首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Growth of Wolinella succinogenes with polysulphide as terminal acceptor of phosphorylative electron transport
Authors:Oliver Klimmek  Achim Kröger  Ralf Steudel  Gabriele Holdt
Institution:1. Institut für Mikrobiologie der J. W. Goethe-Universit?t Frankfurt am Main, Theodor-Stern-Kai 7, Haus 75A, W-6000, Frankfurt am Main, Federal Republic of Germany
2. Institut für Anorganische und Analytische Chemie, Technische Universit?t Berlin, Strasse des 17. Juni 135, W-1000, Berlin 12, Federal Republic of Germany
Abstract:Polysulphide was formed according to reaction (1), when tetrathionate was (1) $${\text{S}}_4 {\text{O}}_6^{2 - } + {\text{HS}}^ - \to 2{\text{S}}_2 {\text{O}}_3^{2 - } + {\text{S(O)}} + {\text{H}}^ + $$ added to an anaerobic buffer (pH 8.5) containing excess sulphide. S(O) denotes the zero oxidation state sulphur in the polysulphide mixture S infn sup2- . The addition of formate to the polysulphide solution in the presence of Wolinella succinogenes caused the reduction of polysulphide according to reaction (2). The bacteria grew in a medium containing formate and sulphide, (2) $${\text{HCO}}_2^ - + {\text{S(O)}} + {\text{H}}2{\text{O}} \to {\text{HCO}}_3^ - + {\text{HS}}^ - + {\text{H}}^ + $$ when tetrathionate was continuously added. The cell density increased proportional to reaction (3) which represents the sum of reactions (1) and (3) $${\text{HCO}}_2^ - + {\text{S}}_{\text{4}} {\text{O}}_6^{2 - } + {\text{H}}2{\text{O}} \to {\text{HCO}}_3^ - + 2{\text{S}}_{\text{2}} {\text{O}}_3^{2 - } + 2{\text{H}}^ + $$ (2). The cell yield per mol formate was nearly the same as during growth on formate and elemental sulphur, while the velocity of growth was greater. The specific activities of polysulphide reduction by formate measured with bacteria grown with tetrathionate or with elemental sulphur were consistent with the growth parameters. The results suggest that W. succinogenes grow at the expense of formate oxidation by polysulphide and that polysulphide is an intermediate during growth on formate and elemental sulphur.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号