首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Here we describe the large-scale domain movements and hydration structure changes in the active-site cleft of unligated glutamate dehydrogenase. Glutamate dehydrogenase from Thermococcus profundus is composed of six identical subunits of M(r) 46K, each with two distinct domains of roughly equal size separated by a large active-site cleft. The enzyme in the unligated state was crystallized so that one hexamer occupied a crystallographic asymmetric unit, and the crystal structure of the hexamer was solved and refined at a resolution of 2.25 A with a crystallographic R-factor of 0.190. In that structure, the six subunits displayed significant conformational variations with respect to the orientations of the two domains. The variation was most likely explained as a hinge-bending motion caused by small changes in the main chain torsion angle of the residue composing a loop connecting the two domains. Small-angle X-ray scattering profiles both at 293 and 338 K suggested that the apparent molecular size of the hexamer was slightly larger in solution than in the crystalline state. These results led us to the conclusion that (i) the spontaneous domain motion was the property of the enzyme in solution, (ii) the domain motion was trapped in the crystallization process through different modes of crystal contacts, and (iii) the magnitude of the motion in solution was greater than that observed in the crystal structure. The present cryogenic diffraction experiment enabled us to identify 1931 hydration water molecules around the hexamer. The hydration structures around the subunits exhibited significant changes in accord with the degree of the domain movement. In particular, the hydration water molecules in the active-site cleft were rearranged markedly through migrations between specific hydration sites in coupling strongly with the domain movement. We discussed the cooperative dynamics between the domain motion and the hydration structure changes in the active site of the enzyme. The present study provides the first example of a visualized hydration structure varying transiently with the dynamic movements of enzymes and may form a new concept of the dynamics of multidomain enzymes in solution.  相似文献   

2.
The crystal structure of Fe-type nitrile hydratase from Rhodococcus erythropolis AJ270 was determined at 1.3A resolution. The two cysteine residues (alphaCys(112) and alphaCys(114)) equatorially coordinated to the ferric ion were post-translationally modified to cysteine sulfinic acids. A glutamine residue (alphaGln(90)) in the active center gave double conformations. Based on the interactions among the enzyme, substrate and water molecules, a new mechanism of biocatalysis of nitrile hydratase was proposed, in which the water molecule activated by the glutamine residue performed as the nucleophile to attack on the nitrile which was simultaneously interacted by another water molecule coordinated to the ferric ion.  相似文献   

3.
Mutants of a cobalt-containing nitrile hydratase (NHase, EC 4.2.1.84) from Pseudonocardia thermophila JCM 3095 involved in substrate binding, catalysis and formation of the active center were constructed, and their characteristics and crystal structures were investigated. As expected from the structure of the substrate binding pocket, the wild-type enzyme showed significantly lower K(m) and K(i) values for aromatic substrates and inhibitors, respectively, than aliphatic ones. In the crystal structure of a complex with an inhibitor (n-butyric acid) the hydroxyl group of betaTyr68 formed hydrogen bonds with both n-butyric acid and alphaSer112, which is located in the active center. The betaY68F mutant showed an elevated K(m) value and a significantly decreased k(cat) value. The apoenzyme, which contains no detectable cobalt atom, was prepared from Escherichia coli cells grown in medium without cobalt ions. It showed no detectable activity. A disulfide bond between alphaCys108 and alphaCys113 was formed in the apoenzyme structure. In the highly conserved sequence motif in the cysteine cluster region, two positions are exclusively conserved in cobalt-containing or iron-containing nitrile hydratases. Two mutants (alphaT109S and alphaY114T) were constructed, each residue being replaced with an iron-containing one. The alphaT109S mutant showed similar characteristics to the wild-type enzyme. However, the alphaY114T mutant showed a very low cobalt content and catalytic activity compared with the wild-type enzyme, and oxidative modifications of alphaCys111 and alphaCys113 residues were not observed. The alphaTyr114 residue may be involved in the interaction with the nitrile hydratase activator protein of P. thermophila.  相似文献   

4.
Kubiak K  Nowak W 《Biophysical journal》2008,94(10):3824-3838
Nitrile hydratase (NHase) is an enzyme used in the industrial biotechnological production of acrylamide. The active site, which contains nonheme iron or noncorrin cobalt, is buried in the protein core at the interface of two domains, α and β. Hydrogen bonds between βArg-56 and αCys-114 sulfenic acid (αCEA114) are important to maintain the enzymatic activity. The enzyme may be inactivated by endogenous nitric oxide (NO) and activated by absorption of photons of wavelength λ < 630 nm. To explain the photosensitivity and to propose structural determinants of catalytic activity, differences in the dynamics of light-active and dark-inactive forms of NHase were investigated using molecular dynamics (MD) modeling. To this end, a new set of force field parameters for nonstandard NHase active sites have been developed. The dynamics of the photodissociated NO ligand in the enzyme channel was analyzed using the locally enhanced sampling method, as implemented in the MOIL MD package. A series of 1 ns trajectories of NHases shows that the protonation state of the active site affects the dynamics of the catalytic water and NO ligand close to the metal center. MD simulations support the catalytic mechanism in which a water molecule bound to the metal ion directly attacks the nitrile carbon.  相似文献   

5.
The crystal structure of the nitrile hydratase (NHase) from Bacillus smithii SC-J05-1 was determined. Our analysis of the structure shows that some residues that seem to be responsible for substrate recognition are different from those of other NHases. In particular, the Phe52 in the beta subunit of NHase from B. smithii covers the metal center partially like a small lid and narrows the active site cleft. It is well known that the NHase from B. smithii especially prefers aliphatic nitriles for its substrate rather than aromatic ones, and we can now infer that the Phe52 residue may play a key role in the substrate specificity for this enzyme. This finding leads us to suggest that substitution of these residues may alter the substrate specificity of the enzyme.  相似文献   

6.
Noguchi T  Nojiri M  Takei K  Odaka M  Kamiya N 《Biochemistry》2003,42(40):11642-11650
Nitrile hydratase (NHase) from Rhodococcus N-771, which catalyzes hydration of nitriles to the corresponding amides, exhibits novel photosensitivity; in the dark, it is in the inactive form that binds an endogenous nitric oxide (NO) molecule at the non-heme iron center, and photodissociation of the NO activates the enzyme. NHase is also known to have a unique active site structure. Two cysteine ligands to the iron center, alphaCys112 and alphaCys114, are post-translationally modified to sulfinic acid (Cys-SO(2)H) and sulfenic acid (Cys-SOH), respectively, which are thought to play a crucial role in the catalytic reaction. Here, we have determined the protonation structures of these Cys-SO(2)H and Cys-SOH groups using Fourier transform infrared (FTIR) spectroscopy in combination with density functional theory (DFT) calculations. The light-induced FTIR difference spectrum of NHase between the dark inactive and light active forms exhibited two prominent signals at (1154-1148)/1126 and (1040-1034)/1019 cm(-1), which downshifted to 1141/1114 and 1026/1012 cm(-1), respectively, in the uniformly (34)S-labeled NHase. In addition, a minor signal at 915/908 cm(-1) also showed a considerable downshift upon (34)S labeling. These (34)S-sensitive signals were basically conserved in D(2)O buffer with only slight shifts. Vibrational frequencies of methanesulfenic acid (CH(3)SOH) and methanesulfinic acid (CH(3)SO(2)H), simple model compounds of Cys-SOH and Cys-SO(2)H, respectively, were calculated using the DFT method in both the protonated and deprotonated forms and in metal complexes. Comparison of the calculated frequencies and isotope shifts with the observed ones provided the assignment of the two major signals around 1140 and 1030 cm(-1) to the asymmetric and symmetric SO(2) stretching vibrations, respectively, of the S-bonded Cys-SO(2)(-) complex, and the assignment of the minor signal around 910 cm(-1) most likely to the SO stretch of the S-bonded Cys-SO(-) complex. These assignments and the small frequency shifts upon deuteration are consistent with the view that the deprotonated alphaCys112-SO(2)(-) and alphaCys114-SO(-) are hydrogen-bonded with the protons from betaArg56 and/or betaArg141, forming a reactive cavity at the interface of the alpha and beta subunits. There is further speculation that either of these groups is hydrogen bonded to a reactant water molecule, increasing its basicity to facilitate the nucleophilic attack on the nitrile substrate bound to the iron center.  相似文献   

7.
Nojiri M  Nakayama H  Odaka M  Yohda M  Takio K  Endo I 《FEBS letters》2000,465(2-3):173-177
When the genes encoding alpha and beta subunits of Fe-type nitrile hydratase (NHase) from Rhodococcus sp. N-771 were expressed in Escherichia coli in Co-supplemented medium without co-expression of the NHase activator, the NHase specifically incorporated not Fe but Co ion into the catalytic center. The produced Co-substituted enzyme exhibited rather weak NHase activity, initially. However, the activity gradually increased by the incubation with an oxidizing agent, potassium hexacyanoferrate. The oxidizing agent is likely to activate the Co-substituent by oxidizing the Co atom to a low-spin Co(3+) state and/or modification of alphaCys-112 to a cysteine-sulfinic acid. It is suggested that the NHase activator not only supports the insertion of an Fe ion into the NHase protein but also activates the enzyme via the oxidation of its iron center.  相似文献   

8.
The hydration structure of bovine beta-trypsin was investigated in cryogenic X-ray diffraction experiments. Three crystal forms of the enzyme inhibited by benzamidine with different molecular packing were selected to deduce the hydration structure for the entire surface of the enzyme. The crystal structures in all three of the crystal forms were refined at the resolution of 1.8 A at 100 K and 293 K. The number of hydration water molecules around the enzyme at 100 K was 1.5 to two times larger than that at 293 K, indicating that the motion of hydration water was quenched by cooling. In particular, the increase in the number of hydration water molecules was prominent on flat and electrostatically neutral surface areas. The water-to-protein mass ratio and the radius of gyration of a structural model of hydrated trypsin at 100 K was consistent with the results obtained by other experimental techniques for proteins in solution. Hydration water molecules formed aggregates of various shapes and dimensions, and some of the aggregates even covered hydrophobic residues by forming oligomeric arrangements. In addition, the aggregates brought about large-scale networks of hydrogen bonds. The networks covered a large proportion of the surface of trypsin like a patchwork, and mechanically linked several secondary structures of the enzyme. By merging the hydration structures of the three crystal forms at 100 K, a distribution function of hydration water molecules was introduced to approximate the static hydration structure of trypsin in solution. The function showed that the negatively charged active site of trypsin tended to be easily exposed to bulk solvent. This result is of interest with respect to the solvent shielding effect and the recognition of a positively charged substrate by trypsin.  相似文献   

9.
Nitrile hydratase (NHase) is an enzyme containing non-corrin Co3+ in the non-standard active site. NHases from Pseudonocardia thermophila JCM 3095 catalyse hydration of nitriles to corresponding amides. The efficiency of the enzyme is 100 times higher for aliphatic nitriles then aromatic ones. In order to understand better this selectivity dockings of a series of aliphatic and aromatic nitriles and related amides into a model protein based on an X-ray structure were performed. Substantial differences in binding modes were observed, showing better conformational freedom of aliphatic compounds. Distinct interactions with postranslationally modified cysteines present in the active site of the enzyme were observed. Modeling shows that water molecule activated by a metal ion may easily directly attack the docked acrylonitrile to transform this molecule into acryloamide. Thus docking studies provide support for one of the reaction mechanisms discussed in the literature. Figure Crystalographic structure of Pseudonocardia thermophila JCM 3095 nitrile hydratase (a) and the non-standard active site (b)  相似文献   

10.
1-Deoxynojirimycin, a pseudo-monosaccharide, is a strong inhibitor of glucoamylase but a relatively weak inhibitor of cyclodextrin glucanotransferase (CGTase). To elucidate this difference, the crystal structure of the CGTase from alkalophilic Bacillus sp. 1011 complexed with 1-deoxynojirimycin was determined at 2.0 A resolution with the crystallographic R value of 0.154 (R(free) = 0.214). The asymmetric unit of the crystal contains two CGTase molecules and each molecule binds two 1-deoxynojirimycins. One 1-deoxynojirimycin molecule is bound to the active center by hydrogen bonds with catalytic residues and water molecules, but its binding mode differs from that expected in the substrate binding. Another 1-deoxynojirimycin found at the maltose-binding site 1 is bound to Asn-667 with a hydrogen bond and by stacking interaction with the indole moiety of Trp-662 of molecule 1 or Trp-616 of molecule 2. Comparison of this structure with that of the acarbose-CGTase complex suggested that the lack of stacking interaction with the aromatic side chain of Tyr-100 is responsible for the weak inhibition by 1-deoxynojirimycin of the enzymatic action of CGTase.  相似文献   

11.
There is growing evidence in the literature emphasizing the significance of the post-translational modification of cysteine thiols to sulfenic acids (SOH), which have been found in a number of proteins. Crystallographic and mass spectrometric evidence has shown the presence of this group in an inactive form of the industrially important enzyme nitrile hydratase (NHase). This oxidized cysteine is unique in that it forms part of the coordination sphere of the low-spin iron III at the active site of the enzyme. The presence of this unstable sulfenic group in the active form of NHase is the subject of some controversy. To try to detect this function in NHase, we have studied the inhibitory effect on nitrile hydration of reagents known to react with sulfenic acids. Two NHases were studied, namely, Rhodococcus rhodochrous R312 NHase and Comamonas testosteroni NI1 NHase, and the reagents used were meta-chlorocarbonyldicyano-phenylhydrazone (m-ClCP), 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), and 2-nitro-5-thiocyanato-benzoic acid (NTBA). Following this approach we report three novel inhibitors of NHases. In addition, we report thiocyanate reagents that can be used to monitor NHase activity spectroscopically.  相似文献   

12.
Cyclomaltoheptaose (cycloheptaamylose) has been crystallized with 1-adamantanemethanol as the guest molecule. The complex crystallized in space group C222(1), with unit-cell dimensions a = 19.162 (13), b = 23.965 (17), and c = 32.597 (27) A. The structure was solved by rotation-translation search-methods. The cyclomaltoheptaose exists as a dimer in the crystal by means of extensive hydrogen-bonding across the secondary hydroxyl ends of two cyclomaltoheptaose molecules. The two halves of the dimer are related by a crystallographic two-fold axis. The primary hydroxyl ends of two adjacent cyclomaltoheptaose molecules are also related by a crystallographic two-fold axis, but do not directly hydrogen bond to one another. Instead, they are held in place by a strong hydrogen bond from the hydroxyl group of the 1-adamantanemethanol to a primary hydroxyl group on an adjacent cyclomaltoheptaose molecule. Other stabilizing hydrogen bonds are formed via three water molecules which are situated at the primary hydroxyl interface, and others that form parallel columns stabilizing the crystal structure. A unique feature of this complex is the presence of trapped water in the cavity at the secondary hydroxyl interface. This water is distributed over 3 disordered sites. Its presence blocks one possible site for the 1-adamantanemethanol, which, instead, binds near the primary hydroxyl end, with its hydroxyl group and part of the adamantane moiety protruding from the cyclomaltoheptaose.  相似文献   

13.
腈水合酶基因克隆与调控表达的研究进展   总被引:3,自引:1,他引:2  
微生物腈水合酶作为新型生物催化剂得到日益广泛的应用 ,但野生菌株本身存在的酶稳定性差等问题制约了这一绿色工艺的发展 ,基因工程菌为解决这个难题开辟了新的思路。总结了各种菌株中腈水合酶的序列研究进展 ,虽然基因序列和蛋白序列同源性不高 ,但它们都以基因簇的形式存在 ,并具有相同的活性中心序列。归纳了克隆并表达腈水合酶基因的基本步骤和方式 ,并提出几种有效增强重组腈水合酶活性表达的方法。  相似文献   

14.
Nitrile hydratase (NHase, EC 4.2.1.84) is one of the key enzymes of nitrile metabolism in a large number of microbes that catalyses the hydration of nitriles to corresponding amides, and has been successfully adopted in chemical industry for production of acrylamide, nicotinamide and 5-cyanovaleramide. However, NHase is still under active consideration of enzymologists to expand its potential for synthesis of various amides. Most of the NHases have been reported for their limited substrates acceptability, low enantioselectivity and thermostability and therefore a considerable improvement is required for developing as robust biocatalyst for synthesis of a range of organic amides. Studies on biochemical properties, gene configuration, active-site chemical models and site-directed mutagenesis have given the insight into the structural and functional characteristics of NHase. Keeping in view, the present review critically describes the available information on natural sources (based on activity and phylogenetic analysis), biochemical properties, catalysis–structure relationship, molecular expression and potential applications of this enzyme.  相似文献   

15.
Nitrile hydratases (NHase), which catalyze the hydration of nitriles to amides, have an unusual Fe3+ or Co3+ center with two modified Cys ligands: cysteine sulfininate (Cys-SO2 ) and either cysteine sulfenic acid or cysteine sulfenate [Cys-SO(H)]. Two catalytic mechanisms have been proposed. One is that the sulfenyl oxygen activates a water molecule, enabling nucleophilic attack on the nitrile carbon. The other is that the Ser ligand ionizes the strictly conserved Tyr, activating a water molecule. Here, we characterized mutants of Fe-type NHase from Rhodococcus erythropolis N771, replacing the Ser and Tyr residues, αS113A and βY72F. The αS113A mutation partially affected catalytic activity and did not change the pH profiles of the kinetic parameters. UV–vis absorption spectra indicated that the electronic state of the Fe center was altered by the αS113A mutation, but the changes could be prevented by a competitive inhibitor, n-butyric acid. The overall structure of the αS113A mutant was similar to that of the wild type, but significant changes were observed around the catalytic cavity. Like the UV–vis spectra, the changes were compensated by the substrate or product. The Ser ligand is important for the structure around the catalytic cavity, but is not essential for catalysis. The βY72F mutant exhibited no activity. The structure of the βY72F mutant was highly conserved but was found to be the inactivated state, with αCys114-SO(H) oxidized to Cys-SO2 , suggesting that βTyr72 affected the electronic state of the Fe center. The catalytic mechanism is discussed on the basis of the results obtained.  相似文献   

16.
Recombinant human glycosylated renin has been crystallized in complex with CGP 38'560, a transition state analog inhibitor (IC50 = 2 x 10(-9) M), in a tetragonal crystal form. The structure has been determined to a resolution of 2.4 A and refined to a crystallographic Rfactor of 17.6%. It reveals the conformation of the inhibitor as well as its interactions with the enzyme active site. The active site is a deep cleft between the N- and the C-terminal domains to which the inhibitor binds in an extended conformation filling the S4 to S2' pockets. The structure of the complex is compared with that of the related uninhibited enzyme pepsin. Significant changes in the relative orientation of the N- and C-terminal domains are observed. In the inhibited renin structure the C-terminal loop segments forming the active site are closer to those from the N-terminal domain than in the related "open" pepsin structure. In addition, the structure of uninhibited glycosylated renin has been determined at 2.8 A resolution from a cubic crystal form with two renin molecules in the asymmetric unit. The two independent renin molecules show different conformations with respect to the relative orientation of their N- and C-terminal domains; one molecule is found in the "closed inhibited" conformation, the other in the "open uninhibited" conformation.  相似文献   

17.
Low-molecular weight protein tyrosine phosphatases are virtually ubiquitous, which implies that they have important cellular functions. We present here the 2.2 A resolution X-ray crystallographic structure of wild-type LTP1, a low-molecular weight protein tyrosine phosphatase from Saccharomyces cerevisiae. We also present the structure of an inactive mutant substrate complex of LTP1 with p-nitrophenyl phosphate (pNPP) at a resolution of 1.7 A. The crystal structures of the wild-type protein and of the inactive mutant both have two molecules per asymmetric unit. The wild-type protein crystal was grown in HEPES buffer, a sulfonate anion that resembles the phosphate substrate, and a HEPES molecule was found with nearly full occupancy in the active site. Although the fold of LTP1 resembles that of its bovine counterpart BPTP, there are significant changes around the active site that explain differences in their kinetic behavior. In the crystal of the inactive mutant of LTP1, one molecule has a pNPP in the active site, while the other has a phosphate ion. The aromatic residues lining the walls of the active site cavity exhibit large relative movements between the two molecules. The phosphate groups present in the structures of the mutant protein bind more deeply in the active site (that is, closer to the position of nucleophilic cysteine side chain) than does the sulfonate group of the HEPES molecule in the wild-type structure. This further confirms the important role of the phosphate-binding loop in stabilizing the deep binding position of the phosphate group, thus helping to bring the phosphate close to the thiolate anion of nucleophilic cysteine, and facilitating the formation of the phosphoenzyme intermediate.  相似文献   

18.
Invariant water molecules that are of structural or functional importance to proteins are detected from their presence in the same location in different crystal structures of the same protein or closely related proteins. In this study we have investigated the location of invariant water molecules from MD simulations of ribonuclease A, HIV1-protease and Hen egg white lysozyme. Snapshots of MD trajectories represent the structure of a dynamic protein molecule in a solvated environment as opposed to the static picture provided by crystallography. The MD results are compared to an analysis on crystal structures. A good correlation is observed between the two methods with more than half the hydration sites identified as invariant from crystal structures featuring as invariant in the MD simulations which include most of the functionally or structurally important residues. It is also seen that the propensities of occupying the various hydration sites on a protein for structures obtained from MD and crystallographic studies are different. In general MD simulations can be used to predict invariant hydration sites when there is a paucity of crystallographic data or to complement crystallographic results.  相似文献   

19.
Alok Sharma  K. Sekar  M. Vijayan 《Proteins》2009,77(4):760-777
Molecular dynamics simulations have been carried out on all the jacalin–carbohydrate complexes of known structure, models of unliganded molecules derived from the complexes and also models of relevant complexes where X‐ray structures are not available. Results of the simulations and the available crystal structures involving jacalin permit delineation of the relatively rigid and flexible regions of the molecule and the dynamical variability of the hydrogen bonds involved in stabilizing the structure. Local flexibility appears to be related to solvent accessibility. Hydrogen bonds involving side chains and water bridges involving buried water molecules appear to be important in the stabilization of loop structures. The lectin–carbohydrate interactions observed in crystal structures, the average parameters pertaining to them derived from simulations, energetic contribution of the stacking residue estimated from quantum mechanical calculations, and the scatter of the locations of carbohydrate and carbohydrate‐binding residues are consistent with the known thermodynamic parameters of jacalin–carbohydrate interactions. The simulations, along with X‐ray results, provide a fuller picture of carbohydrate binding by jacalin than provided by crystallographic analysis alone. The simulations confirm that in the unliganded structures water molecules tend to occupy the positions occupied by carbohydrate oxygens in the lectin–carbohydrate complexes. Population distributions in simulations of the free lectin, the ligands, and the complexes indicate a combination of conformational selection and induced fit. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
The molecular structure of Taka-amylase A, an alpha-amylase from Aspergillus oryzae, has been studied at 6 A resolution by X-ray diffraction analysis. The electron density map showed a non-crystallographic three-fold screw arrangement of the molecules in the crystal. The molecule is an ellipsoid with approximate dimensions of 80 x 45 x 35 A and contains a hollow which may correspond to the active center. The inhibitor molecules bind to Taka-amylase A at four different sites, one of which is located in the hollow of the enzyme. The probable position of a thiol group is discussed in connection with heavy atom binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号