its amino-terminal domain, plays a pertinent role in the assembly of V-ATPase subunits in vacuolar membranes.  相似文献   

12.
The RAVE complex (regulator of the H+-ATPase of vacuolar and endosomal membranes) is required for biosynthetic assembly and glucose-stimulated reassembly of the yeast vacuolar H+-ATPase (V-ATPase). Yeast RAVE contains three subunits: Rav1, Rav2, and Skp1. Rav1 is the largest subunit, and it binds Rav2 and Skp1 of RAVE; the E, G, and C subunits of the V-ATPase peripheral V1 sector; and Vph1 of the membrane Vo sector. We identified Rav1 regions required for interaction with its binding partners through deletion analysis, co-immunoprecipitation, two-hybrid assay, and pulldown assays with expressed proteins. We find that Skp1 binding requires sequences near the C terminus of Rav1, V1 subunits E and C bind to a conserved region in the C-terminal half of Rav1, and the cytosolic domain of Vph1 binds near the junction of the Rav1 N- and C-terminal halves. In contrast, Rav2 binds to the N-terminal domain of Rav1, which can be modeled as a double β-propeller. Only the V1 C subunit binds to both Rav1 and Rav2. Using GFP-tagged RAVE subunits in vivo, we demonstrate glucose-dependent association of RAVE with the vacuolar membrane, consistent with its role in glucose-dependent V-ATPase assembly. It is known that V1 subunit C localizes to the V1-Vo interface in assembled V-ATPase complexes and is important in regulated disassembly of V-ATPases. We propose that RAVE cycles between cytosol and vacuolar membrane in a glucose-dependent manner, positioning V1 and V0 subcomplexes and orienting the V1 C subunit to promote assembly.  相似文献   

13.
The vacuolar (H+)-ATPases (V-ATPases) are multisubunit complexes responsible for ATP-dependent proton transport across both intracellular and plasma membranes. The V-ATPases are composed of a peripheral domain (V1) that hydrolyzes ATP and an integral domain (V0) that conducts protons. Dissociation of V1 and V0 is an important mechanism of controlling V-ATPase activity in vivo. The crystal structure of subunit C of the V-ATPase reveals two globular domains connected by a flexible linker (Drory, O., Frolow, F., and Nelson, N. (2004) EMBO Rep. 5, 1-5). Subunit C is unique in being released from both V1 and V0 upon in vivo dissociation. To localize subunit C within the V-ATPase complex, unique cysteine residues were introduced into 25 structurally defined sites within the yeast C subunit and used as sites of attachment of the photoactivated sulfhydryl reagent 4-(N-maleimido)benzophenone (MBP). Analysis of photocross-linked products by Western blot reveals that subunit E (part of V1) is in close proximity to both the head domain (residues 166-263) and foot domain (residues 1-151 and 287-392) of subunit C. By contrast, subunit G (also part of V1) shows cross-linking to only the head domain whereas subunit a (part of V0) shows cross-linking to only the foot domain. The localization of subunit C to the interface of the V1 and V0 domains is consistent with a role for this subunit in controlling assembly of the V-ATPase complex.  相似文献   

14.
Subunit C is a V(1) sector subunit found in all vacuolar H(+)-ATPases (V-ATPases) that may be part of the peripheral stalk connecting the peripheral V(1) sector with the membrane-bound V(0) sector of the enzyme (Wilkens, S., Vasilyeva, E., and Forgac, M. (1999) J. Biol. Chem. 274, 31804--31810). To elucidate subunit C function, we performed random and site-directed mutagenesis of the yeast VMA5 gene. Site-directed mutations in the most highly conserved region of Vma5p, residues 305--325, decreased catalytic activity of the V-ATPase by up to 48% without affecting assembly. A truncation mutant (K360stop) identified by random mutagenesis suggested a small region near the C terminus of the protein (amino acids 382--388) might be important for subunit stability. Site-directed mutagenesis revealed that three aromatic amino acids in this region (Tyr-382, Phe-385, and Tyr-388) in addition to four other conserved aromatic amino acids (Phe-260, Tyr-262, Phe-296, Phe-300) are essential for stable assembly of V(1) with V(0), although alanine substitutions at these positions support some activity in vivo. Surprisingly, three mutations (F260A, Y262A, and F385A) greatly decrease the stability of the V-ATPase in vitro but increase its k(cat) for ATP hydrolysis and proton transport by at least 3-fold. The peripheral stalk of V-ATPases must balance the stability essential for productive catalysis with the dynamic instability involved in regulation; these three mutations may perturb that balance.  相似文献   

15.
Co-reconstitution of subunits E and G of the yeast V-ATPase and the alpha and beta subunits of the F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) resulted in an alpha(3)beta(3)EG hybrid complex showing 53% of the ATPase activity of TF(1). The alpha(3)beta(3)EG oligomer was characterized by electron microscopy. By processing 40,000 single particle projections, averaged two-dimensional projections at 1.2-2.4-nm resolution were obtained showing the hybrid complex in various positions. Difference mapping of top and side views of this complex with projections of the atomic model of the alpha(3)beta(3) subcomplex from TF(1) (Shirakihara, Y., Leslie, A. G., Abrahams, J. P., Walker, J. E., Ueda, T., Sekimoto, Y., Kambara, M., Saika, K., Kagawa, Y., and Yoshida, M. (1997) Structure 5, 825-836) demonstrates that a seventh mass is located inside the shaft of the alpha(3)beta(3) barrel and extends out from the hexamer. Furthermore, difference mapping of the alpha(3)beta(3)EG oligomer with projections of the A(3)B(3)E and A(3)B(3)EC subcomplexes of the V(1) from Caloramator fervidus (Chaban, Y., Ubbink-Kok, T., Keegstra, W., Lolkema, J. S., and Boekema, E. J. (2002) EMBO Rep. 3, 982-987) shows that the mass inside the shaft is made up of subunit E, whereby subunit G was assigned to belong at least in part to the density of the protruding stalk. The formation of an active alpha(3)beta(3)EG hybrid complex indicates that the coupling subunit gamma inside the alpha(3)beta(3) oligomer of F(1) can be effectively replaced by subunit E of the V-ATPase. Our results have also demonstrated that the E and gamma subunits are structurally similar, despite the fact that their genes do not show significant homology.  相似文献   

16.
The vacuolar (H(+))-ATPases (or V-ATPases) are structurally related to the F(1)F(0) ATP synthases of mitochondria, chloroplasts and bacteria, being composed of a peripheral (V(1)) and an integral (V(0)) domain. To further investigate the arrangement of subunits in the V-ATPase complex, covalent cross-linking has been carried out on the V-ATPase from clathrin-coated vesicles using three different cross-linking reagents. Cross-linked products were identified by molecular weight and by Western blot analysis using polyclonal antibodies raised against individual V-ATPase subunits. In the intact V(1)V(0) complex, evidence for cross-linking of subunits C and E, D and F, as well as E and G by disuccinimidyl glutarate was obtained, while in the free V(1) domain, cross-linking of subunits H and E was also observed. Subunits C and E as well as D and E could be cross-linked by 1-ethyl-3-(dimethylaminopropyl)carbodiimide, while subunits a and E could be cross-linked by 4-(N-maleimido)benzophenone. It was further demonstrated that it is possible to treat the V-ATPase with potassium iodide and MgATP in such a way that while subunits A, B, and H are nearly quantitatively removed, significant amounts of subunits C, D, E, and F remain attached to the membrane, suggesting that one or more of these latter subunits are in contact with the V(0) domain. In addition, treatment of the V-ATPase with cystine, which modifies Cys-254 of the catalytic A subunit, results in dissociation of subunit H, suggesting communication between the catalytic nucleotide binding site and subunit H. Finally, the stoichiometry of subunits F, G, and H were determined by quantitative amino acid analysis. Based on these and previous observations, a new structural model of the V-ATPase from clathrin-coated vesicles is proposed.  相似文献   

17.
The vacuolar H(+)-ATPase (V-ATPase) is a multisubunit complex composed of two sectors: V(1), a peripheral membrane sector responsible for ATP hydrolysis, and V(0), an integral membrane sector that forms a proton pore. Vma5p and Vma13p are V(1) sector subunits that have been implicated in the structural and functional coupling of the V-ATPase. Cells overexpressing Vma5p and Vma13p demonstrate a classic Vma(-) growth phenotype. Closer biochemical examination of Vma13p-overproducing strains revealed a functionally uncoupled V-ATPase in vacuolar vesicles. The ATP hydrolysis rate was 72% of the wild-type rate; but there was no proton translocation, and two V(1) subunits (Vma4p and Vma8p) were present at lower levels. Vma5p overproduction moderately affected both V-ATPase activity and proton translocation without affecting enzyme assembly. High level overexpression of Vma5p and Vma13p was lethal even in wild-type cells. In the absence of an intact V(0) sector, overproduction of Vma5p and Vma13p had a more detrimental effect on growth than their deletion. Overproduced Vma5p associated with cytosolic V(1) complexes; this association may cause the lethality.  相似文献   

18.
The Saccharomyces cerevisiae vacuolar proton-translocating ATPase (V-ATPase) is composed of 14 subunits distributed between a peripheral V1 subcomplex and an integral membrane V0 subcomplex. Genome-wide screens have led to the identification of the newest yeast V-ATPase subunit, Vma9p. Vma9p (subunit e) is a small hydrophobic protein that is conserved from fungi to animals. We demonstrate that disruption of yeast VMA9 results in the failure of V1 and V0 V-ATPase subunits to assemble onto the vacuole and in decreased levels of the subunit a isoforms Vph1p and Stv1p. We also show that Vma9p is an integral membrane protein, synthesized and inserted into the endoplasmic reticulum (ER), which then localizes to the limiting membrane of the vacuole. All V0 subunits and V-ATPase assembly factors are required for Vma9p to efficiently exit the ER. In the ER, Vma9p and the V0 subunits interact with the V-ATPase assembly factor Vma21p. Interestingly, the association of Vma9p with the V0-Vma21p assembly complex is disrupted with the loss of any single V0 subunit. Similarly, Vma9p is required for V0 subunits Vph1p and Vma6p to associate with the V0-Vma21p complex. In contrast, the proteolipids associate with Vma21p even in the absence of Vma9p. These results demonstrate that Vma9p is an integral membrane subunit of the yeast V-ATPase V0 subcomplex and suggest a model for the arrangement of polypeptides within the V0 subcomplex.  相似文献   

19.
Molecular modeling studies have previously suggested the possible presence of four aromatic residues (Phe(452), Tyr(532), Tyr(535), and Phe(538)) near the adenine binding pocket of the catalytic site on the yeast V-ATPase A subunit (MacLeod, K. J., Vasilyeva, E., Baleja, J. D., and Forgac, M. (1998) J. Biol. Chem. 273, 150-156). To test the proximity of these aromatic residues to the adenine ring, the yeast V-ATPase containing wild-type and mutant forms of the A subunit was reacted with 2-azido-[(32)P]ADP, a photoaffinity analog that stably modifies tyrosine but not phenylalanine residues. Mutant forms of the A subunit were constructed in which the two endogenous tyrosine residues were replaced with phenylalanine and in which a single tyrosine was introduced at each of the four positions. Strong ATP-protectable labeling of the A subunit was observed for the wild-type and the mutant containing tyrosine at 532, significant ATP-protectable labeling was observed for the mutants containing tyrosine at positions 452 and 538, and only very weak labeling was observed for the mutants containing tyrosine at 535 or in which all four residues were phenylalanine. These results suggest that Tyr(532) and possibly Phe(452) and Tyr(538) are in close proximity to the adenine ring of ATP bound to the A subunit. In addition, the effects of mutations at Phe(452), Tyr(532), Tyr(535), and Glu(286) on dissociation of the peripheral V(1) and integral V(0) domains both in vivo and in vitro were examined. The results suggest that in vivo dissociation requires catalytic activity while in vitro dissociation requires nucleotide binding to the catalytic site.  相似文献   

20.
Herman EM  Li X  Su RT  Larsen P  Hsu H  Sze H 《Plant physiology》1994,106(4):1313-1324
To understand the origin of vacuolar H+ -ATPases (V-ATPases) and their cellular functions, the subcellular location of V-H+ -ATPases was examined immunologically in root cells of oat seedlings. A V-ATPase complex from oat roots consists of a large peripheral sector (V1) that includes the 70-kD (A) catalytic and the 60-kD (B) regulatory subunits. The soluble V1 complex, thought to be synthesized in the cytoplasm, is assembled with the membrane integral sector (V0) at a yet undefined location. In mature cells, V-ATPase subunits A and B, detected in immunoblots with monoclonal antibodies (Mab) (7A5 and 2E7), were associated mainly with vacuolar membranes (20-22% sucrose) fractionated with an isopycnic sucrose gradient. However, in immature root tip cells, which lack large vacuoles, most of the V-ATPase was localized with the endoplasmic reticulum (ER) at 28 to 31% sucrose where a major ER-resident binding protein equilibrated. The peripheral subunits were also associated with membranes at 22% sucrose, at 31 to 34% sucrose (Golgi), and in plasma membranes at 38% sucrose. Immunogold labeling of root tip cells with Mab 2E7 against subunit B showed gold particles decorating the ER as well as numerous small vesicles (0.1-0.3 [mu]m diameter), presumably pro-vacuoles. The immunological detection of the peripheral subunit B on the ER supports a model in which the V1 sector is assembled with the V0 on the ER. These results support the model in which the central vacuolar membrane originates ultimately from the ER. The presence of V-ATPases on several endomembranes indicates that this pump could participate in diverse functional roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号