首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Described here is a set of three-dimensional (3D) NMR experiments that rely on CACA-TOCSY magnetization transfer via the weak 3 \textJ\textCa\textCa ^{ 3} {\text{J}}_{{{\text{C}}\alpha {\text{C}}\alpha }} coupling. These pulse sequences, which resemble recently described 13C detected CACA-TOCSY (Takeuchi et al. 2010) experiments, are recorded in 1H2O, and use 1H excitation and detection. These experiments require alternate 13C-12C labeling together with perdeuteration, which allows utilizing the small 3 \textJ\textCa\textCa ^{ 3} {\text{J}}_{{{\text{C}}\alpha {\text{C}}\alpha }} scalar coupling that is otherwise masked by the stronger 1JCC couplings in uniformly 13C labeled samples. These new experiments provide a unique assignment ladder-mark that yields bidirectional supra-sequential information and can readily straddle proline residues. Unlike the conventional HNCA experiment, which contains only sequential information to the 1 3 \textCa ^{ 1 3} {\text{C}}^{\alpha } of the preceding residue, the 3D hnCA-TOCSY-caNH experiment can yield sequential correlations to alpha carbons in positions i1, i + 1 and i2. Furthermore, the 3D hNca-TOCSY-caNH and Hnca-TOCSY-caNH experiments, which share the same magnetization pathway but use a different chemical shift encoding, directly couple the 15N-1H spin pair of residue i to adjacent amide protons and nitrogens at positions i2, i1, i + 1 and i + 2, respectively. These new experimental features make protein backbone assignments more robust by reducing the degeneracy problem associated with the conventional 3D NMR experiments.  相似文献   

2.
Mammalian metallothioneins ( \textM7\textIIMTs {\text{M}}_7^{\text{IIMTs}} ) show a clustered arrangement of the metal ions and a nonregular protein structure. The solution structures of Cd3-thiolate cluster containing β-domain of mouse β-MT-1 and rat β-MT-2 show high structural similarities, but widely differing structure dynamics. Molecular dynamics simulations revealed a substantially increased number of \textNH - \textSg {\text{NH - }}{{\text{S}}^\gamma } hydrogen bonds in β-MT-2, features likely responsible for the increased stability of the Cd3-thiolate cluster and the enfolding protein domain. Alterations in the \textNH - \textSg {\text{NH - }}{{\text{S}}^\gamma } hydrogen-bonding network may provide a rationale for the differences in dynamic properties encountered in the β-domains of MT-1, -2, and -3 isoforms, believed to be essential for their different biological function.  相似文献   

3.
Others have shown that exposing oocytes to high levels of (10–20 mM) causes a paradoxical fall in intracellular pH (pHi), whereas low levels (e.g., 0.5 mM) cause little pHi change. Here we monitored pHi and extracellular surface pH (pHS) while exposing oocytes to 5 or 0.5 mM NH3/NH4 +. We confirm that 5 mM causes a paradoxical pHi fall (−ΔpHi ≅ 0.2), but also observe an abrupt pHS fall (−ΔpHS ≅ 0.2)—indicative of NH3 influx—followed by a slow decay. Reducing [NH3/NH4 +] to 0.5 mM minimizes pHi changes but maintains pHS changes at a reduced magnitude. Expressing AmtB (bacterial Rh homologue) exaggerates −ΔpHS at both levels. During removal of 0.5 or 5 mM NH3/NH4 +, failure of pHS to markedly overshoot bulk extracellular pH implies little NH3 efflux and, thus, little free cytosolic NH3/NH4 +. A new analysis of the effects of NH3 vs. NH4 + fluxes on pHS and pHi indicates that (a) NH3 rather than NH4 + fluxes dominate pHi and pHS changes and (b) oocytes dispose of most incoming NH3. NMR studies of oocytes exposed to 15N-labeled show no significant formation of glutamine but substantial accumulation in what is likely an acid intracellular compartment. In conclusion, parallel measurements of pHi and pHS demonstrate that NH3 flows across the plasma membrane and provide new insights into how a protein molecule in the plasma membrane—AmtB—enhances the flux of a gas across a biological membrane.
Walter F. Boron (Corresponding author)Email:
  相似文献   

4.
The ability to use heart rate (fh) to predict oxygen consumption rates ( [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} ) in Steller sea lions and other pinnipeds has been investigated in fasting animals. However, it is unknown whether established fh: [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} relationships hold under more complex physiological situations, such as when animals are feeding or digesting. We assessed whether fh could accurately predict [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} in trained Steller sea lions while fasting and after being fed. Using linear mixed-effects models, we derived unique equations to describe the fh: [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} relationship for fasted sea lions resting on land and in water. Feeding did not significantly change the fh: [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} relationship on land. However, Steller sea lions in water displayed a different fh: [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} relationship after consuming a 4-kg meal compared with the fasting condition. Incorporating comparable published fh: [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} data from Steller sea lions showed a distinct effect of feeding after a 6-kg meal. Ultimately, our study illustrated that both feeding and physical environment are statistically relevant when deriving [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} from telemetered fh, but that only environment affects the practical ability to predict metabolism from fh. Updating current bioenergetic models with data gathered using these predictive fh: [(V)\dot]\textO2 \dot{V}_{{{\text{O}}_{2} }} equations will yield more accurate estimates of metabolic rates of free-ranging Steller sea lions under a variety of physiological, behavioral, and environmental states.  相似文献   

5.
6.
Polysulphide was formed according to reaction (1), when tetrathionate was (1) $${\text{S}}_4 {\text{O}}_6^{2 - } + {\text{HS}}^ - \to 2{\text{S}}_2 {\text{O}}_3^{2 - } + {\text{S(O)}} + {\text{H}}^ + $$ added to an anaerobic buffer (pH 8.5) containing excess sulphide. S(O) denotes the zero oxidation state sulphur in the polysulphide mixture S infn sup2- . The addition of formate to the polysulphide solution in the presence of Wolinella succinogenes caused the reduction of polysulphide according to reaction (2). The bacteria grew in a medium containing formate and sulphide, (2) $${\text{HCO}}_2^ - + {\text{S(O)}} + {\text{H}}2{\text{O}} \to {\text{HCO}}_3^ - + {\text{HS}}^ - + {\text{H}}^ + $$ when tetrathionate was continuously added. The cell density increased proportional to reaction (3) which represents the sum of reactions (1) and (3) $${\text{HCO}}_2^ - + {\text{S}}_{\text{4}} {\text{O}}_6^{2 - } + {\text{H}}2{\text{O}} \to {\text{HCO}}_3^ - + 2{\text{S}}_{\text{2}} {\text{O}}_3^{2 - } + 2{\text{H}}^ + $$ (2). The cell yield per mol formate was nearly the same as during growth on formate and elemental sulphur, while the velocity of growth was greater. The specific activities of polysulphide reduction by formate measured with bacteria grown with tetrathionate or with elemental sulphur were consistent with the growth parameters. The results suggest that W. succinogenes grow at the expense of formate oxidation by polysulphide and that polysulphide is an intermediate during growth on formate and elemental sulphur.  相似文献   

7.

Introduction

The Elongator complex, comprising six subunits (Elp1p-Elp6p), is required for formation of 5-carbamoylmethyl (ncm5) and 5-methoxycarbonylmethyl (mcm5) side chains on wobble uridines in 11 out of 42 tRNA species in Saccharomyces cerevisiae. Loss of these side chains reduces the efficiency of tRNA decoding during translation, resulting in pleiotropic phenotypes. Overexpression of hypomodified \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \), which in wild-type strains are modified with mcm5s2U, partially suppress phenotypes of an elp3Δ strain.

Objectives

To identify metabolic alterations in an elp3Δ strain and elucidate whether these metabolic alterations are suppressed by overexpression of hypomodified \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \).

Method

Metabolic profiles were obtained using untargeted GC-TOF-MS of a temperature-sensitive elp3Δ strain carrying either an empty low-copy vector, an empty high-copy vector, a low-copy vector harboring the wild-type ELP3 gene, or a high-copy vector overexpressing \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \). The temperature sensitive elp3Δ strain derivatives were cultivated at permissive (30 °C) or semi-permissive (34 °C) growth conditions.

Results

Culturing an elp3Δ strain at 30 or 34 °C resulted in altered metabolism of 36 and 46 %, respectively, of all metabolites detected when compared to an elp3Δ strain carrying the wild-type ELP3 gene. Overexpression of hypomodified \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \) suppressed a subset of the metabolic alterations observed in the elp3Δ strain.

Conclusion

Our results suggest that the presence of ncm5- and mcm5-side chains on wobble uridines in tRNA are important for metabolic homeostasis.
  相似文献   

8.
9.
Although nitrate is a macronutrient and can serve as good nitrogen source for many species of phytoplankton, high nitrate concentrations do not benefit the growth of phytoplankton. We hypothesise that algae cultured under high nitrate concentrations can accumulate intracellular nitrite, which is produced by nitrate reductase (NR) and can inhibit the growth of algae. To assess the validity of this hypothesis, Microcystis aeruginosa was grown under different nitrate concentrations from 3.57 to 21.43 mM in low CO2 and high CO2 conditions for 15 days. We observed that, with increasing nitrate concentrations, the intracellular nitrite concentrations of the alga increased and the growth rates and photosynthesis declined. When grown under high CO2 conditions, M. aeruginosa showed lower intracellular nitrite concentrations and higher growth rates and \textP\textm\textchla {\text{P}}_{\text{m}}^{{\text{chl}}a} , \textR\textd\textchla {\text{R}}_{\text{d}}^{{\text{chl}}a} , αchla than under low CO2 conditions. These results suggest that the accumulation of intracellular nitrite could be the cause of inhibition of algal growth under high nitrate concentrations.  相似文献   

10.
The lead absorbed by the roots induce oxidative stress conditions through the Reactive oxygen species (ROS) production for the pea plants cultivated hydroponically for 96 h on a Hoagland medium with the addition of 0.1 and 0.5 mM of Pb(NO3)2. The alterations in \textO2 - · {\text{O}}_{2}^{ - \cdot } and H2O2 concentrations were monitored spectrophotometrically which show a rapid increase in \textO2 - · {\text{O}}_{2}^{ - \cdot } production during the initial 2 h, and in case of H2O2, during the eighth hour of cultivation. The level of ROS remained higher at all the time points for the roots of the plants cultivated with Pb2+ and it was proportional to metal concentration. The production of \textO2 - · {\text{O}}_{2}^{ - \cdot } and H2O2 was visualized by means of fluorescence microscope technique. They are produced in nonenzymatic membrane lipid peroxidation and its final product is Malondialdehyde, the level of which increased together with the level of H2O2. As stress intensity raised (duration of treatment and Pb2+ concentration), so did the activities of superoxide dismutases, catalase and ascorbate peroxidase antioxidative enzymes and of low-molecular antioxidants, particularly glutathione (GSH), homoglutathione (h-GSH) and cysteine substrate toward their synthesis. The root cells redox state (GSH/GSSG) dropped proportionally to lead stress intensity.  相似文献   

11.
The acute toxicities of common organic solvents (e.g., methanol, ethanol, isopropanol, acetone, acetonitrile, and dimethylformamide) were evaluated using a biosensor based on microalgal photosynthesis measurement. The biosensor was air-tight, with no headspace, preventing volatile organic toxicants from escaping into the environment as well as partitioning from the aqueous phase into the headspace until equilibrium was reached. Both the incubating and exposure times were set at 10 min. It was observed that only 2 h was needed to obtain complete dose-related inhibition of photosynthetic activity. The results showed that all the tested organic solvents inhibited algal photosynthesis with EC50 ranging between 589 and 2,570 mM. The inhibition of these solvents was in the order: isopropanol > acetone > acetonitrile > ethanol > dimethylformamide > methanol. The quantitative structure-activity relationship (QSAR) between toxicity data and partition coefficient of the examined compounds could be modeled as follows: ${\text{log}}_{{10}} {\text{EC}}_{{50}} \;{\left( {\mu {\text{M}}} \right)} = - 0.6428\;{\text{log}}\;P + 5.76\;{\left( {{\text{R}}^{2} \approx 0.88} \right)}The acute toxicities of common organic solvents (e.g., methanol, ethanol, isopropanol, acetone, acetonitrile, and dimethylformamide) were evaluated using a biosensor based on microalgal photosynthesis measurement. The biosensor was air-tight, with no headspace, preventing volatile organic toxicants from escaping into the environment as well as partitioning from the aqueous phase into the headspace until equilibrium was reached. Both the incubating and exposure times were set at 10 min. It was observed that only 2 h was needed to obtain complete dose-related inhibition of photosynthetic activity. The results showed that all the tested organic solvents inhibited algal photosynthesis with EC50 ranging between 589 and 2,570 mM. The inhibition of these solvents was in the order: isopropanol > acetone > acetonitrile > ethanol > dimethylformamide > methanol. The quantitative structure-activity relationship (QSAR) between toxicity data and partition coefficient of the examined compounds could be modeled as follows: \textlog10 \textEC50   ( m\textM ) = - 0.6428  \textlog  P + 5.76  ( \textR2 ? 0.88 ){\text{log}}_{{10}} {\text{EC}}_{{50}} \;{\left( {\mu {\text{M}}} \right)} = - 0.6428\;{\text{log}}\;P + 5.76\;{\left( {{\text{R}}^{2} \approx 0.88} \right)}. This indicates that the photosynthetic activity of the microalga Pseudokirchneriella subcapitata is highly dependent on the hydrophobicity of these commonly used organic solvents.  相似文献   

12.
The activation mechanism of Pseudomonas stutzeri cytochrome c peroxidase (CCP) was probed through the mediated electrochemical catalysis by its physiological electron donor, P. stutzeri cytochrome c-551. A comparative study was carried out, by performing assays with the enzyme in the resting oxidized state as well as in the mixed-valence activated form, using cyclic voltammetry and a pyrolytic graphite membrane electrode. In the presence of both the enzyme and hydrogen peroxide, the peak-like signal of cytochrome c-551 is converted into a sigmoidal wave form characteristic of an \textE\textr \textC\texti {\text{E}}_{\text{r}} {\text{C}}_{\text{i}}^{\prime } catalytic mechanism. An intermolecular electron transfer rate constant of (4 ± 1) × 105 M−1 s−1 was estimated for both forms of the enzyme, as well as a similar Michaelis–Menten constant. These results show that neither the intermolecular electron transfer nor the catalytic activity is kinetically controlled by the activation mechanism of CCP in the case of the P. stutzeri enzyme. Direct enzyme catalysis using protein film voltammetry was unsuccessful for the analysis of the activation mechanism, since P. stutzeri CCP undergoes an undesirable interaction with the pyrolytic graphite surface. This interaction, previously reported for the Paracoccus pantotrophus CCP, induces the formation of a non-native conformation state of the electron-transferring haem, which has a redox potential 200 mV lower than that of the native state and maintains peroxidatic activity.  相似文献   

13.
Experiments were conducted to test the hypothesis that aliphatic hydrocarbons bind to pockets/crevices of sodium (Na+) channels to cause action potential (AP) block. Aliphatic solutes exhibiting successively greater octanol/water partitition coefficients (K ow) were studied. Each solute blocked Na+ channels. The 50% effective concentration (EC50) to block APs could be mathematically predicted as a function of the solute’s properties. The solutes studied were methyl ethyl ketone (MEK), cyclohexanone, dichloromethane, chloroform and triethylamine (TriEA); the K ow increased from MEK to TriEA. APs were recorded from frog nerves, and test solutes were added to Ringer’s solution bathing the nerve. When combined with EC50s for solutes with log K ows < 0.29 obtained previously, the solute EC50s could be predicted as a function of the fractional molar volume (dV/dm = [dV/dn]/100), polarity (P) and the hydrogen bond acceptor basicity (β) by the following equation: Fluidity changes cannot explain the EC50s. Each of the solutes blocks Na+ channels with little or no change in kinetics. Na+ channel block explains much of the EC50 data. EC50s are produced by a combination of effects including ion channel block, fluidity changes and osmotically induced structural changes. As the solute log K ow increases to values near 1 or greater, Na+ channel block dominates in determining the EC50. The results are consistent with the hypothesis that the solutes bind to channel crevices to cause Na+ channel and AP block.  相似文献   

14.
As an efficient and cost-effective nitrogen removal process, anaerobic ammonium oxidation (ANAMMOX) could be well operated at suitable pH condition. However, pH shock occurred in different kinds of wastewater and affected ANANNOX process greatly. The present research aimed at studying the performance and kinetics of ANAMMOX granular sludge with pH shock. When influent pH was below 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with decreasing pH. At Ph 6.0, effluent \({\text{NO}}_{2}^{ - }\)–N approached 100 mg/L, and the ratios of \(\Delta {\text{NO}}_{2}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N and }}\Delta {\text{NO}}_{3}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N}}\) approached 2.2 and 1.3, respectively. Both greatly deviated from theoretical values. When influent pH was above 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with increasing pH. At pH 9.0, ammonium removal rate (ARR) and nitrite removal rate (NRR) decreased to 0.011 ± 0.004 and 0.035 ± 0.004 kg/(m3·d), respectively. Besides, \(\Delta {\text{NO}}_{2}^{ - }\)–N:\(\Delta {\text{NH}}_{4}^{ + }\)–N deviated from theoretical value. Longer recovery time from pH 9.0 than from pH 6.0 indicated that alkaline surroundings inhibited anaerobic ammonium oxidizing bacteria (AAOB) greater. The sludge settling velocity was 2.15 cm/s at pH 7.5. However, it decreased to 2.02 cm/s when pH was 9.0. Acidic pH had little effect on sludge size, but disintegration of ANAMMOX granule was achieved with pH of 9.0. The Bell-shaped (A) model and the Ratkowsky model were more applicable to simulate the effect resulting from pH shock on ANAMMOX activity (R2 > 0.95), and both could describe ANAMMOX activity well with pH shock. They indicated that qmax was 0.37 kg \(\Delta {\text{NH}}_{4}^{ + }\)–N/(kgMLSS·d) at the optimum pH value (7.47) in present study. The minimum pH during which ANAMMOX occurred was 5.68 while the maximum pH for ANAMMOX reaction was 9.26. Based on nitrogen removal performance with different pH, strongly acidic (pH ≤ 6.5) or alkaline (pH ≥ 8.5) inhibited ANAMMOX process. Besides, ANAMMOX appeared to be more susceptible to alkaline wastewater. Compared to extremely acidic condition (low pH), extremely alkaline condition (high pH) affected ANAMMOX granules much more.  相似文献   

15.
Glutamine-free culture of Vero cells has previously been shown to cause higher cell yield and lower ammonia accumulation than that in glutamine-containing culture. Nitrogen metabolism of asparagine and glutamate as glutamine replacer was studied here using nuclear magnetic resonance (NMR) spectroscopy. 15N-labelled glutamate or asparagine was added and their incorporation into nitrogenous metabolites was monitored by heteronuclear multiple bond coherence (HMBC) NMR spectroscopy. In cells incubated with l-[15N]glutamate, the 15N label was subsequently found in a number of metabolites including alanine, aspartate, proline, and an unidentified compound. No detectable signal occurred, indicating that glutamate was utilized by transamination rather than by oxidative deamination. In cells incubated with l-[2-15N]asparagine, the 15N label was subsequently found in aspartate, the amine group of glutamate/glutamine, and in two unidentified compounds. Incubation of cells with l-[4-15N]asparagine showed that the amide nitrogen of asparagine was predominantly transferred to glutamine amide. There was no detectable production of , showing that most of the asparagine amide was transaminated by asparagine synthetase rather than deaminated by asparaginase. Comparing with a glutamine-containing culture, the activities of phosphate-activated glutaminase (PAG), glutamate dehydrogenase (GDH) and alanine aminotransferase (ALT) decreased significantly and the activity of aspartate aminotransferase (AST) decreased slightly.  相似文献   

16.
Summary The energy requirements of Adélie penguin (Pygoscelis adeliae) chicks were analysed with respect to body mass (W, 0.145–3.35 kg, n=36) and various forms of activity (lying, standing, minor activity, locomotion, walking on a treadmill). Direct respirometry was used to measure O2 consumption ( ) and CO2 production. Heart rate (HR, bpm) was recorded from the ECG obtained by both externally attached electrodes and implantable HR-transmitters. The parameters measured were not affected by hand-rearing of the chicks or by implanting transmitters. HR measured in the laboratory and in the field were comparable. Oxygen uptake ranged from in lying chicks to at maximal activity, RQ=0.76. Metabolic rate in small wild chicks (0.14–0.38 kg) was not affected by time of day, nor was their feeding frequency in the colony (Dec 20–21). Regressions of HR on were highly significant (p< 0.0001) in transmitter implanted chicks (n=4), and two relationships are proposed for the pooled data, one for minor activities ( ), and one for walking ( ). Oxygen consumption, mass of the chick (2–3 kg), and duration of walking (T, s) were related as , whereas mass-specific O2 consumption was related to walking speed (S, m·s-1) as .Abbreviations bpm beats per minute - D distance walked (m) - ECG electrocardiogram - HR heart rate (bpm) - ns number of steps - RQ respiratory quotient - S walking speed (m·s-1) - T time walked (s) - W body mass (kg)  相似文献   

17.
The effects of oxygen partial pressure ( P\textO2 P_{{{\text{O}}_{2} }} ) on development and respiration were investigated in the eggs of the Australian lungfish, Neoceratodus forsteri. At 20°C, embryonic survival and development was optimal at 15 and 20.9 kPa. Development was slowed at 5 and 10 kPa and embryos did not survive 2 kPa. At lower P\textO2 P_{{{\text{O}}_{2} }} , the rate of oxygen consumption also decreased. Embryos responded to hypoxia by hatching at an earlier age and stage of development, and hatching wet and dry gut-free masses were reduced. The role of oxygen conductance ( G\textO2 G_{{{\text{O}}_{2} }} ) in gas exchange was also examined under selected environmental P\textO2 P_{{{\text{O}}_{2} }} and temperatures. The breakdown of the vitelline membrane changed capsule geometry, allowed water to be absorbed into the perivitelline space and increased capsule G\textO2 G_{{{\text{O}}_{2} }} . This occurred at embryonic stage 32 under all treatments and was largely independent of both P\textO2 P_{{{\text{O}}_{2} }} and temperature (15, 20 and 25°C), demonstrating that capsule G\textO2 G_{{{\text{O}}_{2} }} cannot adaptively respond to altered environmental conditions. The membrane breakdown increased capsule diffusive G\textO2 G_{{{\text{O}}_{2} }} and stabilised perivitelline P\textO2 P_{{{\text{O}}_{2} }} , but reduced the convective G\textO2 G_{{{\text{O}}_{2} }} of the perivitelline fluid, as the large perivitelline volume and inadequate convective current resulted in a P\textO2 P_{{{\text{O}}_{2} }} gradient within the egg prior to hatch.  相似文献   

18.
Total height, diameter, index volume, stem straightness, apical dominance, and survival were assessed at 8 years from seed in an open-pollinated progeny test of 36 families of European chestnut (Castanea sativa Miller) established at two sites in the Atlantic area of Galicia, Spain. Iterative spatial analysis was applied to eliminate the effect of the spatial dependence in the original data and to estimate accurately genetic parameters for evaluating the potential for selection of the measured trees. Spatial analysis was very beneficial for growth traits and survival, but less so if at all for form traits. Estimated individual heritabilities ranged from moderate to high for growth traits ([^(h)]i2 = 0.29 - 0.42 \widehat{h}_i^2 = 0.29 - 0.42 ) and stem straightness ([^(h)]i2 = 0.24 - 0.42 \widehat{h}_i^2 = 0.{24} - 0.{42} ). High coefficients of additive genetic variance were obtained for volume ( [^(\textC)]\textV\textA = 36.5 - 41.5% \widehat{\text{C}}{{\text{V}}_{\text{A}}} = {36}.{5} - {41}.{5}\% ) and straightness ( [^(\textC)]\textV\textA = 44.26 - 53.84% \widehat{\text{C}}{{\text{V}}_{\text{A}}} = {44}.{26} - {53}.{84}\% ). Phenotypic and estimated genetic correlations between growth traits were very high, and correlations between sites indicated that there was no important family × site interaction. No adverse correlations between traits were evident. The results indicate the ample potential for selection in the current progeny trial, where responses to within-family and combined selection for growth traits may be high. Accordingly, three selection scenarios were addressed with the aim to initiate the selection of individuals for implementing the Forest Breeding Plan of Galicia for European chestnut.  相似文献   

19.
We explored the ability of a two-site, three-barrier (2S3B) Eyring model to describe recently reported data on current flow through open CaV3.1 T-type calcium channels, varying Ca2+ and Ba2+ over a wide range (100 nm–110 mm) while recording whole-cell currents over a wide voltage range (−150 mV to +100 mV) from channels stably expressed in HEK 293 cells. Effects on permeation were isolated using instantaneous current–voltage relationships (IIV) after strong, brief depolarizations to activate channels with minimal inactivation. Most experimental results were reproduced by a 2S3B model. The model described the IIV relationships, apparent affinities for permeation and block for Ca2+ and Ba2+, and shifts in reversal potential between Ca2+ and Ba2+. The fit to block by 1 mm  \textMg2+\texti {\text{Mg}}^{2+}_{\text{i}} was reasonable, but block by \textMg2+\texto {\text{Mg}}^{2+}_{\text{o}} was described less well. Surprisingly, fits were comparable with strong ion–ion repulsion, with no repulsion, or with intermediate values. With weak repulsion, there was a single high-affinity site, with a low-affinity site near the cytoplasmic side of the pore. With strong repulsion, the net charge of ions in the pore was near +2 over a relatively wide range of concentration and voltage, suggesting a knockoff mechanism. With strong repulsion, Ba2+ preferred the inner site, while Ca2+ preferred the outer site, potentially explaining faster entry of Ni2+ and other pore blockers when Ba2+ is the charge carrier.  相似文献   

20.
The African catfish, Clarias gariepinus, possesses a pair of suprabranchial chambers located in the dorsal-posterior part of the branchial cavity having extensions from the upper parts of the second and fourth gill arches, forming the arborescent organs. This structure is an air-breathing organ (ABO) and allows aerial breathing (AB). We evaluated its cardiorespiratory responses to aquatic hypoxia. To determine the mode of air-breathing (obligate or accessory), fish had the respiratory frequency (f R) monitored and were subjected to normoxic water (PwO2 = 140 mmHg) without becoming hyperactive for 30 h. During this period, all fish survived without displaying evidences of hyperactivity and maintained unchanged f R, confirming that this species is a facultative air-breather. Its aquatic O2 uptake ( [(V)\dot]\textO2 \dot{V}{\text{O}}_{2} ) was maintained constant down to a critical PO2 (PcO2) of 60 mmHg, below which [(V)\dot]\textO2 \dot{V}{\text{O}}_{2} declined linearly with further reductions of inspired O2 tension (PiO2). Just above the PcO2 the ventilatory tidal volume (V T) increased significantly along with gill ventilation ( [(V)\dot]\textG \dot{V}_{\text{G}} ), while f R changed little. Consequently, the water convection requirement ( [(V)\dot]\textG /[(V)\dot]\textO2 ) \left( {\dot{V}_{\text{G}} /\dot{V}{\text{O}}_{2} } \right) increased steeply. This threshold applied to a cardiac response that included reflex bradycardia. AB was initiated at PiO2 = 140 mmHg (normoxia) and air-breathing episodes increased linearly with more severe hypoxia, being significantly higher at PiO2 tensions below the PcO2. Air-breathing episodes were accompanied by bradycardia pre air-breath, to tachycardia post air-breath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号